1
|
Trouvé P, Saint Pierre A, Férec C. Cystic Fibrosis: A Journey through Time and Hope. Int J Mol Sci 2024; 25:9599. [PMID: 39273547 PMCID: PMC11394767 DOI: 10.3390/ijms25179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis. The aim of this review is to present the advances that science and medicine have brought to our understanding of the pathophysiology of the disease and its management, which in many ways, epitomizes modern molecular genetic research. Since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, modeling the CFTR protein, deciphering its function as an ion channel, and identifying its molecular partners have led to numerous therapeutic advances. The most significant advancement in this field has been the discovery of protein modulators that can target its membrane localization and chloride channel activity. However, further progress is needed to ensure that all patients can benefit from a therapy tailored to their mutations, with the primary challenge being the development of treatments for mutations leading to a complete absence of the protein. The present review delves into the history of the multifaceted world of CF, covering main historical facts, current landscape, clinical management, emerging therapies, patient perspectives, and the importance of ongoing research, bridging science and medicine in the fight against the disease.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Aude Saint Pierre
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
2
|
Okiyoneda T, Borgo C, Bosello Travain V, Pedemonte N, Salvi M. Targeting ubiquitination machinery in cystic fibrosis: Where do we stand? Cell Mol Life Sci 2024; 81:271. [PMID: 38888668 PMCID: PMC11335196 DOI: 10.1007/s00018-024-05295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in CFTR gene expressing the anion selective channel CFTR located at the plasma membrane of different epithelial cells. The most commonly investigated variant causing CF is F508del. This mutation leads to structural defects in the CFTR protein, which are recognized by the endoplasmic reticulum (ER) quality control system. As a result, the protein is retained in the ER and degraded via the ubiquitin-proteasome pathway. Although blocking ubiquitination to stabilize the CFTR protein has long been considered a potential pharmacological approach in CF, progress in this area has been relatively slow. Currently, no compounds targeting this pathway have entered clinical trials for CF. On the other hand, the emergence of Orkambi initially, and notably the subsequent introduction of Trikafta/Kaftrio, have demonstrated the effectiveness of molecular chaperone-based therapies for patients carrying the F508del variant and even showed efficacy against other variants. These treatments directly target the CFTR variant protein without interfering with cell signaling pathways. This review discusses the limits and potential future of targeting protein ubiquitination in CF.
Collapse
Affiliation(s)
- Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, 669-1330, Japan.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Department of Medicine, University of Padova, 35128, Padova, Italy
| | | | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
3
|
Parihar A, Prajapati BG, Paliwal H, Shukla M, Khunt D, Devrao Bahadure S, Dyawanapelly S, Junnuthula V. Advanced pulmonary drug delivery formulations for the treatment of cystic fibrosis. Drug Discov Today 2023; 28:103729. [PMID: 37532219 DOI: 10.1016/j.drudis.2023.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Cystic fibrosis (CF), a fatal genetic condition, causes thick, sticky mucus. It also causes pancreatic dysfunction, bacterial infection, and increased salt loss. Currently available treatments can improve the patient's quality of life. Drug delivery aided by nanotechnology has been explored to alter the pharmacokinetics and toxicity of drugs. In this short review, we aim to summarize various conventional formulations and highlight advanced formulations delivered via the pulmonary route for the treatment of CF. There is considerable interest in advanced drug delivery formulations addressing the various challenges posed by CF. Despite their potential to be translated for clinical use, we anticipate that a significant amount of effort may still be required for translation to the clinic.
Collapse
Affiliation(s)
- Akshay Parihar
- Faculty of Pharmaceutical Sciences, The ICFAI University, Baddi, Himachal Pradesh, India
| | - Bhupendra G Prajapati
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India.
| | - Himanshu Paliwal
- Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Maheka Shukla
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Gujarat, India
| | - Sumedh Devrao Bahadure
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| | | |
Collapse
|
4
|
Livnat G, Meeker JD, Ostmann AJ, Strecker LM, Clancy JP, Brewington JJ. Phenotypic Alteration of an Established Human Airway Cell Line by Media Selection. Int J Mol Sci 2023; 24:ijms24021246. [PMID: 36674762 PMCID: PMC9862772 DOI: 10.3390/ijms24021246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), a chloride/bicarbonate channel. Many studies utilize human airway cell models (cell lines and primary cells) to study different aspects of CFTR biology. Media selection can alter the growth and differentiation of primary cells, yet the impact on stable airway cell lines is unclear. To determine the impact of media and growth conditions on CFBE41o- cells stably transduced with wild-type or F508del CFTR, we examined four commonly used growth media, measuring epithelial and mesenchymal markers, as well as CFTR expression, maturation, and function. The selection of growth media altered the expression of epithelial and mesenchymal markers in the cell lines, and significantly impacted CFTR expression and subsequent function. These results highlight the importance of media selection to CFTR and cell line behavior and should be considered in both studies of primary human airway cells and stable cell lines.
