1
|
Odunsi A, Kapitonova MA, Woodward G, Rahmani E, Ghelichkhani F, Liu J, Rozovsky S. Selenoprotein K at the intersection of cellular pathways. Arch Biochem Biophys 2025; 764:110221. [PMID: 39571956 PMCID: PMC11750610 DOI: 10.1016/j.abb.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024]
Abstract
Selenoprotein K (selenok) is linked to the integrated stress response, which helps cells combat stressors and regain normal function. The selenoprotein contains numerous protein interaction hubs and post-translational modification sites and is involved in protein palmitoylation, vesicle trafficking, and the resolution of ER stress. Anchored to the endoplasmic reticulum (ER) membrane, selenok interacts with protein partners to influence their stability, localization, and trafficking, impacting various cellular functions such as calcium homeostasis, cellular migration, phagocytosis, gene expression, and immune response. Consequently, selenok expression level is linked to cancer and neurodegenerative diseases. Because it contains the reactive amino acid selenocysteine, selenok is likely to function as an enzyme. However, highly unusual for enzymes, the protein segment containing the selenocysteine lacks a stable secondary or tertiary structure, yet it includes multiple interaction sites for protein partners and post-translational modifications. Currently, the reason(s) for the presence of the rare selenocysteine in selenok is not known. Furthermore, of selenok's numerous interaction sites, only some have been sufficiently characterized, leaving many of selenok's potential protein partners to be discovered. In this review, we explore selenok's role in various cellular pathways and its impact on human health, thereby highlighting the links between its diverse cellular functions.
Collapse
Affiliation(s)
- Atinuke Odunsi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - George Woodward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jun Liu
- Asieris Pharmaceuticals, Palo Alto, CA, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Putri RA, Rohman MS, Swasono RT, Raharjo TJ. A novel synthetic peptide analog enhanced antibacterial activity of the frog-derived skin peptide wuchuanin-A1. J Biomol Struct Dyn 2025; 43:348-358. [PMID: 37968993 DOI: 10.1080/07391102.2023.2281633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
In recent years, there has been a growing focus on the development of novel antibacterial compounds for clinical applications, such as antimicrobial peptide (AMP). Among the developed AMP, wuchuanin-A1, a coil-shaped bioactive peptide derived from Odorrana wuchuanensis frog skin, has been reported to exhibit antibacterial, antifungal, and antioxidant activity, but there are limited studies on its potential as an antibacterial agent. Therefore, this study aims to molecularly modify the sequence of wuchuanin-A1 to enhance its antibacterial properties. The interaction of both the native and analog peptide with bacterial inner membranes was initially assessed using computational methods. Specific amino acid substitutions were then used to enhance the modified peptide's antibacterial efficacy, followed by several preliminary tests to evaluate its activity. This study bridges the gap in exploring the potential of wuchuanin-A1 for antibacterial purposes, providing insights into the design of effective antimicrobial agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | - Tri Joko Raharjo
- Department of Chemistry, Universitas Gadjah Mada, Bulaksumur, Indonesia
| |
Collapse
|
3
|
Mohammadzadehmarandi A, Zydney AL. Buffer effects on protein sieving losses in ultrafiltration and their relationship to biophysical properties. Biotechnol Prog 2024; 40:e3481. [PMID: 38780204 PMCID: PMC11659806 DOI: 10.1002/btpr.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The design of effective ultrafiltration/diafiltration processes for protein formulation requires the use of membranes with very high protein retention. The objective of this study was to examine the effects of specific buffers on the retention of a model protein (bovine serum albumin) during ultrafiltration. Albumin retention at pH 4.8 was significantly reduced in phosphate buffer compared with that in acetate, citrate, and histidine. This behavior was consistent with a small change in the effective albumin hydrodynamic diameter as determined by dynamic light scattering. The underlying conformational changes leading to this change in diameter were explored using circular dichroism spectroscopy and differential scanning calorimetry. These results provide important insights into the factors controlling protein retention during ultrafiltration and diafiltration.
