1
|
Wang X, Zhang ZY, He X, Liu Z, Sun Z. True Dynamics of Pillararene Host-Guest Binding. J Chem Theory Comput 2025; 21:241-253. [PMID: 39721053 DOI: 10.1021/acs.jctc.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Accurate modeling of host-guest systems is challenging in modern computational chemistry. It requires intermolecular interaction patterns to be correctly described and, more importantly, the dynamic behaviors of macrocyclic hosts to be accurately modeled. Pillar[n]arenes as a crucial family of macrocycles play a critical role in host-guest chemistry and biomedical applications. The carboxylated form with 6 or 7 repeating units is of high popularity due to increased solubility and the compatibility between cavity size and drugs. While prefitted transferable force fields are dominantly applied in host-guest modeling, their reliability and accuracy for macrocyclic hosts remain unjustified. In the current work, based on solid numerical evidence about energetics and dynamics, we prove that all transferable force fields fail to provide a correct description of host dynamics for the most popular carboxylated pillararenes. Therefore, all existing simulation reports on this host family could be biased due to the unsuitability of the force-field description. Such huge modeling problems do not occur in other host families that are relatively rigid (e.g., octa acids and cucurbiturils), highlighting the difficulties in modeling pillararene host-guest interactions. To pursue the true picture of the pillararene dynamics and host-guest binding, we fit high-quality molecule-specific parameters for the carboxylated pillararene based on ab initio calculations and perform an exhaustive conformational search of host-guest binding modes with advanced sampling techniques. We provide estimates of binding thermodynamics, report the true dynamic behavior of the WP6 host in the bound and unbound states, and reveal a general multimodal binding behavior of pillararene host-guest complexes. The current work serves as a critical step toward a reliable all-atom description of pillararene host-guest coordination.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Beijing Leto Laboratories Co., Ltd., 9 North Yongteng Road, Haidian District, Beijing 100094, China
| | - Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, 88 South Daxue Road, Yangzhou 225009, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, 106 Jinkai Avenue West, Yubei District, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, School of Chemistry and Molecular Engineering, New York University Shanghai, 1555 Shiji Road, Pudong New Area, Shanghai 200062, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Zhaoxi Sun
- Changping Laboratory, No. 28 Life Science Park Rd., Beijing 102206, China
| |
Collapse
|
2
|
Liu X, Pang K, Wu H, Wang X, Zhang JZH, Sun Z. All-Atom Perspective of the DENV-3 Methyltransferase Inhibition Mechanism. J Phys Chem B 2024; 128:12358-12367. [PMID: 39639592 DOI: 10.1021/acs.jpcb.4c05943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Dengue virus (DENV) is an enveloped, single-stranded RNA virus with several antigenically distinct serotypes (DENV-1 to DENV-5). Dengue fever, as a major public health threat transmitted by mosquitoes, affects millions of people worldwide (especially in tropical and subtropical regions). Toward drug developments of DENV, the nonstructural protein 5 methyltransferase (MTase) serves as an attractive target. The MTase transforms S-adenosyl methionine to S-adenosyl homocysteine (SAH), which is thereby selected as the target with which external drugs compete with. In this work, using alanine scanning with generalized Born and interaction entropy (ASGB-IE), we provide an all-atom perspective of the protein-ligand interactions formed by DENV-3 MTase and SAH derivatives. Residues with consistently high contributions to stabilization are summarized, and the general DENV-3 MTase inhibition mechanism is elucidated. Additionally, the mutational impact on binding thermodynamics is found to be entropy-driven. We also highlight the advantage of the ASGB-IE method for affinity estimation compared to standard end-point protocols, which is highly related to the selection of interfacial residues in free energy estimation. Finally, we performed a thorough scan of the mutational space on critical sites (saturation mutagenesis) and identified 14 mutants causing resistance to the current inhibitors.