Collapse
Affiliation(s)
- Galit Livnat
- Pediatric Pulmonology and CF Center, Carmel Medical Center, Haifa 3100000, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Jessica D. Meeker
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Alicia J. Ostmann
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Lauren M. Strecker
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
| | | | - John J. Brewington
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45299, USA
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA
- Correspondence: ; Tel.: +1-(513)-803-1548
| |
Collapse
|
5
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
6
|
Cuyx S, Ramalho SS, Callebaut I, Cuppens H, Kmit A, Arnauts K, Ferrante M, Verfaillie C, Ensinck M, Carlon MS, Boon M, Proesmans M, Dupont L, De Boeck K, Farinha CM, Vermeulen F, Ramalho AS. Severity of the S1251N allele in cystic fibrosis is affected by the presence of the F508C variant in cis. J Cyst Fibros 2022; 21:644-651. [PMID: 35690578 DOI: 10.1016/j.jcf.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), genotype-phenotype correlation is complicated by the large number of CFTR variants, the influence of modifier genes, environmental effects, and the existence of complex alleles. We document the importance of complex alleles, in particular the F508C variant present in cis with the S1251N disease-causing variant, by detailed analysis of a patient with CF, with the [S1251N;F508]/G542X genotype and a very mild phenotype, contrasting it to that of four subjects with the [S1251N;F508C]/F508del genotype and classical CF presentation. METHODS Genetic differences were identified by Sanger sequencing and CFTR function was quantified using rectal organoids in rectal organoid morphology analysis (ROMA) and forskolin-induced swelling (FIS) assays. CFTR variants were further characterised in CF bronchial epithelial (CFBE) cell lines. The impact of involved amino acid changes in the CFTR 3D protein structure was evaluated. RESULTS Organoids of the patient [S1251N;F508] with mild CF phenotype confirmed the CF diagnosis but showed higher residual CFTR function compared to the four others [S1251N;F508C]. CFBE cell lines showed a decrease in [S1251N;F508C]-CFTR function but not in processing when compared to [S1251N;F508]-CFTR. Analysis of the 3D CFTR structure suggested an additive deleterious effect of the combined presence of S1251N and F508C with respect to NBD1-2 dimerisation. CONCLUSIONS In vitro and in silico data show that the presence of F508C in cis with S1251N decreases CFTR function without affecting processing. Complex CFTR alleles play a role in clinical phenotype and their identification is relevant in the context of personalised medicine for each patient with CF.
Collapse
Affiliation(s)
- Senne Cuyx
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Sofia S Ramalho
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| | | | - Arthur Kmit
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), B-3000 Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; KU Leuven, Department of Gastroenterology and Hepatology, University Hospital Leuven, B-3000 Leuven, Belgium
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), B-3000 Leuven, Belgium
| | - Marjolein Ensinck
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing; BREATHE, B-3000 Leuven, Belgium
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium; KU Leuven, Department of Chronic Diseases, Metabolism and Ageing; BREATHE, B-3000 Leuven, Belgium
| | - Mieke Boon
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Marijke Proesmans
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Lieven Dupont
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing; BREATHE, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Respiratory Diseases, B-3000 Leuven, Belgium
| | - Kris De Boeck
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Carlos M Farinha
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - François Vermeulen
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium; University Hospital Leuven, Department of Pediatrics, Pediatric Pulmonology, B-3000 Leuven, Belgium
| | - Anabela S Ramalho
- KU Leuven, Department of Development and Regeneration, Woman and Child Unit, CF research lab, B-3000 Leuven, Belgium
| |
Collapse
|
7
|
Evaluation of aminopyrrolidine amide to improve chloride transport in CFTR-defective cells. Bioorg Med Chem Lett 2022; 72:128866. [PMID: 35752380 DOI: 10.1016/j.bmcl.2022.128866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis. We evaluated the action of PF-429242 in human bronchial cells expressing the most frequent mutation of CFTR (p.Phe508del) found in patients. We observed that PF-429242 increases the synthesis of the mRNA and the protein encoded by the CFTR gene harbouring the mutation. We also observed that PF-429242 alleviates the defects of the p.Phe508del-CFTR channel in human Cystic Fibrosis cells. Our results suggest that aminopyrrolidine amide is a potential therapeutic target for Cystic Fibrosis that could also have beneficial effects in other diseases involving CFTR, such as the Chronic Obstructive Pulmonary Disease.