Collapse
Affiliation(s)
| | - Andrew L. Zydney
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
4
|
Waszkiewicz R, Michaś A, Białobrzewski MK, Klepka BP, Cieplak-Rotowska MK, Staszałek Z, Cichocki B, Lisicki M, Szymczak P, Niedzwiecka A. Hydrodynamic Radii of Intrinsically Disordered Proteins: Fast Prediction by Minimum Dissipation Approximation and Experimental Validation. J Phys Chem Lett 2024; 15:5024-5033. [PMID: 38696815 PMCID: PMC11103702 DOI: 10.1021/acs.jpclett.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
The diffusion coefficients of globular and fully unfolded proteins can be predicted with high accuracy solely from their mass or chain length. However, this approach fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a rapid predictive methodology for estimating the diffusion coefficients of IDPs. The methodology uses accelerated conformational sampling based on self-avoiding random walks and includes hydrodynamic interactions between coarse-grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa approximation. To estimate the hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs over a wide range of chain lengths and domain contributions, we demonstrate that our predictions are more accurate than the Kirkwood approximation and phenomenological approaches. Our technique may prove to be valuable in predicting the hydrodynamic properties of both fully unstructured and multidomain disordered proteins.
Collapse
Affiliation(s)
- Radost Waszkiewicz
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Michaś
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał K. Białobrzewski
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Barbara P. Klepka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | | | - Zuzanna Staszałek
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Bogdan Cichocki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej Lisicki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Szymczak
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Anna Niedzwiecka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
5
|
Caoili SEC. B-Cell Epitope Prediction for Antipeptide Paratopes with the HAPTIC2/HEPTAD User Toolkit (HUT). Methods Mol Biol 2024; 2821:9-32. [PMID: 38997477 DOI: 10.1007/978-1-0716-3914-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
B-cell epitope prediction is key to developing peptide-based vaccines and immunodiagnostics along with antibodies for prophylactic, therapeutic and/or diagnostic use. This entails estimating paratope binding affinity for variable-length peptidic sequences subject to constraints on both paratope accessibility and antigen conformational flexibility, as described herein for the HAPTIC2/HEPTAD User Toolkit (HUT). HUT comprises the Heuristic Affinity Prediction Tool for Immune Complexes 2 (HAPTIC2), the HAPTIC2-like Epitope Prediction Tool for Antigen with Disulfide (HEPTAD) and the HAPTIC2/HEPTAD Input Preprocessor (HIP). HIP enables tagging of residues (e.g., in hydrophobic blobs, ordered regions and glycosylation motifs) for exclusion from downstream analyses by HAPTIC2 and HEPTAD. HAPTIC2 estimates paratope binding affinity for disulfide-free disordered peptidic antigens (by analogy between flexible-ligand docking and protein folding), from terms attributed to compaction (in view of sequence length, charge and temperature-dependent polyproline-II helical propensity), collapse (disfavored by residue bulkiness) and contact (with glycine and proline regarded as polar residues that hydrogen bond with paratopes). HEPTAD analyzes antigen sequences that each contain two cysteine residues for which the impact of disulfide pairing is estimated as a correction to the free-energy penalty of compaction. All of HUT is freely accessible online ( https://freeshell.de/~badong/hut.htm ).
Collapse
Affiliation(s)
- Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines.
| |
Collapse
|
6
|
Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Diversity of hydrodynamic radii of intrinsically disordered proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:607-618. [PMID: 37831084 PMCID: PMC10618399 DOI: 10.1007/s00249-023-01683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) form an important class of biomolecules regulating biological processes in higher organisms. The lack of a fixed spatial structure facilitates them to perform their regulatory functions and allows the efficiency of biochemical reactions to be controlled by temperature and the cellular environment. From the biophysical point of view, IDPs are biopolymers with a broad configuration state space and their actual conformation depends on non-covalent interactions of its amino acid side chain groups at given temperature and chemical conditions. Thus, the hydrodynamic radius (Rh) of an IDP of a given polymer length (N) is a sequence- and environment-dependent variable. We have reviewed the literature values of hydrodynamic radii of IDPs determined experimentally by SEC, AUC, PFG NMR, DLS, and FCS, and complement them with our FCS results obtained for a series of protein fragments involved in the regulation of human gene expression. The data collected herein show that the values of hydrodynamic radii of IDPs can span the full space between the folded globular and denatured proteins in the Rh(N) diagram.
