1
|
Zlobin A, Maslova V, Beliaeva J, Meiler J, Golovin A. Long-Range Electrostatics in Serine Proteases: Machine Learning-Driven Reaction Sampling Yields Insights for Enzyme Design. J Chem Inf Model 2025; 65:2003-2013. [PMID: 39928564 PMCID: PMC11863386 DOI: 10.1021/acs.jcim.4c01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
Computational enzyme design is a promising technique for producing novel enzymes for industrial and clinical needs. A key challenge that this technique faces is to consistently achieve the desired activity. Fundamental studies of natural enzymes revealed critical contributions from second-shell - and even more distant - residues to their remarkable efficiency. In particular, such residues organize the internal electrostatic field to promote the reaction. Engineering such fields computationally proved to be a promising strategy, which, however, has some limitations. Charged residues necessarily form specific patterns of local interactions that may be exploited for structural integrity. As a result, it is impossible to probe the electrostatic field alone by substituting amino acids. We hypothesize that an approach that isolates the influences of residues' charges from other influences could yield deeper insights. We use molecular modeling with AI-enhanced QM/MM reaction sampling to implement such an approach and apply it to a model serine protease subtilisin. We find that the negative charge 8 Å away from the catalytic site is crucial to achieving the enzyme's catalytic efficiency, contributing more than 2 kcal/mol to lowering the barrier. In contrast, a positive charge from the second-closest charged residue opposes the efficiency of the reaction by raising the barrier by 0.8 kcal/mol. This result invites discussion into the role of this residue and trade-offs that might have taken place in the evolution of such enzymes. Our approach is transferable and can help investigate the evolution of electrostatic preorganization in other enzymes. We believe that the study and engineering of electrostatic fields in enzymes is a promising direction to advance both fundamental and applied enzymology and lead to the design of new powerful biocatalysts.
Collapse
Affiliation(s)
- Alexander Zlobin
- Institute for Drug
Discovery, Leipzig University Medical School, Brüderstraße 34, Leipzig 04103, Germany
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, building 73, Moscow 119234, Russia
| | - Valentina Maslova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, building 73, Moscow 119234, Russia
| | - Julia Beliaeva
- Institute for Drug
Discovery, Leipzig University Medical School, Brüderstraße 34, Leipzig 04103, Germany
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, building 73, Moscow 119234, Russia
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Härtelstr. 16-18, Leipzig 04107, Germany
| | - Jens Meiler
- Institute for Drug
Discovery, Leipzig University Medical School, Brüderstraße 34, Leipzig 04103, Germany
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, PMB 407917, Nashville, Tennessee 37240-7917, United States
- Center for Scalable Data Analytics and
Artificial Intelligence (ScaDS.AI), Leipzig 04081, Germany
| | - Andrey Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, building 73, Moscow 119234, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, building 40, Moscow 119992, Russia
| |
Collapse
|
2
|
Kalmer T, Ancajas CMF, Cohen CI, McDaniel JM, Oyedele AS, Thirman HL, Walker AS. Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase. J Phys Chem B 2024; 128:10373-10384. [PMID: 39385339 PMCID: PMC11514014 DOI: 10.1021/acs.jpcb.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in the study of protein dynamics. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in the dynamics. For example, specific mutations on the Met20 loop in Escherichia coli DHFR (N23PP/S148A) are known to disrupt millisecond-time scale motions as well as reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues that possesses increased correlated motions. We then go on to show that allosteric communication in this network is knocked down in N23PP/S148A mutant E. coli DHFR. We also identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline motif. Finally, we demonstrate a concerted evolutionary change in the human DHFR allosteric networks, which maintains dynamic communication. These findings strongly implicate protein dynamics as a driving force for evolution.