Collapse
Affiliation(s)
- Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaiwen Pang
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hangfei Wu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaohui Wang
- Beijing Leto Laboratories Co., Ltd., Beijing 100094, China
| | - John Z H Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, 567 West Yangsi Road, Shanghai 200126, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
3
|
Xu C, Chu X. Dissecting the Roles of Electrostatic Interactions in Modulating the Folding Stability and Cooperativity of Engrailed Homeodomain. Biochemistry 2024; 63:3261-3272. [PMID: 39602187 DOI: 10.1021/acs.biochem.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Engrailed homeodomain (EngHD), a highly charged transcription factor regulating over 200 genes, is a fast-folding protein. Recent studies have shown that the abundant charged residues in EngHD not only facilitate protein-DNA interactions but also influence the conformational disorder of its native structure. However, the mechanisms by which electrostatic interactions modulate the folding of EngHD remain unclear. Here, we employ a coarse-grained structure-based model that incorporates the salt-dependent Debye-Hückel model to investigate the (un)folding behavior of EngHD under various salt concentrations. Our findings demonstrate that increasing salt concentrations enhance both folding stability and cooperativity, while the folding barrier height remains relatively constant due to the distinct electrostatic effects on individual residues. By modulating the energetic balance between local and nonlocal interactions, we shift the folding of EngHD from a downhill process to a two-state process. Notably, we observe a nonmonotonic relationship between the strength of local interactions and residue-level coupling degree during (un)folding, likely attributed to the repulsive electrostatic interactions present in the native structure of EngHD. Additionally, we identify a critical turning point in the dependence of folding cooperativity on salt concentration, classified by the energetic balance of local and nonlocal interactions. Our results provide valuable insights into how electrostatic interactions influence the folding of EngHD, contributing to the theoretical framework for engineering highly charged proteins.
Collapse
Affiliation(s)
- Chengzhen Xu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Song P, Huang Q, Li W, Li M, Liu Z. Decomposition of Forces in Protein: Methodology and General Properties. J Chem Inf Model 2024. [PMID: 39262153 DOI: 10.1021/acs.jcim.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In contrast to the central role played by the structure of biomolecules, the complementary force-based view has received little attention in past studies. Here, we proposed a simple method for the force decomposition of multibody interactions and provided some techniques to analyze and visualize the general behavior of forces in proteins. It was shown that atomic forces fluctuate at a magnitude of about 3000 pN, which is huge in the context of cell biology. Remarkably, the average scalar product between atomic force and displacement universally approximates -3kBT. This is smaller by an order of magnitude than the simple product of their fluctuation magnitudes due to the unexpectedly weak correlation between the directions of force and displacement. The pairwise forces are highly anisotropic, with elongated fluctuation ellipsoids. Residue-residue forces can be attractive or repulsive (despite being more likely to be attractive), forming some kind of tensegrity structure stabilized by a complicated network of forces. Being able to understand and predict the interaction network provides a basis for rational drug design and uncovering molecular recognition mechanisms.
Collapse
Affiliation(s)
- Pengbo Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiaojing Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenyu Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maodong Li
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
6
|
McBride JM, Eckmann JP, Tlusty T. General Theory of Specific Binding: Insights from a Genetic-Mechano-Chemical Protein Model. Mol Biol Evol 2022; 39:msac217. [PMID: 36208205 PMCID: PMC9641994 DOI: 10.1093/molbev/msac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins need to selectively interact with specific targets among a multitude of similar molecules in the cell. However, despite a firm physical understanding of binding interactions, we lack a general theory of how proteins evolve high specificity. Here, we present such a model that combines chemistry, mechanics, and genetics and explains how their interplay governs the evolution of specific protein-ligand interactions. The model shows that there are many routes to achieving molecular discrimination-by varying degrees of flexibility and shape/chemistry complementarity-but the key ingredient is precision. Harder discrimination tasks require more collective and precise coaction of structure, forces, and movements. Proteins can achieve this through correlated mutations extending far from a binding site, which fine-tune the localized interaction with the ligand. Thus, the solution of more complicated tasks is enabled by increasing the protein size, and proteins become more evolvable and robust when they are larger than the bare minimum required for discrimination. The model makes testable, specific predictions about the role of flexibility and shape mismatch in discrimination, and how evolution can independently tune affinity and specificity. Thus, the proposed theory of specific binding addresses the natural question of "why are proteins so big?". A possible answer is that molecular discrimination is often a hard task best performed by adding more layers to the protein.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
| | - Jean-Pierre Eckmann
- Département de Physique Théorique and Section de Mathématiques, University of Geneva, Geneva, Switzerland
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
- Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
7
|
Chu X, Suo Z, Wang J. Investigating the Conformational Dynamics of a Y-Family DNA Polymerase during Its Folding and Binding to DNA and a Nucleotide. JACS AU 2022; 2:341-356. [PMID: 35252985 PMCID: PMC8889613 DOI: 10.1021/jacsau.1c00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 06/14/2023]
Abstract