Collapse
Affiliation(s)
- Michał K Białobrzewski
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Barbara P Klepka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Agnieszka Michaś
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Maja K Cieplak-Rotowska
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Flisa 6, PL-02247, Warsaw, Poland
| | - Zuzanna Staszałek
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Anna Niedźwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
7
|
Wilson C, Lewis KA, Fitzkee NC, Hough LE, Whitten ST. ParSe 2.0: A web tool to identify drivers of protein phase separation at the proteome level. Protein Sci 2023; 32:e4756. [PMID: 37574757 PMCID: PMC10464302 DOI: 10.1002/pro.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
We have developed an algorithm, ParSe, which accurately identifies from the primary sequence those protein regions likely to exhibit physiological phase separation behavior. Originally, ParSe was designed to test the hypothesis that, for flexible proteins, phase separation potential is correlated to hydrodynamic size. While our results were consistent with that idea, we also found that many different descriptors could successfully differentiate between three classes of protein regions: folded, intrinsically disordered, and phase-separating intrinsically disordered. Consequently, numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. Built from that finding, ParSe 2.0 uses an optimal set of property scales to predict domain-level organization and compute a sequence-based prediction of phase separation potential. The algorithm is fast enough to scan the whole of the human proteome in minutes on a single computer and is equally or more accurate than other published predictors in identifying proteins and regions within proteins that drive phase separation. Here, we describe a web application for ParSe 2.0 that may be accessed through a browser by visiting https://stevewhitten.github.io/Parse_v2_FASTA to quickly identify phase-separating proteins within large sequence sets, or by visiting https://stevewhitten.github.io/Parse_v2_web to evaluate individual protein sequences.
Collapse
Affiliation(s)
- Colorado Wilson
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
- Present address:
Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular BiophysicsUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Karen A. Lewis
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
| | - Nicholas C. Fitzkee
- Department of ChemistryMississippi State UniversityMississippi StateMississippiUSA
| | - Loren E. Hough
- Department of PhysicsUniversity of Colorado BoulderBoulderColoradoUSA
- BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Steven T. Whitten
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
| |
Collapse
|
8
|
Yarawsky AE, Ori AL, English LR, Whitten ST, Herr AB. Convergent behavior of extended stalk regions from staphylococcal surface proteins with widely divergent sequence patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523059. [PMID: 36711672 PMCID: PMC9881980 DOI: 10.1101/2023.01.06.523059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus epidermidis and S. aureus are highly problematic bacteria in hospital settings. This stems, at least in part, from strong abilities to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized multicellular aggregates of bacteria, which, when formed on indwelling medical devices, lead to infections that are difficult to treat. Cell wall-anchored (CWA) proteins are known to be important players in biofilm formation and infection. Many of these proteins have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of the S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction or other significant conformational changes. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.