Collapse
Affiliation(s)
- Thomas
L. Kalmer
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | | | - Cameron I. Cohen
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United
States
| | - Jade M. McDaniel
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Abiodun S. Oyedele
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Hannah L. Thirman
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37240-7935, United States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Chemical
& Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Allison S. Walker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Evolutionary
Studies Initiative, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| |
Collapse
|
3
|
Kalmer TL, Ancajas CMF, Cohen CI, McDaniel JM, Oyedele AS, Thirman HL, Walker AS. Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599103. [PMID: 38948820 PMCID: PMC11213021 DOI: 10.1101/2024.06.18.599103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The role of dynamics in enzymatic function is a highly debated topic. Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in this debate. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in dynamics and others that are important for catalysis. For example, specific mutations on the Met20 loop in E. coli DHFR (N23PP/S148A) are known to disrupt millisecond-timescale motions and reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues, which possess increased correlated motions. We then go on to show that allosteric communication in this network is selectively knocked down in N23PP/S148A mutant E. coli DHFR. Finally, we identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline mutation while preserving dynamics. These findings strongly implicate protein dynamics as a driving force for evolution.
Collapse
Affiliation(s)
- Thomas L. Kalmer
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
| | | | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jade M. McDaniel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Hannah L. Thirman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Allison S. Walker
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Rakotoharisoa RV, Seifinoferest B, Zarifi N, Miller JDM, Rodriguez JM, Thompson MC, Chica RA. Design of Efficient Artificial Enzymes Using Crystallographically Enhanced Conformational Sampling. J Am Chem Soc 2024; 146:10001-10013. [PMID: 38532610 DOI: 10.1021/jacs.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The ability to create efficient artificial enzymes for any chemical reaction is of great interest. Here, we describe a computational design method for increasing the catalytic efficiency of de novo enzymes by several orders of magnitude without relying on directed evolution and high-throughput screening. Using structural ensembles generated from dynamics-based refinement against X-ray diffraction data collected from crystals of Kemp eliminases HG3 (kcat/KM 125 M-1 s-1) and KE70 (kcat/KM 57 M-1 s-1), we design from each enzyme ≤10 sequences predicted to catalyze this reaction more efficiently. The most active designs display kcat/KM values improved by 100-250-fold, comparable to mutants obtained after screening thousands of variants in multiple rounds of directed evolution. Crystal structures show excellent agreement with computational models, with catalytic contacts present as designed and transition-state root-mean-square deviations of ≤0.65 Å. Our work shows how ensemble-based design can generate efficient artificial enzymes by exploiting the true conformational ensemble to design improved active sites.
Collapse
Affiliation(s)
- Rojo V Rakotoharisoa
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Behnoush Seifinoferest
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Niayesh Zarifi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jack D M Miller
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Joshua M Rodriguez
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Jiang Y, Ding N, Shao Q, Stull SL, Cheng Z, Yang ZJ. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis. J Phys Chem Lett 2023; 14:11480-11489. [PMID: 38085952 PMCID: PMC11211065 DOI: 10.1021/acs.jpclett.3c02444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Substrate positioning dynamics (SPD) orients the substrate in the active site, thereby influencing catalytic efficiency. However, it remains unknown whether SPD effects originate primarily from electrostatic perturbation inside the enzyme or can independently mediate catalysis with a significant non-electrostatic component. In this work, we investigated how the non-electrostatic component of SPD affects transition state (TS) stabilization. Using high-throughput enzyme modeling, we selected Kemp eliminase variants with similar electrostatics inside the enzyme but significantly different SPD. The kinetic parameters of these mutants were experimentally characterized. We observed a valley-shaped, two-segment linear correlation between the TS stabilization free energy (converted from kinetic parameters) and substrate positioning index (a metric to quantify SPD). The energy varies by approximately 2 kcal/mol. Favorable SPD was observed for the distal mutant R154W, increasing the proportion of reactive conformations and leading to the lowest activation free energy. These results indicate the substantial contribution of the non-electrostatic component of SPD to enzyme catalytic efficiency.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sebastian L. Stull
