1
|
Kiani YS, Jabeen I. Challenges of Protein-Protein Docking of the Membrane Proteins. Methods Mol Biol 2024; 2780:203-255. [PMID: 38987471 DOI: 10.1007/978-1-0716-3985-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite the recent advances in the determination of high-resolution membrane protein (MP) structures, the structural and functional characterization of MPs remains extremely challenging, mainly due to the hydrophobic nature, low abundance, poor expression, purification, and crystallization difficulties associated with MPs. Whereby the major challenges/hurdles for MP structure determination are associated with the expression, purification, and crystallization procedures. Although there have been significant advances in the experimental determination of MP structures, only a limited number of MP structures (approximately less than 1% of all) are available in the Protein Data Bank (PDB). Therefore, the structures of a large number of MPs still remain unresolved, which leads to the availability of widely unplumbed structural and functional information related to MPs. As a result, recent developments in the drug discovery realm and the significant biological contemplation have led to the development of several novel, low-cost, and time-efficient computational methods that overcome the limitations of experimental approaches, supplement experiments, and provide alternatives for the characterization of MPs. Whereby the fine tuning and optimizations of these computational approaches remains an ongoing endeavor.Computational methods offer a potential way for the elucidation of structural features and the augmentation of currently available MP information. However, the use of computational modeling can be extremely challenging for MPs mainly due to insufficient knowledge of (or gaps in) atomic structures of MPs. Despite the availability of numerous in silico methods for 3D structure determination the applicability of these methods to MPs remains relatively low since all methods are not well-suited or adequate for MPs. However, sophisticated methods for MP structure predictions are constantly being developed and updated to integrate the modifications required for MPs. Currently, different computational methods for (1) MP structure prediction, (2) stability analysis of MPs through molecular dynamics simulations, (3) modeling of MP complexes through docking, (4) prediction of interactions between MPs, and (5) MP interactions with its soluble partner are extensively used. Towards this end, MP docking is widely used. It is notable that the MP docking methods yet few in number might show greater potential in terms of filling the knowledge gap. In this chapter, MP docking methods and associated challenges have been reviewed to improve the applicability, accuracy, and the ability to model macromolecular complexes.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
2
|
Abstract
Prediction of the structure of protein complexes by docking methods is a well-established research field. The intermolecular energy landscapes in protein-protein interactions can be used to refine docking predictions and to detect macro-characteristics, such as the binding funnel. A new GRAMM web server for protein docking predicts a spectrum of docking poses that characterize the intermolecular energy landscape in protein interaction. A user-friendly interface provides options to choose free or template-based docking, as well as other advanced features, such as clustering of the docking poses, and interactive visualization of the docked models.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Matthew M Copeland
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
3
|
Xu Z, Davila A, Wilamowski J, Teraguchi S, Standley DM. Improved Antibody-Specific Epitope Prediction Using AlphaFold and AbAdapt. Chembiochem 2022; 23:e202200303. [PMID: 35893479 PMCID: PMC9543094 DOI: 10.1002/cbic.202200303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Antibodies recognize their cognate antigens with high affinity and specificity, but the prediction of binding sites on the antigen (epitope) corresponding to a specific antibody remains a challenging problem. To address this problem, we developed AbAdapt, a pipeline that integrates antibody and antigen structural modeling with rigid docking in order to derive antibody-antigen specific features for epitope prediction. In this study, we systematically assessed the impact of integrating the state-of-the-art protein modeling method AlphaFold with the AbAdapt pipeline. By incorporating more accurate antibody models, we observed improvement in docking, paratope prediction, and prediction of antibody-specific epitopes. We further applied AbAdapt-AF in an anti-receptor binding domain (RBD) antibody complex benchmark and found AbAdapt-AF outperformed three alternative docking methods. Also, AbAdapt-AF demonstrated higher epitope prediction accuracy than other tested epitope prediction tools in the anti-RBD antibody complex benchmark. We anticipate that AbAdapt-AF will facilitate prediction of antigen-antibody interactions in a wide range of applications.