Collapse
Affiliation(s)
- Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrea L. Ori
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Sciences Baccalaureate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lance R. English
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Steven T. Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Ibrahim AY, Khaodeuanepheng NP, Amarasekara DL, Correia JJ, Lewis KA, Fitzkee NC, Hough LE, Whitten ST. Intrinsically disordered regions that drive phase separation form a robustly distinct protein class. J Biol Chem 2022; 299:102801. [PMID: 36528065 PMCID: PMC9860499 DOI: 10.1016/j.jbc.2022.102801] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Protein phase separation is thought to be a primary driving force for the formation of membrane-less organelles, which control a wide range of biological functions from stress response to ribosome biogenesis. Among phase-separating (PS) proteins, many have intrinsically disordered regions (IDRs) that are needed for phase separation to occur. Accurate identification of IDRs that drive phase separation is important for testing the underlying mechanisms of phase separation, identifying biological processes that rely on phase separation, and designing sequences that modulate phase separation. To identify IDRs that drive phase separation, we first curated datasets of folded, ID, and PS ID sequences. We then used these sequence sets to examine how broadly existing amino acid property scales can be used to distinguish between the three classes of protein regions. We found that there are robust property differences between the classes and, consequently, that numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. This result indicates that multiple, redundant mechanisms contribute to the formation of phase-separated droplets from IDRs. The top-performing scales were used to further optimize our previously developed predictor of PS IDRs, ParSe. We then modified ParSe to account for interactions between amino acids and obtained reasonable predictive power for mutations that have been designed to test the role of amino acid interactions in driving protein phase separation. Collectively, our findings provide further insight into the classification of IDRs and the elements involved in protein phase separation.
Collapse
Affiliation(s)
- Ayyam Y. Ibrahim
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | | | | | - John J. Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Karen A. Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | | | - Loren E. Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA,For correspondence: Steven T. Whitten; Loren E. Hough
| | - Steven T. Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA,For correspondence: Steven T. Whitten; Loren E. Hough
| |
Collapse
|
10
|
Chu W, Prodromou R, Moore B, Elhanafi D, Kilgore R, Shastry S, Menegatti S. Development of Peptide Ligands for the Purification of α-1 Antitrypsin from Cell Culture Fluids. J Chromatogr A 2022; 1679:463363. [DOI: 10.1016/j.chroma.2022.463363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
|
11
|
Caoili SEC. Prediction of Variable-Length B-Cell Epitopes for Antipeptide Paratopes Using the Program HAPTIC. Protein Pept Lett 2022; 29:328-339. [PMID: 35125075 DOI: 10.2174/0929866529666220203101808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND B-cell epitope prediction for antipeptide antibody responses enables peptide-based vaccine design and related translational applications. This entails estimating epitopeparatope binding free-energy changes from antigen sequence; but attempts to do so assuming uniform epitope length (e.g., of hexapeptide sequences, each spanning a typical paratope diameter when fully extended) have neglected empirically established variation in epitope length. OBJECTIVE This work aimed to develop a sequence-based physicochemical approach to variablelength B-cell epitope prediction for antipeptide paratopes recognizing flexibly disordered targets. METHODS Said approach was developed by analogy between epitope-paratope binding and protein folding modeled as polymer collapse, treating paratope structure implicitly. Epitope-paratope binding was thus conceptually resolved into processes of epitope compaction, collapse and contact, with epitope collapse presenting the main entropic barrier limiting epitope length among nonpolyproline sequences. The resulting algorithm was implemented as a computer program, namely the Heuristic Affinity Prediction Tool for Immune Complexes (HAPTIC), which is freely accessible via an online interface (http://badong.freeshell.org/haptic.htm). This was used in conjunction with published data on representative known peptide immunogens. RESULTS HAPTIC predicted immunodominant epitope sequences with lengths limited by penalties for both compaction and collapse, consistent with known paratope-bound structures of flexibly disordered epitopes. In most cases, the predicted association constant was greater than its experimentally determined counterpart but below the predicted upper bound for affinity maturation in vivo. CONCLUSION HAPTIC provides a physicochemically plausible means for estimating the affinity of antipeptide paratopes for sterically accessible and flexibly disordered peptidic antigen sequences by explicitly considering candidate B-cell epitopes of variable length.
Collapse
Affiliation(s)
- Salvador E C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
12
|
Saikia N, Yanez-Orozco IS, Qiu R, Hao P, Milikisiyants S, Ou E, Hamilton GL, Weninger KR, Smirnova TI, Sanabria H, Ding F. Integrative structural dynamics probing of the conformational heterogeneity in synaptosomal-associated protein 25. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100616. [PMID: 34888535 PMCID: PMC8654206 DOI: 10.1016/j.xcrp.2021.100616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.