Collapse
|
8
|
Losurdo G, Gravina AG, Maroni L, Gabrieletto EM, Ianiro G, Ferrarese A. Future challenges in gastroenterology and hepatology, between innovations and unmet needs: A SIGE Young Editorial Board's perspective. Dig Liver Dis 2022; 54:583-597. [PMID: 34509394 DOI: 10.1016/j.dld.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Gastroenterology, Digestive Endoscopy and Hepatology have faced significant improvements in terms of diagnosis and therapy in the last decades. However, many fields still remain poorly explored, and many questions unanswered. Moreover, basic-science, as well as translational and clinical discoveries, together with technology advancement will determine further steps toward a better, refined care for many gastroenterological disorders in the future. Therefore, the Young Investigators of the Italian Society of Gastroenterology (SIGE) joined together, offering a perspective on major future innovations in some hot clinical topics in Gastroenterology, Endoscopy, and Hepatology, as well as the current pitfalls and the grey zones.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari; PhD Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari.
| | - Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Maroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | | | - Gianluca Ianiro
- Digestive Disease Center, Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alberto Ferrarese
- Gastroenterology and Hepatology, Azienda Ospedaliera Universitaria Integrata, Ospedale Borgo Trento, Verona, Italy
| |
Collapse
|
9
|
Shishido H, Yoon JS, Skach WR. A small molecule high throughput screening platform to profile conformational properties of nascent, ribosome-bound proteins. Sci Rep 2022; 12:2509. [PMID: 35169219 PMCID: PMC8847357 DOI: 10.1038/s41598-022-06456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic mutations cause a wide spectrum of human disease by disrupting protein folding, both during and after synthesis. Transient de-novo folding intermediates therefore represent potential drug targets for pharmacological correction of protein folding disorders. Here we develop a FRET-based high-throughput screening (HTS) assay in 1,536-well format capable of identifying small molecules that interact with nascent polypeptides and correct genetic, cotranslational folding defects. Ribosome nascent chain complexes (RNCs) containing donor and acceptor fluorophores were isolated from cell free translation reactions, immobilized on Nickel-NTA/IDA beads, and imaged by high-content microscopy. Quantitative FRET measurements obtained from as little as 0.4 attomole of protein/bead enabled rapid assessment of conformational changes with a high degree of reproducibility. Using this assay, we performed a pilot screen of ~ 50,000 small molecules to identify compounds that interact with RNCs containing the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) harboring a disease-causing mutation (A455E). Screen results yielded 133 primary hits and 1 validated hit that normalized FRET values of the mutant nascent peptide. This system provides a scalable, tractable, structure-based discovery platform for screening small molecules that bind to or impact the folding of protein substrates that are not amenable to traditional biochemical analyses.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA.,Generate Biomedicines, Inc., 26 Landsdowne St, Cambridge, MA, 02139, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
10
|
Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells 2022; 11:cells11010136. [PMID: 35011698 PMCID: PMC8750248 DOI: 10.3390/cells11010136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.
Collapse
|
11
|
Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention Machineries and Require Different Rescuing Strategies. Int J Mol Sci 2021; 23:ijms23010024. [PMID: 35008443 PMCID: PMC8744605 DOI: 10.3390/ijms23010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Most of the ~2100 CFTR variants so far reported are very rare and still uncharacterized regarding their cystic fibrosis (CF) disease liability. Since some may respond to currently approved modulators, characterizing their defect and response to these drugs is essential. Here we aimed characterizing the defect associated with four rare missense (likely Class II) CFTR variants and assess their rescue by corrector drugs. We produced CFBE cell lines stably expressing CFTR with W57G, R560S, H1079P and Q1100P, assessed their effect upon CFTR expression and maturation and their rescue by VX-661/VX-445 correctors. Results were validated by forskolin-induced swelling assay (FIS) using intestinal organoids from individuals bearing these variants. Finally, knock-down (KD) of genes previously shown to rescue F508del-CFTR was assessed on these mutants. Results show that all the variants preclude the production of mature CFTR, confirming them as Class II mutations. None of the variants responded to VX-661 but the combination rescued H1079P- and Q1100P-CFTR. The KD of factors that correct F508del-CFTR retention only marginally rescued R560S- and H1079P-CFTR. Overall, data evidence that Class II mutations induce distinct molecular defects that are neither rescued by the same corrector compounds nor recognized by the same cellular machinery, thus requiring personalized drug discovery initiatives.