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
7
|
Steyn-Ross ML, Steyn-Ross DA, Prentice EJ, Walker EJ, Arcus VL. Evidence for a short-lived resonance state in enzyme catalysis via rate-equation convolution. Phys Rev E 2023; 107:064407. [PMID: 37464627 DOI: 10.1103/physreve.107.064407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
At the cellular level, all biological function relies on enzymes to provide catalytic acceleration of essential biochemical processes driving cellular metabolism. The enzyme is presumed to lower the activation energy barrier separating reactants from products, but the precise mechanism remains unresolved. Here we examine the temperature dependence of the enzyme-catalyzed dissociation of p-nitrophenyl-α-D-glucopyranoside (pNPG), a chromogenic analog for maltose, isomaltose, and sucrose disaccharide sugars, into p-nitrophenol (pNP) and glucose (monosaccharide). The enzymes of interest are the wild type and mutant forms of glucosidase MalL produced by the probiotic bacterium Bacillus subtilis. The per-enzyme production rates k(T) for the pNPG→ glucose reaction all show a characteristic temperature profile with an Arrhenius-like (approximately exponential) slow acceleration at low temperatures, rising through a point of inflexion to reach a maximum, then turning over to decline steeply towards zero production at high temperatures. This asymmetric profile is found to be well fitted by convolving an exponential growth function f(T) with a Gaussian temperature distribution g(T) to produce an exponentially modified Gaussian function h(T). To give a physical interpretation of the convolution components, we make the temperature mapping Θ≡T_{ref}-T where T_{ref} marks the temperature at which a given mutant becomes fully denatured (unfolded) and therefore inactive, then convert the convolution components to probability density functions which obey the convolution theorem of statistics. Working in Θ space, we identify f(Θ) as the density function for an Arrhenius-like transition from ground-state A to metastable-state B, and g(Θ) as the Gaussian distribution of offset-temperature fluctuations for the metastable state. By mapping the standard thermodynamic relations for temperature and energy fluctuations to the enzyme frame of reference, we are able to derive an expression for the lifetime for the metastable B state. For the 15 enzyme experiments, we obtain a mean value 〈Δt〉≳(29.0±1.3)×10^{-15}s, in remarkably good agreement with the ∼30-fs estimate for the period of glycosidic bond oscillations extracted from published infrared spectroscopy. We suggest that the metastable B state provides a low-energy target that has the effect of lowering the activation energy barrier by presenting an alternative axis for the reaction coordinate.
Collapse
Affiliation(s)
| | | | | | - Emma J Walker
- School of Science, University of Waikato, Hamilton, New Zealand
| | - V L Arcus
- School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
10
|
Asadi M, Warshel A. Analyzing the Reaction of Orotidine 5'-Phosphate Decarboxylase as a Way to Examine Some Key Catalytic Proposals. J Am Chem Soc 2023; 145:1334-1341. [PMID: 36579957 PMCID: PMC11198739 DOI: 10.1021/jacs.2c11728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study analyzes the origin of enzyme catalysis by focusing on the reaction of orotidine 5'-phosphate decarboxylase (ODCase). This reaction involves an enormous catalytic effect of 23 kcal/mol that has been attributed to reactant state destabilization associated with the use of binding energy through the so-called Circe effect. However, our early studies and subsequent key experiments have shown that the presumed effect of the binding energy (namely, the strain exerted by a bond to a phosphate group) does not contribute to the catalysis. In this study, we perform quantitative empirical valence bond calculations that reproduce the catalytic effect of ODCase and the effect of removing the phosphate side chain. The calculations demonstrate that the effect of the phosphate is due to a change in reorganization energy and should not be described as an induced fit effect. Similarly, we show that the overall catalytic effect is due to electrostatic transition state stabilization, which again reflects the smaller reorganization energy in the enzyme than in water. We also elaborate on the problems with the induced fit proposal, including the fact that it does not serve to tell us what the actual origin of the action of the catalytic effect is. In addition to the above points, we use this paper to discuss misconceptions about the meaning of the preorganization effect, as well as other misunderstandings of what is being done in consistent calculations of enzyme catalysis.