During DNA polymerization, the Y-family DNA polymerases are capable of bypassing various DNA damage, which can stall the replication fork progression. It has been well acknowledged that the structures of the Y-family DNA polymerases have been naturally evolved to undertake this vital task. However, the mechanisms of how these proteins utilize their unique structural and conformational dynamical features to perform the translesion DNA synthesis are less understood. Here, we developed structure-based models to study the precatalytic DNA polymerization process, including DNA and nucleotide binding to DPO4, a paradigmatic Y-family polymerase from Sulfolobus solfataricus. We studied the interplay between the folding and the conformational dynamics of DPO4 and found that DPO4 undergoes first unraveling (unfolding) and then folding for accomplishing the functional "open-to-closed" conformational transition. DNA binding dynamically modulates the conformational equilibrium in DPO4 during the stepwise binding through different types of interactions, leading to different conformational distributions of DPO4 at different DNA binding stages. We observed that nucleotide binding induces modulation of a few contacts surrounding the active site of the DPO4-DNA complex associated with a high free energy barrier. Our simulation results resonate with the experimental evidence that the conformational change at the active site led by nucleotide is the rate-limiting step of nucleotide incorporation. In combination with localized frustration analyses, we underlined the importance of DPO4 conformational dynamics and fluctuations in facilitating DNA and nucleotide binding. Our findings offer mechanistic insights into the processes of DPO4 conformational dynamics associated with the substrate binding and contribute to the understanding of the "structure-dynamics-function" relationship in the Y-family DNA polymerases.
Collapse
Affiliation(s)
- Xiakun Chu
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
| | - Zucai Suo
- Department
of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Jin Wang
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
- Department
of Physics and Astronomy, State University
of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
8
|
Gao M, Li P, Su Z, Huang Y. Topological frustration leading to backtracking in a coupled folding-binding process. Phys Chem Chem Phys 2022; 24:2630-2637. [PMID: 35029261 DOI: 10.1039/d1cp04927e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) are abundant in all species. Their discovery challenges the traditional "sequence-structure-function" paradigm of protein science because IDPs play important roles in various biological processes without preformed folded structures. Bioinformatic analysis reveals that the intrinsically conformational disorder of IDPs as well as their conformational transition upon binding to their targets is encoded by their amino acid sequences. The rRNase domain of colicin E3 and the immunity protein Im3 are a pair of proteins involved in bacterial survival. While the N-terminal segment and the central segment of E3 make comparable intermolecular contacts with Im3 in the bound state, binding of E3 with Im3 is dominantly triggered by the central segment of E3. In this work, to further investigate the binding mechanism of disordered E3 with Im3, we performed systematic free energy and transition path analysis through coarse-grained molecular dynamics simulations. We observed backtracking of the N-terminal segment of E3 in the binding process, whose occurrence depends on salt concentration. Conformational analysis revealed that initial binding of the N-terminal segment of E3 to Im3 usually leads to misorientation of a central hairpin of E3 on Im3, which generates topological frustration and results in backtracking of the N-terminal segment. Our results not only provide deeper mechanistic insights into the coupled folding-binding process of the E3/Im3 complex, but also suggest that topological frustration could be present in the coupled folding-binding process of IDPs and play an important role in regulating the binding transition pathways.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
9
|
Chu X, Suo Z, Wang J. Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase. eLife 2020; 9:60434. [PMID: 33079059 PMCID: PMC7641590 DOI: 10.7554/elife.60434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to ‘U-shaped’ DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4–DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, United States
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| |
Collapse
|
10
|
Siebenmorgen T, Zacharias M. Computational prediction of protein–protein binding affinities. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1448] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Till Siebenmorgen
- Physics Department T38 Technical University of Munich Garching Germany
| | - Martin Zacharias
- Physics Department T38 Technical University of Munich Garching Germany
| |
Collapse
|
11
|
Li M, Cao H, Lai L, Liu Z. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci 2019; 27:1600-1610. [PMID: 30019371 DOI: 10.1002/pro.3475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
There are many multidomain allosteric proteins where an allosteric signal at the allosteric domain modifies the activity of the functional domain. Intrinsically disordered regions (linkers) are widely involved in this kind of regulation process, but the essential role they play therein is not well understood. Here, we investigated the effect of linkers in stabilizing the open or the closed states of multidomain proteins using combined thermodynamic deduction and coarse-grained molecular dynamics simulations. We revealed that the influence of linker can be fully characterized by an effective local concentration [B]0 . When Kd is smaller than [B]0 , the closed state would be favored; while the open state would be preferred when Kd is larger than [B]0 . We used four protein systems with markedly different domain-domain binding affinity and structural order/disorder as model systems to understand the relationship between [B]0 and the linker length as well as its flexibility. The linker length is the main practical determinant of [B]0 . [B]0 of a flexible linker with 40-60 residues was determined to be in a narrow range of 0.2-0.6 mM, while a too short or too long length would dramatically decrease [B]0 . With the revealed [B]0 range, the introduction of a flexible linker makes the regulation of weakly interacting partners possible.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Yu M, Chen Y, Wang ZL, Liu Z. Fluctuation correlations as major determinants of structure- and dynamics-driven allosteric effects. Phys Chem Chem Phys 2019; 21:5200-5214. [DOI: 10.1039/c8cp07859a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both structure- and dynamics-driven allosteric effects are determined by the correlation of distance fluctuations in proteins.