Collapse
|
12
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
13
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
14
|
Silva IAL, Doušová T, Ramalho S, Centeio R, Clarke LA, Railean V, Botelho HM, Holubová A, Valášková I, Yeh JT, Hwang TC, Farinha CM, Kunzelmann K, Amaral MD. Organoids as a personalized medicine tool for ultra-rare mutations in cystic fibrosis: The case of S955P and 1717-2A>G. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165905. [PMID: 32730979 PMCID: PMC7484254 DOI: 10.1016/j.bbadis.2020.165905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND For most of the >2000 CFTR gene variants reported, neither the associated disease liability nor the underlying basic defect are known, and yet these are essential for disease prognosis and CFTR-based therapeutics. Here we aimed to characterize two ultra-rare mutations - 1717-2A > G (c.1585-2A > G) and S955P (p.Ser955Pro) - as case studies for personalized medicine. METHODS Patient-derived rectal biopsies and intestinal organoids from two individuals with each of these mutations and F508del (p.Phe508del) in the other allele were used to assess CFTR function, response to modulators and RNA splicing pattern. In parallel, we used cellular models to further characterize S955P independently of F508del and to assess its response to CFTR modulators. RESULTS Results in both rectal biopsies and intestinal organoids from both patients evidence residual CFTR function. Further characterization shows that 1717-2A > G leads to alternative splicing generating <1% normal CFTR mRNA and that S955P affects CFTR gating. Finally, studies in organoids predict that both patients are responders to VX-770 alone and even more to VX-770 combined with VX-809 or VX-661, although to different levels. CONCLUSION This study demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs to patients with rare mutations.
Collapse
Affiliation(s)
- Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Tereza Doušová
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84,Prague 5, 150 06 Prague, Czech Republic
| | - Sofia Ramalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Raquel Centeio
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Andrea Holubová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84,Prague 5, 150 06 Prague, Czech Republic
| | - Iveta Valášková
- Department of Medical Genetics, Masaryk University Brno and University Hospital Brno, Jihlavská 20, Brno 625 00, Czech Republic
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America
| | - Carlos M Farinha
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
| |
Collapse
|
15
|
Prosperi F, Suzumoto Y, Marzuillo P, Costanzo V, Jelen S, Iervolino A, Guarino S, La Manna A, Miraglia Del Giudice E, Perna AF, Zacchia M, Cordat E, Capasso G, Trepiccione F. Characterization of five novel vasopressin V2 receptor mutants causing nephrogenic diabetes insipidus reveals a role of tolvaptan for M272R-V2R mutation. Sci Rep 2020; 10:16383. [PMID: 33009446 PMCID: PMC7532466 DOI: 10.1038/s41598-020-73089-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene (AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.
Collapse
Affiliation(s)
- Federica Prosperi
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Yoko Suzumoto
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Costanzo
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Sabina Jelen
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Anna Iervolino
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Stefano Guarino
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela La Manna
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alessandra F Perna
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emmanuelle Cordat
- Department of Physiology, The University of Alberta, Edmonton, Canada
| | - Giovambattista Capasso
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesco Trepiccione
- Biogem S.c.a.r.l., Istituto Di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy.
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
16
|
Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR. Biochem Pharmacol 2020; 180:114133. [DOI: 10.1016/j.bcp.2020.114133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
|
17
|
Cystic fibrosis drug trial design in the era of CFTR modulators associated with substantial clinical benefit: stakeholders’ consensus view. J Cyst Fibros 2020; 19:688-695. [DOI: 10.1016/j.jcf.2020.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
|
18
|
Recent Strategic Advances in CFTR Drug Discovery: An Overview. Int J Mol Sci 2020; 21:ijms21072407. [PMID: 32244346 PMCID: PMC7177952 DOI: 10.3390/ijms21072407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Collapse
|
19
|
Laselva O, Eckford PD, Bartlett C, Ouyang H, Gunawardena TN, Gonska T, Moraes TJ, Bear CE. Functional rescue of c.3846G>A (W1282X) in patient-derived nasal cultures achieved by inhibition of nonsense mediated decay and protein modulators with complementary mechanisms of action. J Cyst Fibros 2019; 19:717-727. [PMID: 31831337 DOI: 10.1016/j.jcf.2019.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The nonsense mutation, c.3846G>A (aka: W1282X-CFTR) leads to a truncated transcript that is susceptible to nonsense-mediated decay (NMD) and produces a shorter protein that is unstable and lacks normal channel activity in patient-derived tissues. However, if overexpressed in a heterologous expression system, the truncated mutant protein has been shown to mediate CFTR channel function following the addition of potentiators. In this study, we asked if a quadruple combination of small molecules that together inhibit nonsense mediated decay, stabilize both halves of the mutant protein and potentiate CFTR channel activity could rescue the functional expression of W1282X-CFTR in patient derived nasal cultures. METHODS We identified the CFTR domains stabilized by corrector compounds supplied from AbbVie using a fragment based, biochemical approach. Rescue of the channel function of W1282X.-CFTR protein by NMD inhibition and small molecule protein modulators was studied using a bronchial cell line engineered to express W1282X and in primary nasal epithelial cultures derived from four patients homozygous for this mutation. RESULTS We confirmed previous studies showing that inhibition of NMD using the inhibitor: SMG1i, led to an increased abundance of the shorter transcript in a bronchial cell line. Interestingly, on top of SMG1i, treatment with a combination of two new correctors developed by Galapagos/AbbVie (AC1 and AC2-2, separately targeting either the first or second half of CFTR and promoting assembly, significantly increased the potentiated channel activity by the mutant in the bronchial epithelial cell line and in patient-derived nasal epithelial cultures. The average rescue effect in primary cultures was approximately 50% of the regulated chloride conductance measured in non-CF cultures. CONCLUSIONS These studies provide the first in-vitro evidence in patient derived airway cultures that the functional defects incurred by W1282X, has the potential to be effectively repaired pharmacologically.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Paul Dw Eckford
- Programme in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Claire Bartlett
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Tarini Na Gunawardena
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Tanja Gonska
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada.