Collapse
Affiliation(s)
- Zichang Xu
- Department of Genome InformaticsResearch Institute for Microbial DiseasesOsaka UniversitySuita565-0871Japan
| | - Ana Davila
- Department of Genome InformaticsResearch Institute for Microbial DiseasesOsaka UniversitySuita565-0871Japan
| | - Jan Wilamowski
- Department of Genome InformaticsResearch Institute for Microbial DiseasesOsaka UniversitySuita565-0871Japan
| | - Shunsuke Teraguchi
- Department of Genome InformaticsResearch Institute for Microbial DiseasesOsaka UniversitySuita565-0871Japan
- Faculty of Data ScienceShiga UniversityHikone522-8522Japan
| | - Daron M. Standley
- Department of Genome InformaticsResearch Institute for Microbial DiseasesOsaka UniversitySuita565-0871Japan
| |
Collapse
|
4
|
Kotthoff I, Kundrotas PJ, Vakser IA. Dockground
scoring benchmarks for protein docking. Proteins 2022; 90:1259-1266. [DOI: 10.1002/prot.26306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Ian Kotthoff
- Computational Biology Program The University of Kansas Lawrence Kansas USA
| | | | - Ilya A. Vakser
- Computational Biology Program The University of Kansas Lawrence Kansas USA
- Department of Molecular Biosciences The University of Kansas Lawrence Kansas USA
| |
Collapse
|
5
|
Malladi S, Powell HR, David A, Islam SA, Copeland MM, Kundrotas PJ, Sternberg MJ, Vakser IA. GWYRE: A resource for mapping variants onto experimental and modeled structures of human protein complexes. J Mol Biol 2022; 434:167608. [PMID: 35662458 PMCID: PMC9188266 DOI: 10.1016/j.jmb.2022.167608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
Structure of protein complexes is important for interpreting genetic variation. Data on single amino acid variants is available from high-throughput sequencing. Integrated modeling approach was applied to proteins and their complexes. GWYRE resource incorporates predicted protein complexes with mapped mutations.
Rapid progress in structural modeling of proteins and their interactions is powered by advances in knowledge-based methodologies along with better understanding of physical principles of protein structure and function. The pool of structural data for modeling of proteins and protein–protein complexes is constantly increasing due to the rapid growth of protein interaction databases and Protein Data Bank. The GWYRE (Genome Wide PhYRE) project capitalizes on these developments by advancing and applying new powerful modeling methodologies to structural modeling of protein–protein interactions and genetic variation. The methods integrate knowledge-based tertiary structure prediction using Phyre2 and quaternary structure prediction using template-based docking by a full-structure alignment protocol to generate models for binary complexes. The predictions are incorporated in a comprehensive public resource for structural characterization of the human interactome and the location of human genetic variants. The GWYRE resource facilitates better understanding of principles of protein interaction and structure/function relationships. The resource is available at http://www.gwyre.org.
Collapse
|
6
|
Davila A, Xu Z, Li S, Rozewicki J, Wilamowski J, Kotelnikov S, Kozakov D, Teraguchi S, Standley DM. AbAdapt: an adaptive approach to predicting antibody-antigen complex structures from sequence. BIOINFORMATICS ADVANCES 2022; 2:vbac015. [PMID: 36699363 PMCID: PMC9710585 DOI: 10.1093/bioadv/vbac015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 01/28/2023]
Abstract
Motivation The scoring of antibody-antigen docked poses starting from unbound homology models has not been systematically optimized for a large and diverse set of input sequences. Results To address this need, we have developed AbAdapt, a webserver that accepts antibody and antigen sequences, models their 3D structures, predicts epitope and paratope, and then docks the modeled structures using two established docking engines (Piper and Hex). Each of the key steps has been optimized by developing and training new machine-learning models. The sequences from a diverse set of 622 antibody-antigen pairs with known structure were used as inputs for leave-one-out cross-validation. The final set of cluster representatives included at least one 'Adequate' pose for 550/622 (88.4%) of the queries. The median (interquartile range) ranks of these 'Adequate' poses were 22 (5-77). Similar results were obtained on a holdout set of 100 unrelated antibody-antigen pairs. When epitopes were repredicted using docking-derived features for specific antibodies, the median ROC AUC increased from 0.679 to 0.720 in cross-validation and from 0.694 to 0.730 in the holdout set. Availability and implementation AbAdapt and related data are available at https://sysimm.org/abadapt/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Ana Davila
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan
| | - Zichang Xu
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan
| | - Songling Li
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan
| | - John Rozewicki
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan
| | - Jan Wilamowski
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-5252, USA,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794-5252, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-5252, USA,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794-5252, USA
| | - Shunsuke Teraguchi
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan,Faculty of Data Science, Shiga University, Hikone 522-8522, Japan
| | - Daron M Standley
- Research Institute for Microbial Diseases, Department of Genome Informatics, Osaka University, Suita 565-0871, Japan,Immunology Frontier Research Center, Department of Systems Immunology, Osaka University, Suita 565-0871, Japan,To whom correspondence should be addressed.