Collapse
Affiliation(s)
- Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
11
|
Abstract
This Perspective reviews the use of Transition Path Sampling methods to study enzymatically catalyzed chemical reactions. First applied by our group to an enzymatic reaction over 15 years ago, the method has uncovered basic principles in enzymatic catalysis such as the protein promoting vibration, and it has also helped harmonize such ideas as electrostatic preorganization with dynamic views of enzyme function. It is now being used to help uncover principles of protein design necessary to artificial enzyme creation.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry University of Arizona Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Helbing T, Kirchner M, Becker J, Göttlich R. Separation of the Thorpe‐Ingold and Reactive Rotamer Effect by Using the Formation of Bicyclic Aziridinium Ions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tim Helbing
- Justus Liebig Universitat Giessen Biology and Chemistry Heinrich-Buff-Ring 17 35392 Giessen GERMANY
| | | | - Jonathan Becker
- Justus Liebig Universitat Giessen Biology and Chemistry GERMANY
| | - Richard Göttlich
- University of Giessen: Justus Liebig Universitat Giessen Biology and Chemistry Heinrich-Buff-Ring 17 35392 Gießen GERMANY
| |
Collapse
|
13
|
Mokhtari DA, Appel MJ, Fordyce PM, Herschlag D. High throughput and quantitative enzymology in the genomic era. Curr Opin Struct Biol 2021; 71:259-273. [PMID: 34592682 PMCID: PMC8648990 DOI: 10.1016/j.sbi.2021.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
Accurate predictions from models based on physical principles are the ultimate metric of our biophysical understanding. Although there has been stunning progress toward structure prediction, quantitative prediction of enzyme function has remained challenging. Realizing this goal will require large numbers of quantitative measurements of rate and binding constants and the use of these ground-truth data sets to guide the development and testing of these quantitative models. Ground truth data more closely linked to the underlying physical forces are also desired. Here, we describe technological advances that enable both types of ground truth measurements. These advances allow classic models to be tested, provide novel mechanistic insights, and place us on the path toward a predictive understanding of enzyme structure and function.
Collapse
Affiliation(s)
- D A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - M J Appel
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - P M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA; Chan Zuckerberg Biohub San Francisco, CA, 94110, USA.
| | - D Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Adesina AS, Luk LYP, Allemann RK. Cryo-kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase. Chembiochem 2021; 22:2410-2414. [PMID: 33876533 PMCID: PMC8360168 DOI: 10.1002/cbic.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/16/2021] [Indexed: 12/03/2022]
Abstract
Effects of isotopic substitution on the rate constants of human dihydrofolate reductase (HsDHFR), an important target for anti-cancer drugs, have not previously been characterized due to its complex fast kinetics. Here, we report the results of cryo-measurements of the kinetics of the HsDHFR catalyzed reaction and the effects of protein motion on catalysis. Isotopic enzyme labeling revealed an enzyme KIE (kHLE /kHHE ) close to unity above 0 °C; however, the enzyme KIE was increased to 1.72±0.15 at -20 °C, indicating that the coupling of protein motions to the chemical step is minimized under optimal conditions but enhanced at non-physiological temperatures. The presented cryogenic approach provides an opportunity to probe the kinetics of mammalian DHFRs, thereby laying the foundation for characterizing their transition state structure.
Collapse
Affiliation(s)
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | | |
Collapse
|
15
|
Breijyeh Z, Karaman R. Enzyme Models-From Catalysis to Prodrugs. Molecules 2021; 26:molecules26113248. [PMID: 34071328 PMCID: PMC8198240 DOI: 10.3390/molecules26113248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Enzymes are highly specific biological catalysts that accelerate the rate of chemical reactions within the cell. Our knowledge of how enzymes work remains incomplete. Computational methodologies such as molecular mechanics (MM) and quantum mechanical (QM) methods play an important role in elucidating the detailed mechanisms of enzymatic reactions where experimental research measurements are not possible. Theories invoked by a variety of scientists indicate that enzymes work as structural scaffolds that serve to bring together and orient the reactants so that the reaction can proceed with minimum energy. Enzyme models can be utilized for mimicking enzyme catalysis and the development of novel prodrugs. Prodrugs are used to enhance the pharmacokinetics of drugs; classical prodrug approaches focus on alternating the physicochemical properties, while chemical modern approaches are based on the knowledge gained from the chemistry of enzyme models and correlations between experimental and calculated rate values of intramolecular processes (enzyme models). A large number of prodrugs have been designed and developed to improve the effectiveness and pharmacokinetics of commonly used drugs, such as anti-Parkinson (dopamine), antiviral (acyclovir), antimalarial (atovaquone), anticancer (azanucleosides), antifibrinolytic (tranexamic acid), antihyperlipidemia (statins), vasoconstrictors (phenylephrine), antihypertension (atenolol), antibacterial agents (amoxicillin, cephalexin, and cefuroxime axetil), paracetamol, and guaifenesin. This article describes the works done on enzyme models and the computational methods used to understand enzyme catalysis and to help in the development of efficient prodrugs.