| | - Christine E Bear
- Programme in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Amico G, Brandas C, Moran O, Baroni D. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Int J Mol Sci 2019; 20:ijms20215463. [PMID: 31683989 PMCID: PMC6862496 DOI: 10.3390/ijms20215463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1–633). By contrast, the CFTR C-half (M2N2, residues 837–1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.
Collapse
Affiliation(s)
- Giulia Amico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
21
|
Laselva O, Erwood S, Du K, Ivakine Z, Bear CE. Activity of lumacaftor is not conserved in zebrafish Cftr bearing the major cystic fibrosis-causing mutation. FASEB Bioadv 2019; 1:661-670. [PMID: 32123813 PMCID: PMC6996396 DOI: 10.1096/fba.2019-00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/02/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
F508del-cystic fibrosis transmembrane conductance regulator (CFTR) is the major mutant responsible for cystic fibrosis (CF). ORKAMBI®, approved for patients bearing this mutant, contains lumacaftor (VX-809) that partially corrects F508del-CFTR's processing defect and ivacaftor (VX-770) that potentiates its defective channel activity. Unfortunately, the clinical efficacy of ORKAMBI® is modest, highlighting the need to understand how the small molecules work so that superior compounds can be developed. Because, human CFTR (hCFTR) and zebrafish Cftr (zCftr) are structurally conserved as determined in recent cryo-EM structural models, we hypothesized that the consequences of the major mutation and small molecule modulators would be similar for the two species of protein. As expected, like the F508del mutation in hCFTR, the homologous mutation in zCftr (F507del) is misprocessed, yet not as severely as the human mutant and this defect was restored by low-temperature (27°C) culture conditions. After rescue to the cell surface, F507del-zCftr exhibited regulated channel activity that was potentiated by ivacaftor. Surprisingly, lumacaftor failed to rescue misprocessing of the F507del-zCftr at either 37 or 27°C suggesting that future comparative studies with F508del-hCFTR would provide insight into its structure: function relationships. Interestingly, the robust rescue of F508del-zCftr at 27°C and availability of methods for in vivo screening in zebrafish present the opportunity to define the cellular pathways underlying rescue.
Collapse
Affiliation(s)
- Onofrio Laselva
- Programme in Molecular MedicineHospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Steven Erwood
- Programme in Genetics and Genome BiologyHospital for Sick ChildrenTorontoCanada
| | - Kai Du
- Programme in Molecular MedicineHospital for Sick ChildrenTorontoCanada
| | - Zhenya Ivakine
- Programme in Genetics and Genome BiologyHospital for Sick ChildrenTorontoCanada
| | - Christine E. Bear
- Programme in Molecular MedicineHospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
22
|
Amaral MD, de Boeck K. Theranostics by testing CFTR modulators in patient-derived materials: The current status and a proposal for subjects with rare CFTR mutations. J Cyst Fibros 2019; 18:685-692. [PMID: 31326274 DOI: 10.1016/j.jcf.2019.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
The last decade has witnessed developments in the CF drug pipeline which are both exciting and unprecedented, bringing with them previously unconsidered challenges. The Task Force group came together to consider these challenges and possible strategies to address them. Over the last 18 months, we have discussed internally and gathered views from a broad range of individuals representing patient organizations, clinical and research teams, the pharmaceutical industry and regulatory agencies. In this and the accompanying article, we discuss two main areas of focus: i) optimising trial design and delivery for speed/efficiency; ii) drug development for patients with rare CFTR mutations. We propose some strategies to tackle the challenges ahead and highlight areas where further thought is needed. We see this as the start of a process rather than the end and hope herewith to engage the wider community in seeking solutions to improved treatments for all patients with CF.