Collapse
Affiliation(s)
- Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Navajo Technical University, Chinle, AZ 86503, USA
| | | | - Ruoyi Qiu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Pengyu Hao
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Erkang Ou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - George L. Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Keith R. Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Lead contact
| |
Collapse
|
13
|
Paiz EA, Allen JH, Correia JJ, Fitzkee NC, Hough LE, Whitten ST. Beta turn propensity and a model polymer scaling exponent identify intrinsically disordered phase-separating proteins. J Biol Chem 2021; 297:101343. [PMID: 34710373 PMCID: PMC8592878 DOI: 10.1016/j.jbc.2021.101343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein's propensity to phase separate is thought to be driven by a preference for protein-protein over protein-solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for β-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient β-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, β-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and β-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.
Collapse
Affiliation(s)
- Elisia A Paiz
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Jeffre H Allen
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Loren E Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Steven T Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA.
| |
Collapse
|
14
|
Carvajal MFCA, Preston JM, Jamhawi NM, Sabo TM, Bhattacharya S, Aramini JM, Wittebort RJ, Koder RL. Dynamics in natural and designed elastins and their relation to elastic fiber structure and recoil. Biophys J 2021; 120:4623-4634. [PMID: 34339635 PMCID: PMC8553601 DOI: 10.1016/j.bpj.2021.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Elastin fibers assemble in the extracellular matrix from the precursor protein tropoelastin and provide the flexibility and spontaneous recoil required for arterial function. Unlike many proteins, a structure-function mechanism for elastin has been elusive. We have performed detailed NMR relaxation studies of the dynamics of the minielastins 24x' and 20x' using solution NMR, and of purified bovine elastin fibers in the presence and absence of mechanical stress using solid state NMR. The low sequence complexity of the minielastins enables us to determine average dynamical timescales and degrees of local ordering in the cross-link and hydrophobic modules separately using NMR relaxation by taking advantage of their residue-specific resolution. We find an extremely high degree of disorder, with order parameters for the entirety of the hydrophobic domains near zero, resembling that of simple chemical polymers and less than the order parameters that have been observed in other intrinsically disordered proteins. We find that average backbone order parameters in natural, purified elastin fibers are comparable to those found in 24x' and 20x' in solution. The difference in dynamics, compared with the minielastins, is that backbone correlation times are significantly slowed in purified elastin. Moreover, when elastin is mechanically stretched, the high chain disorder in purified elastin is retained, showing that any change in local ordering is below that detectable in our experiment. Combined with our previous finding of a 10-fold increase in the ordering of water when fully hydrated elastin fibers are stretched by 50%, these results support the hypothesis that stretch induced solvent ordering, i.e., the hydrophobic effect, is a key player in the elastic recoil of elastin as opposed to configurational entropy loss.
Collapse
Affiliation(s)
| | | | - Nour M Jamhawi
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - T Michael Sabo
- Department of Medicine and the James Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - James M Aramini
- Advanced Science Research Center, The City University of New York, New York, New York
| | | | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York; Graduate Programs of Physics, Chemistry, Biochemistry and Biology, The Graduate Center of CUNY, New York, New York.
| |
Collapse
|
15
|
Structural and Energetic Characterization of the Denatured State from the Perspectives of Peptides, the Coil Library, and Intrinsically Disordered Proteins. Molecules 2021; 26:molecules26030634. [PMID: 33530506 PMCID: PMC7865441 DOI: 10.3390/molecules26030634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023] Open
Abstract
The α and polyproline II (PPII) basins are the two most populated regions of the Ramachandran map when constructed from the protein coil library, a widely used denatured state model built from the segments of irregular structure found in the Protein Data Bank. This indicates the α and PPII conformations are dominant components of the ensembles of denatured structures that exist in solution for biological proteins, an observation supported in part by structural studies of short, and thus unfolded, peptides. Although intrinsic conformational propensities have been determined experimentally for the common amino acids in short peptides, and estimated from surveys of the protein coil library, the ability of these intrinsic conformational propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs), an increasingly important class of proteins in cell function, has thus far proven elusive to establish. Recently, we demonstrated that the sequence dependence of the mean hydrodynamic size of IDPs in water and the impact of heat on the coil dimensions, provide access to both the sequence dependence and thermodynamic energies that are associated with biases for the α and PPII backbone conformations. Here, we compare results from peptide-based studies of intrinsic conformational propensities and surveys of the protein coil library to those of the sequence-based analysis of heat effects on IDP hydrodynamic size, showing that a common structural and thermodynamic description of the protein denatured state is obtained.