| |
Collapse
|
7
|
Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, et alLensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, Dapkūnas J, Olechnovič K, Venclovas Č, Duan R, Qiu L, Xu X, Zhang S, Zou X, Wodak SJ. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment. Proteins 2021; 89:1800-1823. [PMID: 34453465 PMCID: PMC8616814 DOI: 10.1002/prot.26222] [Show More Authors] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
Collapse
Affiliation(s)
- Marc F Lensink
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Guillaume Brysbaert
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Théo Mauri
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Nurul Nadzirin
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Bin Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Guangbo Yang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ming Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xufeng Lu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Anna Antoniak
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Artur Giełdoń
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mateusz Kogut
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | | | | | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Patryk A Wesołowski
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Karolina Zięba
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Eiichiro Ichiishi
- International University of Health and Welfare Hospital (IUHW Hospital), Nasushiobara City, Japan
| | - Ameya Harmalkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey J Gray
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo Vargas Honorato
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Zuzana Jandova
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Siri Van Keulen
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W Van Noort
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Manon Réau
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Innopolis University, Russia
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Kathryn A Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Andrey Alekseenko
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Institute of Computer-Aided Design of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Zhuyezi Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Nasser Hashemi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Mireia Rosell
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Sergei Grudinin
- Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tsukasa Nakamura
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuya Hanazono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Ghazaleh Taherzadeh
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | | | - Zhen Cao
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Romina Oliva
- University of Naples "Parthenope", Napoli, Italy
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Shaowen Zhu
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yasuomi Kiyota
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Yoshiki Harada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Amar Singh
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Shuang Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xiaoqin Zou
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
8
|
Vangaveti S, Vreven T, Zhang Y, Weng Z. Integrating ab initio and template-based algorithms for protein-protein complex structure prediction. Bioinformatics 2020; 36:751-757. [PMID: 31393558 DOI: 10.1093/bioinformatics/btz623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Template-based and template-free methods have both been widely used in predicting the structures of protein-protein complexes. Template-based modeling is effective when a reliable template is available, while template-free methods are required for predicting the binding modes or interfaces that have not been previously observed. Our goal is to combine the two methods to improve computational protein-protein complex structure prediction. RESULTS Here, we present a method to identify and combine high-confidence predictions of a template-based method (SPRING) with a template-free method (ZDOCK). Cross-validated using the protein-protein docking benchmark version 5.0, our method (ZING) achieved a success rate of 68.2%, outperforming SPRING and ZDOCK, with success rates of 52.1% and 35.9% respectively, when the top 10 predictions were considered per test case. In conclusion, a statistics-based method that evaluates and integrates predictions from template-based and template-free methods is more successful than either method independently. AVAILABILITY AND IMPLEMENTATION ZING is available for download as a Github repository (https://github.com/weng-lab/ZING.git). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sweta Vangaveti
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Guven-Maiorov E, Hakouz A, Valjevac S, Keskin O, Tsai CJ, Gursoy A, Nussinov R. HMI-PRED: A Web Server for Structural Prediction of Host-Microbe Interactions Based on Interface Mimicry. J Mol Biol 2020; 432:3395-3403. [PMID: 32061934 PMCID: PMC7261632 DOI: 10.1016/j.jmb.2020.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microbes, commensals, and pathogens, control the numerous functions in the host cells. They can alter host signaling and modulate immune surveillance by interacting with the host proteins. For shedding light on the contribution of microbes to health and disease, it is vital to discern how microbial proteins rewire host signaling and through which host proteins they do this. Host-Microbe Interaction PREDictor (HMI-PRED) is a user-friendly web server for structural prediction of protein-protein interactions (PPIs) between the host and a microbial species, including bacteria, viruses, fungi, and protozoa. HMI-PRED relies on "interface mimicry" through which the microbial proteins hijack host binding surfaces. Given the structure of a microbial protein of interest, HMI-PRED will return structural models of potential host-microbe interaction (HMI) complexes, the list of host endogenous and exogenous PPIs that can be disrupted, and tissue expression of the microbe-targeted host proteins. The server also allows users to upload homology models of microbial proteins. Broadly, it aims at large-scale, efficient identification of HMIs. The prediction results are stored in a repository for community access. HMI-PRED is free and available at https://interactome.ku.edu.tr/hmi.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Asma Hakouz
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Sukejna Valjevac
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey.
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
10
|
Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA. Application of docking methodologies to modeled proteins. Proteins 2020; 88:1180-1188. [PMID: 32170770 DOI: 10.1002/prot.25889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/15/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Taras Dauzhenka
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
11
|
Chakravarty D, McElfresh GW, Kundrotas PJ, Vakser IA. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking. Proteins 2020; 88:1070-1081. [PMID: 31994759 DOI: 10.1002/prot.25875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023]
Abstract
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.