Collapse
Affiliation(s)
- Miao Yu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Yixin Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zi-Le Wang
- Department of Physics
- Tsinghua University
- Beijing 100084
- China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
- Center for Quantitative Biology
| |
Collapse
|
13
|
Patel JS, Ytreberg FM. Fast Calculation of Protein-Protein Binding Free Energies Using Umbrella Sampling with a Coarse-Grained Model. J Chem Theory Comput 2018; 14:991-997. [PMID: 29286646 PMCID: PMC5813277 DOI: 10.1021/acs.jctc.7b00660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Determination
of protein–protein binding affinity values
is key to understanding various underlying biological phenomena, such
as how missense variations change protein–protein binding.
Most existing non-rigorous (fast) and rigorous (slow) methods that
rely on all-atom representation of the proteins force the user to
choose between speed and accuracy. In an attempt to achieve balance
between speed and accuracy, we have combined rigorous umbrella sampling
molecular dynamics simulation with a coarse-grained protein model.
We predicted the effect of missense variations on binding affinity
by selecting three protein–protein systems and comparing results
to empirical relative binding affinity values and to non-rigorous
modeling approaches. We obtained significant improvement both in our
ability to discern stabilizing from destabilizing missense variations
and in the correlation between predicted and experimental values compared
to non-rigorous approaches. Overall our results suggest that using
a rigorous affinity calculation method with coarse-grained protein
models could offer fast and reliable predictions of protein–protein
binding free energies.
Collapse
Affiliation(s)
- Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho , Moscow, Idaho 83844, United States
| | - F Marty Ytreberg
- Department of Physics, University of Idaho , Moscow, Idaho 83844, United States
| |
Collapse
|
14
|
Li M, Sun T, Jin F, Yu D, Liu Z. Dimension conversion and scaling of disordered protein chains. MOLECULAR BIOSYSTEMS 2017; 12:2932-40. [PMID: 27440558 DOI: 10.1039/c6mb00415f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To extract protein dimension and energetics information from single-molecule fluorescence resonance energy transfer spectroscopy (smFRET) data, it is essential to establish the relationship between the distributions of the radius of gyration (Rg) and the end-to-end (donor-to-acceptor) distance (Ree). Here, we performed a coarse-grained molecular dynamics simulation to obtain a conformational ensemble of denatured proteins and intrinsically disordered proteins. For any disordered chain with fixed length, there is an excellent linear correlation between the average values of Rg and Ree under various solvent conditions, but the relationship deviates from the prediction of a Gaussian chain. A modified conversion formula was proposed to analyze smFRET data. The formula reduces the discrepancy between the results obtained from FRET and small-angle X-ray scattering (SAXS). The scaling law in a coil-globule transition process was examined where a significant finite-size effect was revealed, i.e., the scaling exponent may exceed the theoretical critical boundary [1/3, 3/5] and the prefactor changes notably during the transition. The Sanchez chain model was also tested and it was shown that the mean-field approximation works well for expanded chains.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Tanlin Sun
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Fan Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing 100871, China. and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Important amino acid residues involved in folding and binding of protein–protein complexes. Int J Biol Macromol 2017; 94:438-444. [DOI: 10.1016/j.ijbiomac.2016.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 01/12/2023]
|