Collapse
|
23
|
Borcherding DC, Siefert ME, Lin S, Brewington J, Sadek H, Clancy JP, Plafker SM, Ziady AG. Clinically-approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia. J Clin Invest 2019; 129:3448-3463. [PMID: 31145101 PMCID: PMC6668689 DOI: 10.1172/jci96273] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic Fibrosis (CF) is a multi-organ progressive genetic disease caused by loss of functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. Previously, we identified a significant dysfunction in CF cells and model mice of the transcription factor nuclear-factor-E2-related factor-2 (Nrf2), a major regulator of redox balance and inflammatory signaling. Here we report that approved F508del CFTR correctors VX809/VX661 recover diminished Nrf2 function and colocalization with CFTR in CF human primary bronchial epithelia by proximity ligation assay, immunoprecipitation, and immunofluorescence, concordant with CFTR correction. F508del CFTR correctors induced Nrf2 nuclear translocation, Nrf2-dependent luciferase activity, and transcriptional activation of target genes. Rescue of Nrf2 function by VX809/VX661 was dependent on significant correction of F508del and was blocked by inhibition of corrected channel function, or high-level shRNA knockdown of CFTR or F508del-CFTR. Mechanistically, F508del-CFTR modulation restored Nrf2 phosphorylation and its interaction with the coactivator CBP. Our findings demonstrate that sufficient modulation of F508del CFTR function corrects Nrf2 dysfunction in CF.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew E. Siefert
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Songbai Lin
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia, USA
| | - John Brewington
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John P. Clancy
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Assem G. Ziady
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
25
|
Fukuda R, Okiyoneda T. Peripheral Protein Quality Control as a Novel Drug Target for CFTR Stabilizer. Front Pharmacol 2018; 9:1100. [PMID: 30319426 PMCID: PMC6170605 DOI: 10.3389/fphar.2018.01100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Conformationally defective cystic fibrosis transmembrane conductance regulator (CFTR) including rescued ΔF508-CFTR is rapidly eliminated from the plasma membrane (PM) even in the presence of a CFTR corrector and potentiator, limiting the therapeutic effort of the combination therapy. CFTR elimination from the PM is determined by the conformation-dependent ubiquitination as a part of the peripheral quality control (PQC) mechanism. Recently, the molecular machineries responsible for the CFTR PQC mechanism which includes molecular chaperones and ubiquitination enzymes have been revealed. This review summarizes the molecular mechanism of the CFTR PQC and discusses the possibility that the peripheral ubiquitination mechanism becomes a novel drug target to develop the CFTR stabilizer as a novel class of CFTR modulator.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| |
Collapse
|
26
|
Awatade NT, Ramalho S, Silva IAL, Felício V, Botelho HM, de Poel E, Vonk A, Beekman JM, Farinha CM, Amaral MD. R560S: A class II CFTR mutation that is not rescued by current modulators. J Cyst Fibros 2018; 18:182-189. [PMID: 30030066 DOI: 10.1016/j.jcf.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND New therapies modulating defective CFTR have started to hit the clinic and others are in trial or under development. The endeavour of drug discovery for CFTR protein rescue is however difficult one since over 2000 mutations have been reported. For most of these, especially the rare ones, the associated defects, the respective functional class and their responsiveness to available modulators are still unknown. Our aim here was to characterize the rare R560S mutation using patient-derived materials (rectal biopsies and intestinal organoids) from one CF individual homozygous for this mutation, in parallel with cellular models expressing R560S-CFTR and to assess the functional and biochemical responses to CFTR modulators. METHODS Intestinal organoids were prepared from rectal biopsies and analysed by RT-PCR (to assess CFTR mRNA), by Western blot (to assess CFTR protein) and by forskolin-induced swelling (FIS) assay. A novel cell line expressing R560S-CFTR was generated by stably transducing the CFBE parental cell line and used to assess R560S-CFTR processing and function. Both intestinal organoids and the cellular model were used to assess efficacy of CFTR modulators in rescuing this mutation. RESULTS Our results show that: R560S does not affect CFTR mRNA splicing; R560S affects CFTR protein processing, totally abrogating the production of its mature form; R560S-CFTR evidences no function as a Cl- channel; and none of the modulators tested rescued R560S-CFTR processing or function. CONCLUSION Altogether, these results indicate that R560S is a class II mutation. However, unlike F508del, it cannot be rescued by any of the CFTR modulators tested.