Collapse
Affiliation(s)
| | - G W McElfresh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| |
Collapse
|
12
|
Kotelnikov S, Alekseenko A, Liu C, Ignatov M, Padhorny D, Brini E, Lukin M, Coutsias E, Dill KA, Kozakov D. Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4. J Comput Aided Mol Des 2019; 34:179-189. [PMID: 31879831 DOI: 10.1007/s10822-019-00257-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.
Collapse
Affiliation(s)
- Sergei Kotelnikov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.,Innopolis University, Innopolis, Russia
| | - Andrey Alekseenko
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Cong Liu
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Mikhail Ignatov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.,Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Emiliano Brini
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mark Lukin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Evangelos Coutsias
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Dima Kozakov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA. .,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA. .,Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Alekseenko A, Kotelnikov S, Ignatov M, Egbert M, Kholodov Y, Vajda S, Kozakov D. ClusPro LigTBM: Automated Template-based Small Molecule Docking. J Mol Biol 2019; 432:3404-3410. [PMID: 31863748 DOI: 10.1016/j.jmb.2019.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
The template-based approach has been essential for achieving high-quality models in the recent rounds of blind protein-protein docking competition CAPRI (Critical Assessment of Predicted Interactions). However, few such automated methods exist for protein-small molecule docking. In this paper, we present an algorithm for template-based docking of small molecules. It searches for known complexes with ligands that have partial coverage of the target ligand, performs conformational sampling and template-guided energy refinement to produce a variety of possible poses, and then scores the refined poses. The algorithm is available as the automated ClusPro LigTBM server. It allows the user to specify the target protein as a PDB file and the ligand as a SMILES string. The server then searches for templates and uses them for docking, presenting the user with top-scoring poses and their confidence scores. The method is tested on the Astex Diverse benchmark, as well as on the targets from the last round of the D3R (Drug Design Data Resource) Grand Challenge. The server is publicly available as part of the ClusPro docking server suite at https://ligtbm.cluspro.org/.
Collapse
Affiliation(s)
- Andrey Alekseenko
- Department of Applied Mathematics and Statistics, Stony Brook University, 11794 Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, 11794 Stony Brook, NY, USA
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, 11794 Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, 11794 Stony Brook, NY, USA; Innopolis University, 420500, Innopolis, Russia
| | - Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, 11794 Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, 11794 Stony Brook, NY, USA; Institute for Advanced Computational Sciences, Stony Brook University, 11794, Stony Brook, NY, USA
| | - Megan Egbert
- Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA
| | | | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, 02215, Boston, MA, USA; Department of Chemistry, Boston University, 02215, Boston, MA, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, 11794 Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, 11794 Stony Brook, NY, USA; Institute for Advanced Computational Sciences, Stony Brook University, 11794, Stony Brook, NY, USA.
| |
Collapse
|
14
|
Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, et alLensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, Jiménez-García B, van Noort CW, Honorato RV, Bonvin AMJJ, Wodak SJ. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment. Proteins 2019; 87:1200-1221. [PMID: 31612567 PMCID: PMC7274794 DOI: 10.1002/prot.25838] [Show More Authors] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
Collapse
Affiliation(s)
- Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Brysbaert
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nurul Nadzirin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Tereza Gerguri
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Elodie Laine
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
| | - Alessandra Carbone
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ran-Ran Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Emilia Lubecka
- Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
| | | | - Paweł Krupa
- Polish Academy of Sciences, Institute of Physics, Warsaw, Poland
| | | | - Łukasz Golon
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | | | - Guillaume Pagès
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | | | - Maria Kadukova
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | - Luis A. Rodríguez-Lumbreras
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | | | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | | | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Dima Kozakov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Kathryn Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mikhail Ignatov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sergey Kotelnikov
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Iain H. Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | - Didier Barradas-Bautista
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhen Cao
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University of Naples “Parthenope”, Napoli, Italy
| | - Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Merav Braitbard
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lirane Bitton
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Scheidman-Duhovny
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Petras J. Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Saveliy Belkin
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Devlina Chakravarty
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Varsha D. Badal
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Ilya A. Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Thom Vreven
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler Borrman
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jie Hou
- Department of Computer Science, University of Missouri, Columbia, Missouri
| | - Benjamin Ryan Merideth
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Panagiotis I. Koukos
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cunliang Geng
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jörg Schaarschmidt
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mikael E. Trellet
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Adrien S. J. Melquiond
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Li Xue
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W. van Noort
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
15
|
Computational approaches to macromolecular interactions in the cell. Curr Opin Struct Biol 2019; 55:59-65. [PMID: 30999240 DOI: 10.1016/j.sbi.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Structural modeling of a cell is an evolving strategic direction in computational structural biology. It takes advantage of new powerful modeling techniques, deeper understanding of fundamental principles of molecular structure and assembly, and rapid growth of the amount of structural data generated by experimental techniques. Key modeling approaches to principal types of macromolecular assemblies in a cell already exist. The main challenge, along with the further development of these modeling approaches, is putting them together in a consistent, unified whole cell model. This opinion piece addresses the fundamental aspects of modeling macromolecular assemblies in a cell, and the state-of-the-art in modeling of the principal types of such assemblies.
