1
|
Cao Y, Wei H, Jiang S, Lu T, Nie P, Yang C, Liu N, Lee I, Meng X, Wang W, Yuan Z. Effect of AQP4 and its palmitoylation on the permeability of exogenous reactive oxygen species: Insights from computational study. Int J Biol Macromol 2023; 253:127568. [PMID: 37866582 DOI: 10.1016/j.ijbiomac.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Aquaporin 4 (AQP4) facilitates the transport of reactive oxygen species (ROS). Both cancer cells and the ionizing radiation microenvironment can induce posttranslational modifications (PTMs) in AQP4, which may affect its permeability to ROS. Because this ROS diffusion process is rapid, microscopic, and instantaneous within and outside cells, conventional experimental methods are inadequate for elucidating the molecular mechanisms involved. In this study, computational methods were employed to investigate the permeability of exogenous ROS mediated by radiation in AQP4 at a molecular scale. We constructed a simulation system incorporating AQP4 and AQP4-Cysp13 in a complex lipid environment with ROS. Long-timescale molecular dynamics simulations were conducted to assess the structural stability of both AQP4 and AQP4-Cysp13. Free energy calculations were utilized to determine the ROS transport capability of the two AQP4 proteins. Computational electrophysiology and channel structural analysis quantitatively evaluated changes in ROS transport capacity under various radiation-induced transmembrane voltage microenvironments. Our findings demonstrate the distinct transport capabilities of AQP4 channels for water molecules and various types of ROS and reveal a decrease in transport efficiency when AQP4 undergoes palmitoylation modification. In addition, we have simulated the radiation-induced alteration of cell membrane voltage, which significantly affected the ROS transport capacity. We propose that this research will enhance the understanding of the molecular mechanisms governing the transport of exogenous ROS by AQP4 and elucidate the influence of palmitoylation on ROS transport. This study will also help clarify how different structural features of AQP4 affect the transport of exogenous ROS mediated by radiotherapy, thereby providing a theoretical molecular basis for the development of new treatment strategies that combine with radiotherapy.
Collapse
Affiliation(s)
- Yipeng Cao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China; National Supercomputer Center in Tianjin, 300457, PR China.
| | - Hui Wei
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Shengpeng Jiang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Tong Lu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Pengfei Nie
- National Supercomputer Center in Tianjin, 300457, PR China
| | - Chengwen Yang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Ningbo Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Imshik Lee
- College of Physics, Nankai University, Tianjin 300071, PR China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, 300457, PR China.
| | - Wei Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China.
| | - Zhiyong Yuan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China.
| |
Collapse
|
2
|
Cao Y, Yang R, Wang W, Jiang S, Yang C, Wang Q, Liu N, Xue Y, Lee I, Meng X, Yuan Z. Effects of membrane lipids on phospholamban pentameric channel structure and ion transportation mechanisms. Int J Biol Macromol 2022; 224:766-775. [DOI: 10.1016/j.ijbiomac.2022.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
3
|
Liu AY, Aguayo-Ortiz R, Guerrero-Serna G, Wang N, Blin MG, Goldstein DR, Michel Espinoza-Fonseca L. Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Comput Struct Biotechnol J 2021; 20:380-384. [PMID: 35035790 PMCID: PMC8748397 DOI: 10.1016/j.csbj.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Phospholamban (PLN) and Sarcolipin (SLN) are homologous membrane proteins that belong to the family of proteins that regulate the activity of the cardiac calcium pump (sarcoplasmic reticulum Ca2+-ATPase, SERCA). PLN and SLN share highly conserved leucine zipper motifs that control self-association; consequently, it has been proposed that both PLN and SLN assemble into stable pentamers in the membrane. In this study, we used molecular dynamics (MD) simulations and Western blot analysis to investigate the precise molecular architecture of the PLN and SLN oligomers. Analysis showed that the PLN pentamer is the predominant oligomer present in mouse ventricles and ventricle-like human iPSC-derived cardiomyocytes, in agreement with the MD simulations showing stable leucine zipper interactions across all protomer-protomer interfaces and MD replicates. Interestingly, we found that the PLN pentamer populates an asymmetric structure of the transmembrane region, which is likely an intrinsic feature of the oligomer in a lipid bilayer. The SLN pentamer is not favorably formed across MD replicates and species of origin; instead, SLN from human and mouse atria primarily populate coexisting dimeric and trimeric states. In contrast to previous studies, our findings indicate that the SLN pentamer is not the predominant oligomeric state populated in the membrane. We conclude that despite their structural homology, PLN and SLN adopt distinct oligomeric states in the membrane. We propose that the distinct oligomeric states populated by PLN and SLN may contribute to tissue-specific SERCA regulation via differences in protomer-oligomer exchange, oligomer-SERCA dynamics, and noise filtering during β-adrenergic stimulation in the heart.
Collapse
Affiliation(s)
- Andy Y. Liu
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- McKetta Department of Chemical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nulang Wang
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muriel G. Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Prediction of LncRNA-encoded small peptides in glioma and oligomer channel functional analysis using in silico approaches. PLoS One 2021; 16:e0248634. [PMID: 33735310 PMCID: PMC7971536 DOI: 10.1371/journal.pone.0248634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is a lethal malignant brain cancer, and many reports have shown that abnormalities in the behavior of water and ion channels play an important role in regulating tumor proliferation, migration, apoptosis, and differentiation. Recently, new studies have suggested that some long noncoding RNAs containing small open reading frames can encode small peptides and form oligomers for water or ion regulation. However, because the peptides are difficult to identify, their functional mechanisms are far from being clearly understood. In this study, we used bioinformatics methods to identify and evaluate lncRNAs, which may encode small transmembrane peptides in gliomas. Combining ab initio homology modeling, molecular dynamics simulations, and free energy calculations, we constructed a predictive model and predicted the oligomer channel activity of peptides by identifying the lncRNA ORFs. We found that one key hub lncRNA, namely, DLEU1, which contains two smORFs (ORF1 and ORF8), encodes small peptides that form pentameric channels. The mechanics of water and ion (Na+ and Cl-) transport through this pentameric channel were simulated. The potential mean force of the H2O molecules along the two ORF-encoded peptide channels indicated that the energy barrier was different between ORF1 and ORF8. The ORF1-encoded peptide pentamer acted as a self-assembled water channel but not as an ion channel, and the ORF8 permeated neither ions nor water. This work provides new methods and theoretical support for further elucidation of the function of lncRNA-encoded small peptides and their role in cancer. Additionally, this study provides a theoretical basis for drug development.
Collapse
|