Collapse
Affiliation(s)
- Nikhil T Awatade
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Sofia Ramalho
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Verónica Felício
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, the Netherlands
| | - Annelotte Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, the Netherlands
| | - Carlos M Farinha
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
| |
Collapse
|
27
|
Clancy JP, Cotton CU, Donaldson SH, Solomon GM, VanDevanter DR, Boyle MP, Gentzsch M, Nick JA, Illek B, Wallenburg JC, Sorscher EJ, Amaral MD, Beekman JM, Naren AP, Bridges RJ, Thomas PJ, Cutting G, Rowe S, Durmowicz AG, Mense M, Boeck KD, Skach W, Penland C, Joseloff E, Bihler H, Mahoney J, Borowitz D, Tuggle KL. CFTR modulator theratyping: Current status, gaps and future directions. J Cyst Fibros 2018; 18:22-34. [PMID: 29934203 DOI: 10.1016/j.jcf.2018.05.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND New drugs that improve the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with discreet disease-causing variants have been successfully developed for cystic fibrosis (CF) patients. Preclinical model systems have played a critical role in this process, and have the potential to inform researchers and CF healthcare providers regarding the nature of defects in rare CFTR variants, and to potentially support use of modulator therapies in new populations. METHODS The Cystic Fibrosis Foundation (CFF) assembled a workshop of international experts to discuss the use of preclinical model systems to examine the nature of CF-causing variants in CFTR and the role of in vitro CFTR modulator testing to inform in vivo modulator use. The theme of the workshop was centered on CFTR theratyping, a term that encompasses the use of CFTR modulators to define defects in CFTR in vitro, with application to both common and rare CFTR variants. RESULTS Several preclinical model systems were identified in various stages of maturity, ranging from the expression of CFTR variant cDNA in stable cell lines to examination of cells derived from CF patients, including the gastrointestinal tract, the respiratory tree, and the blood. Common themes included the ongoing need for standardization, validation, and defining the predictive capacity of data derived from model systems to estimate clinical outcomes from modulator-treated CF patients. CONCLUSIONS CFTR modulator theratyping is a novel and rapidly evolving field that has the potential to identify rare CFTR variants that are responsive to approved drugs or drugs in development.
Collapse
Affiliation(s)
- John Paul Clancy
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | | | - Scott H Donaldson
- University of North Carolina at Chapel Hill - Marsico Lung Institute, United States
| | - George M Solomon
- University of Alabama at Birmingham, University of Alabama at Birmingham
| | - Donald R VanDevanter
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Michael P Boyle
- Cystic Fibrosis Foundation, Johns Hopkins University, United States
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
| | - Jerry A Nick
- National Jewish Health, Denver, CO, United States
| | - Beate Illek
- UCSF Benioff Children's Hospital Oakland, United States
| | - John C Wallenburg
- Cystic Firbosis Canada, Directeur en chef des activites scientifiques, fibrose kystique, Canada
| | | | | | | | | | | | | | - Garry Cutting
- Johns Hopkins University School of Medicine, United States
| | - Steven Rowe
- University of Alabama at Birmingham, University of Alabama at Birmingham
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Raraigh KS, Han ST, Davis E, Evans TA, Pellicore MJ, McCague AF, Joynt AT, Lu Z, Atalar M, Sharma N, Sheridan MB, Sosnay PR, Cutting GR. Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity. Am J Hum Genet 2018; 102:1062-1077. [PMID: 29805046 DOI: 10.1016/j.ajhg.2018.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022] Open
Abstract
Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated <10% wild-type CFTR (WT-CFTR) function, a conservative threshold for the development of life-limiting CF lung disease, and five variants had moderately decreased function (10% to ∼25% WT-CFTR). The remaining three variants in this group unexpectedly had >25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.
Collapse
|
29
|
Bulloch MN, Hanna C, Giovane R. Lumacaftor/ivacaftor, a novel agent for the treatment of cystic fibrosis patients who are homozygous for the F580del CFTR mutation. Expert Rev Clin Pharmacol 2017; 10:1055-1072. [PMID: 28891346 DOI: 10.1080/17512433.2017.1378094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Cystic Fibrosis (CF) is an autosomal recessive disease affecting up to 90,000 people worldwide. Approximately 73% of patients are homozygous for the F508del cystic fibrosis transmembrane conductance regulator [CFTR] mutation. Traditionally treatment has only included supportive care. Therefore, there is a need for safe and effective novel therapies targeting the underlying molecular defects seen with CF. Areas covered: In 2016, the Food and Drug Administration and the European Commission approved LUM/IVA (Orkambi), a CFTR modulator that includes both a CFTR corrector and potentiator, for CF patients homozygous for the F508del CFTR mutation. This article reviews the pharmacologic features, clinical efficacy, and safety of LUM/IVA and summarize the available pre-clinical and clinical data of LUM/IVA use. Expert commentary: LUM/IVA showed modest, but significant improvements from baseline in percent predicted FEV1 (ppFEV1) as well as a reduction in pulmonary exacerbations by 35% It was shown to be safe for short- and long-term use. Currently, LUM/IVA is the only oral agent in its class available and represents a milestone the development of therapies for the management of CF. Nonetheless, pharmacoeconomic data are necessary to justify its high cost before is use becomes standard of care.