Collapse
|
16
|
Hadarovich A, Anishchenko I, Tuzikov AV, Kundrotas PJ, Vakser IA. Gene ontology improves template selection in comparative protein docking. Proteins 2018; 87:245-253. [PMID: 30520123 DOI: 10.1002/prot.25645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Structural characterization of protein-protein interactions is essential for our ability to study life processes at the molecular level. Computational modeling of protein complexes (protein docking) is important as the source of their structure and as a way to understand the principles of protein interaction. Rapidly evolving comparative docking approaches utilize target/template similarity metrics, which are often based on the protein structure. Although the structural similarity, generally, yields good performance, other characteristics of the interacting proteins (eg, function, biological process, and localization) may improve the prediction quality, especially in the case of weak target/template structural similarity. For the ranking of a pool of models for each target, we tested scoring functions that quantify similarity of Gene Ontology (GO) terms assigned to target and template proteins in three ontology domains-biological process, molecular function, and cellular component (GO-score). The scoring functions were tested in docking of bound, unbound, and modeled proteins. The results indicate that the combined structural and GO-terms functions improve the scoring, especially in the twilight zone of structural similarity, typical for protein models of limited accuracy.
Collapse
Affiliation(s)
- Anna Hadarovich
- Computational Biology Program, The University of Kansas, Lawrence, Kansas.,United Institute of Informatics Problems, National Academy of Sciences, Minsk, Belarus
| | - Ivan Anishchenko
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences, Minsk, Belarus
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas.,Department of Molecular Biosciences, The University of Kansas, Kansas, Lawrence
| |
Collapse
|
17
|
Anishchenko I, Kundrotas PJ, Vakser IA. Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model. Biophys J 2018; 115:809-821. [PMID: 30122295 DOI: 10.1016/j.bpj.2018.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
The energy function is the key component of protein modeling methodology. This work presents a semianalytical approach to the development of contact potentials for protein structure modeling. Residue-residue and atom-atom contact energies were derived by maximizing the probability of observing native sequences in a nonredundant set of protein structures. The optimization task was formulated as an inverse statistical mechanics problem applied to the Potts model. Its solution by pseudolikelihood maximization provides consistent estimates of coupling constants at atomic and residue levels. The best performance was achieved when interacting atoms were grouped according to their physicochemical properties. For individual protein structures, the performance of the contact potentials in distinguishing near-native structures from the decoys is similar to the top-performing scoring functions. The potentials also yielded significant improvement in the protein docking success rates. The potentials recapitulated experimentally determined protein stability changes upon point mutations and protein-protein binding affinities. The approach offers a different perspective on knowledge-based potentials and may serve as the basis for their further development.
Collapse
Affiliation(s)
- Ivan Anishchenko
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
18
|
Inhibition of protein interactions: co-crystalized protein-protein interfaces are nearly as good as holo proteins in rigid-body ligand docking. J Comput Aided Mol Des 2018; 32:769-779. [PMID: 30003468 DOI: 10.1007/s10822-018-0124-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
Modulating protein interaction pathways may lead to the cure of many diseases. Known protein-protein inhibitors bind to large pockets on the protein-protein interface. Such large pockets are detected also in the protein-protein complexes without known inhibitors, making such complexes potentially druggable. The inhibitor-binding site is primary defined by the side chains that form the largest pocket in the protein-bound conformation. Low-resolution ligand docking shows that the success rate for the protein-bound conformation is close to the one for the ligand-bound conformation, and significantly higher than for the apo conformation. The conformational change on the protein interface upon binding to the other protein results in a pocket employed by the ligand when it binds to that interface. This proof-of-concept study suggests that rather than using computational pocket-opening procedures, one can opt for an experimentally determined structure of the target co-crystallized protein-protein complex as a starting point for drug design.
Collapse
|