Collapse
|
16
|
Lima AH, Silva JR, Alves C, Lameira J. QM/MM Study of the Fosfomycin Resistance Mechanism Involving FosB Enzyme. ACS OMEGA 2021; 6:12507-12512. [PMID: 34056400 PMCID: PMC8154160 DOI: 10.1021/acsomega.1c00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 06/01/2023]
Abstract
Multidrug-resistant organisms contain antibiotic-modifying enzymes that facilitate resistance to a variety of antimicrobial compounds. Particularly, the fosfomycin (FOF) drug can be structurally modified by several FOF-modifying enzymes before it reaches the biological target. Among them, FosB is an enzyme that utilizes l-cysteine or bacillithiol in the presence of a divalent metal to open the epoxide ring of FOF and, consequently, inactivate the drug. Here, we have used hybrid quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations to explore the mechanism of the reaction involving FosB and FOF. The calculated free-energy profiles show that the cost to open the epoxide ring of FOF at the C2 atom is ∼3.0 kcal/mol higher than that at the C1 atom. Besides, our QM/MM MD results revealed the critical role of conformation change of Cys9 and Asn50 to release the drug from the active site. Overall, the present study provides insights into the mechanism of FOF-resistant proteins.
Collapse
Affiliation(s)
- Anderson H. Lima
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| | - José Rogério
A. Silva
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| | - Cláudio
Nahum Alves
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| | - Jerônimo Lameira
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| |
Collapse
|
17
|
Vieira Silveira E, Montecinos R, Scorsin L, Garcia-Rio L, Medeiros M, Nascimento V, Nome F, Affeldt RF, Micke GA. Supramolecular kinetic effects by pillararenes: the synergism between spatiotemporal and preorganization concepts in decarboxylation reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spatiotemporal and preorganization factors were both responsible for the catalytic and inhibitory supramolecular effects in decarboxylation reactions.
Collapse
Affiliation(s)
| | - Rodrigo Montecinos
- Faculdad de Química
- Pontificia Universidad Católica de Chile
- Santiago
- Chile
| | - Leandro Scorsin
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Luis Garcia-Rio
- Departamento de Química Física
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Michelle Medeiros
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Vanessa Nascimento
- Department of Organic Chemistry
- Fluminense Federal University
- Niterói
- Brazil
| | - Faruk Nome
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Ricardo F. Affeldt
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Gustavo A. Micke
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
18
|
Cramer J, Jiang X, Schönemann W, Silbermann M, Zihlmann P, Siegrist S, Fiege B, Jakob RP, Rabbani S, Maier T, Ernst B. Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding. RSC Chem Biol 2020; 1:281-287. [PMID: 34458766 PMCID: PMC8341794 DOI: 10.1039/d0cb00108b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
In biological systems, polar interactions are heavily burdened by high desolvation penalties resulting from strong solute-solvent interactions. As a consequence thereof, enthalpic contributions of hydrogen bonds to the free energy of binding are severely diminished. However, this effect is strongly attenuated for interactions within solvent-shielded areas of proteins. In microcalorimetric experiments, we show that the bacterial lectin FimH utilizes conformational adaptions to effectively shield its binding site from solvent. The transition into a lower dielectric environment results in an enthalpic benefit of approximately -13 kJ mol-1 for mannoside binding. However, this effect can be abrogated, if the hydrogen bond network within the binding site is disturbed by deoxygenation of the ligand. Conformational adaption leading to reduced local dielectric constants could represent a general mechanism for proteins to enable enthalpy-driven recognition of polar ligands.