Collapse
|
16
|
English LR, Voss SM, Tilton EC, Paiz EA, So S, Parra GL, Whitten ST. Impact of Heat on Coil Hydrodynamic Size Yields the Energetics of Denatured State Conformational Bias. J Phys Chem B 2019; 123:10014-10024. [PMID: 31679343 DOI: 10.1021/acs.jpcb.9b09088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational equilibria in the protein denatured state have key roles regulating folding, stability, and function. The extent of conformational bias in the protein denatured state under folding conditions, however, has thus far proven elusive to quantify, particularly with regard to its sequence dependence and energetic character. To better understand the structural preferences of the denatured state, we analyzed both the sequence dependence to the mean hydrodynamic size of disordered proteins in water and the impact of heat on the coil dimensions, showing that the sequence dependence and thermodynamic energies associated with intrinsic biases for the α and polyproline II (PPII) backbone conformations can be obtained. Experiments that evaluate how the hydrodynamic size changes with compositional changes in the protein reveal amino acid specific preferences for PPII that are in good quantitative agreement with calorimetry-measured values from unfolded peptides and those inferred by survey of the protein coil library. At temperatures above 25 °C, the denatured state follows the predictions of a PPII-dominant ensemble. Heat effects on coil hydrodynamic size indicate the α bias is comparable to the PPII bias at cold temperatures. Though historically thought to give poor resolution to structural details, the hydrodynamic size of the unfolded state is found to be an effective reporter on the extent of the biases for the α and PPII backbone conformations.
Collapse
|
17
|
Sequence Reversal Prevents Chain Collapse and Yields Heat-Sensitive Intrinsic Disorder. Biophys J 2019; 115:328-340. [PMID: 30021108 DOI: 10.1016/j.bpj.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Sequence patterns of charge, hydrophobicity, hydrogen bonding, and other amino acid physicochemical properties contribute to mechanisms of protein folding, but how sequence composition and patterns influence the conformational dynamics of the denatured state ensemble is not fully understood. To investigate structure-sequence relationships in the denatured state, we reversed the sequence of staphylococcal nuclease and characterized its structure, thermodynamic character, and hydrodynamic radius using circular dichroism spectroscopy, dynamic light scattering, analytical ultracentrifugation, and size-exclusion chromatography as a function of temperature. The macromolecular size of "Retro-nuclease" is highly expanded in solution with characteristics similar to biological intrinsically disordered proteins. In contradistinction to a disordered state, Retro-nuclease exhibits a broad sigmoid transition of its hydrodynamic dimensions as temperature is increased, indicating a thermodynamically controlled compaction. Counterintuitively, the magnitude of these temperature-induced hydrodynamic changes exceed that observed from thermal denaturation of folded unaltered staphylococcal nuclease. Undetectable by calorimetry and intrinsic tryptophan fluorescence, the lack of heat capacity or fluorescence changes throughout the thermal transition indicate canonical hydrophobic collapse did not drive the Retro-nuclease structural transitions. Temperature-dependent circular dichroism spectroscopy performed on Retro-nuclease and computer simulations correlate to temperature sensitivity in the intrinsic sampling of backbone conformations for polyproline II and α-helix. The experimental results indicate a role for sequence direction in mediating the collapse of the polypeptide chain, whereas the simulation trends illustrate the generality of the observed heat effects on disordered protein structure.
Collapse
|