Collapse
Affiliation(s)
- Jonathan Cramer
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Wojciech Schönemann
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Marleen Silbermann
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Pascal Zihlmann
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Stefan Siegrist
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Brigitte Fiege
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Roman Peter Jakob
- Institute of Structural Biology, University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Said Rabbani
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Timm Maier
- Institute of Structural Biology, University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
19
|
Mondal D, Kolev V, Warshel A. Combinatorial Approach for Exploring Conformational Space and Activation Barriers in Computer-Aided Enzyme Design. ACS Catal 2020; 10:6002-6012. [PMID: 34178420 PMCID: PMC8225234 DOI: 10.1021/acscatal.0c01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Computer-aided enzyme design is a field of great potential importance for biotechnological applications, medical advances, and a fundamental understanding of enzyme action. However, reaching a predictive ability in this direction is extremely challenging. It requires both the ability to predict quantitatively the activation barriers in cases where the structure and sequence are known and the ability to predict the effect of different mutations. In this work, we propose a protocol for predicting reasonable starting structures of mutants of proteins with known structures and for calculating the activation barriers of the generated mutants. Our approach also allows us to use the predicted structures of the generated mutant to predict structures and activation barriers for subsequent set of mutations. This protocol is used to examine the reliability of the in silico directed evolution of Kemp eliminase and haloalkane dehalogenase. We also used the results of single and double mutations as a base for predicting the effect of transition-state stabilization by multiple concurrent mutations. This strategy seems to be useful in creating an activity funnel that provides a qualitative ranking of the catalytic power of different mutants.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Vesselin Kolev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Cristobal JR, Reyes AC, Richard JP. The Organization of Active Site Side Chains of Glycerol-3-phosphate Dehydrogenase Promotes Efficient Enzyme Catalysis and Rescue of Variant Enzymes. Biochemistry 2020; 59:1582-1591. [PMID: 32250105 PMCID: PMC7207223 DOI: 10.1021/acs.biochem.0c00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
A comparison of the
values of kcat/Km for reduction of dihydroxyacetone phosphate
(DHAP) by NADH catalyzed by wild type and K120A/R269A variant glycerol-3-phosphate
dehydrogenase from human liver (hlGPDH) shows that
the transition state for enzyme-catalyzed hydride transfer is stabilized
by 12.0 kcal/mol by interactions with the cationic K120 and R269 side
chains. The transition state for the K120A/R269A variant-catalyzed
reduction of DHAP is stabilized by 1.0 and 3.8 kcal/mol for reactions
in the presence of 1.0 M EtNH3+ and guanidinium
cation (Gua+), respectively, and by 7.5 kcal/mol for reactions
in the presence of a mixture of each cation at 1.0 M, so that the
transition state stabilization by the ternary E·EtNH3+·Gua+ complex is 2.8 kcal/mol greater
than the sum of stabilization by the respective binary complexes.
This shows that there is cooperativity between the paired activators
in transition state stabilization. The effective molarities (EMs)
of ∼50 M determined for the K120A and R269A side chains are
≪106 M, the EM for entropically controlled reactions.
The unusually efficient rescue of the activity of hlGPDH-catalyzed reactions by the HPi/Gua+ pair
and by the Gua+/EtNH3+ activator
pair is due to stabilizing interactions between the protein and the
activator pieces that organize the K120 and R269 side chains at the
active site. This “preorganization” of side chains promotes
effective catalysis by hlGPDH and many other enzymes.
The role of the highly conserved network of side chains, which include
Q295, R269, N270, N205, T264, K204, D260, and K120, in catalysis is
discussed.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Archie C Reyes
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
21
|
Berta D, Buigues PJ, Badaoui M, Rosta E. Cations in motion: QM/MM studies of the dynamic and electrostatic roles of H + and Mg 2+ ions in enzyme reactions. Curr Opin Struct Biol 2020; 61:198-206. [PMID: 32065923 DOI: 10.1016/j.sbi.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Here we discuss current trends in the simulations of enzymatic reactions focusing on phosphate catalysis. The mechanistic details of the proton transfers coupled to the phosphate cleavage is one of the key challenges in QM/MM calculations of these and other enzyme catalyzed reactions. The lack of experimental information offers both an opportunity for computations as well as often unresolved controversies. We discuss the example of small GTPases including the important human Ras protein. The high dimensionality and chemical complexity of these reactions demand carefully chosen computational techniques both in terms of the underlying quantum chemical theory and the sampling of the conformational ensemble. We also point out the important role of Mg2+ ions, and recent advances in their transient involvement in the catalytic mechanisms.
Collapse
Affiliation(s)
- Dénes Berta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Pedro J Buigues
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Magd Badaoui
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom.
| |
Collapse
|
22
|
Cummins PL, Kannappan B, Gready JE. Response: Commentary: Directions for Optimization of Photosynthetic Carbon Fixation: RuBisCO's Efficiency May Not Be So Constrained After All. FRONTIERS IN PLANT SCIENCE 2019; 10:1426. [PMID: 31824523 PMCID: PMC6884029 DOI: 10.3389/fpls.2019.01426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/15/2019] [Indexed: 05/29/2023]
|
23
|
Menger FM, Nome F. Interaction vs Preorganization in Enzyme Catalysis. A Dispute That Calls for Resolution. ACS Chem Biol 2019; 14:1386-1392. [PMID: 31150194 DOI: 10.1021/acschembio.8b01029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This essay focuses on the debate between Warshel et al. (proponents of preorganization) and Menger and Nome (proponents of spatiotemporal effects) over the source of fast enzyme catalysis. The Warshel model proposes that the main function of enzymes is to push the solvent coordinate toward the transition state. Other physical-organic factors (e.g., desolvation, entropic effects, ground state destabilization, etc.) do not, ostensibly, contribute substantially to the rate. Indeed, physical organic chemistry in its entirety was claimed to be "irrelevant to an enzyme's active site". Preorganization had been applied by Warshel to his "flagship" enzyme, ketosteroid isomerase, but we discuss troubling issues with their ensuing analysis. For example, the concepts of "general acid" and "general base", known to play a role in this enzyme's mechanism, are ignored in the text. In contrast, the spatiotemporal theory postulates that enzyme-like rates (i.e., accelerations >108) occur when two functionalities are held rigidly at contact distances less than ca. 3 Å. Numerous diverse organic systems are shown to bear this out experimentally. Many of these are intramolecular systems where distances between functionalities are known. Among them are fast intramolecular systems where strain is actually generated during the reaction, thereby excluding steric compression as a source of the observed enzyme-like rates. Finally, the account ends with structural data from four active sites of enzymes, obtained by others, all showing contact distances between substrate analogues and enzyme. To our knowledge, contact distances less than the diameter of water are found universally among enzymes, and it is to this fact that we attribute their extremely fast rates given the assumption that enzymes, whatever their particular mechanism, obey elementary chemical principles.
Collapse
Affiliation(s)
- Fredric M. Menger
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Faruk Nome
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| |
Collapse
|
24
|
Fast Amide Bond Cleavage Assisted by a Secondary Amino and a Carboxyl Group-A Model for yet Unknown Peptidases? Molecules 2019; 24:molecules24030572. [PMID: 30764512 PMCID: PMC6384577 DOI: 10.3390/molecules24030572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Unconstrained amides that undergo fast hydrolysis under mild conditions are valuable sources of information about how amide bonds may be activated in enzymatic transformations. We report a compound possessing an unconstrained amide bond surrounded by an amino and a carboxyl group, each mounted in close proximity on a bicyclic scaffold. Fast amide hydrolysis of this model compound was found to depend on the presence of both the amino and carboxyl functions, and to involve a proton transfer in the rate-limiting step. Possible mechanisms for the hydrolytic cleavage and their relevance to peptide bond cleavage catalyzed by natural enzymes are discussed. Experimental observations suggest that the most probable mechanisms of the model compound hydrolysis might include a twisted amide intermediate and a rate-determining proton transfer.
Collapse
|
25
|
Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E. New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1530464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
26
|
|