Collapse
Affiliation(s)
- Marilyn N Bulloch
- a Harrison School of Pharmacy , Auburn University , Auburn , AL , USA.,b College of Community Health Sciences , University of Alabama , Tuscaloosa , AL , USA
| | - Cameron Hanna
- a Harrison School of Pharmacy , Auburn University , Auburn , AL , USA
| | - Richard Giovane
- c Harrison School of Pharmacy , Auburn University , Tuscaloosa , AL , USA
| |
Collapse
|
30
|
Vauthier V, Housset C, Falguières T. Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol 2017; 136:1-11. [DOI: 10.1016/j.bcp.2017.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
|
31
|
Terragni B, Scalmani P, Franceschetti S, Cestèle S, Mantegazza M. Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology 2017; 132:31-42. [PMID: 28571716 DOI: 10.1016/j.neuropharm.2017.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Channelopathies comprise various diseases caused by defects of ion channels. Modifications of their biophysical properties are common and have been widely studied. However, ion channels are heterogeneous multi-molecular complexes that are extensively modulated and undergo a maturation process comprising numerous steps of structural modifications and intracellular trafficking. Perturbations of these processes can give rise to aberrant channels that cause pathologies. Here we review channelopathies of the nervous system associated with dysfunctions at the post-translational level (folding, trafficking, degradation, subcellular localization, interactions with associated proteins and structural post-translational modifications). We briefly outline the physiology of ion channels' maturation and discuss examples of defective mechanisms, focusing in particular on voltage-gated sodium channels, which are implicated in numerous neurological disorders. We also shortly introduce possible strategies to develop therapeutic approaches that target these processes. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Benedetta Terragni
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Paolo Scalmani
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Silvana Franceschetti
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Sandrine Cestèle
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
32
|
Langron E, Simone MI, Delalande CMS, Reymond JL, Selwood DL, Vergani P. Improved fluorescence assays to measure the defects associated with F508del-CFTR allow identification of new active compounds. Br J Pharmacol 2017; 174:525-539. [PMID: 28094839 DOI: 10.1111/bph.13715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis (CF) is a debilitating disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for a Cl-/HCO3 - channel. F508del, the most common CF-associated mutation, causes both gating and biogenesis defects in the CFTR protein. This paper describes the optimization of two fluorescence assays, capable of measuring CFTR function and cellular localization, and their use in a pilot drug screen. EXPERIMENTAL APPROACH HEK293 cells expressing YFP-F508del-CFTR, in which halide sensitive YFP is tagged to the N-terminal of CFTR, were used to screen a small library of compounds based on the VX-770 scaffold. Cells expressing F508del-CFTR-pHTomato, in which a pH sensor is tagged to the fourth extracellular loop of CFTR, were used to measure CFTR plasma membrane exposure following chronic treatment with the novel potentiators. KEY RESULTS Active compounds with efficacy ~50% of VX-770, micromolar potency, and structurally distinct from VX-770 were identified in the screen. The F508del-CFTR-pHTomato assay suggests that the hit compound MS131A, unlike VX-770, does not decrease membrane exposure of F508del-CFTR. CONCLUSIONS AND IMPLICATIONS Most known potentiators have a negative influence on F508del-CFTR biogenesis/stability, which means membrane exposure needs to be monitored early during the development of drugs targeting CFTR. The combined use of the two fluorescence assays described here provides a useful tool for the identification of improved potentiators and correctors. The assays could also prove useful for basic scientific investigations on F508del-CFTR, and other CF-causing mutations.
Collapse
Affiliation(s)
- Emily Langron
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michela I Simone
- Discipline of Chemistry, School of Environmental and Life Sciences, Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
33
|
Farinha CM, Canato S. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 2017; 74:39-55. [PMID: 27699454 PMCID: PMC11107782 DOI: 10.1007/s00018-016-2387-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Sara Canato
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
34
|
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2016; 74:23-38. [PMID: 27734094 PMCID: PMC5209436 DOI: 10.1007/s00018-016-2386-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
Collapse
|
35
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
36
|
|
37
|
Bali V, Lazrak A, Guroji P, Matalon S, Bebok Z. Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis. PLoS One 2016; 11:e0155882. [PMID: 27214033 PMCID: PMC4877091 DOI: 10.1371/journal.pone.0155882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to deletion of the phenylalanine at position 508 (ΔF508) in the CFTR protein and causes multiple folding and functional defects. Contrary to large-scale efforts by industry and academia, no significant therapeutic benefit has been achieved with a single “corrector”. Therefore, investigations concentrate on drug combinations. Orkambi (Vertex Pharmaceuticals), the first FDA-approved drug for treatment of cystic fibrosis (CF) caused by this mutation, is a combination of a corrector (VX-809) that facilitates ΔF508 CFTR biogenesis and a potentiator (VX-770), which improves its function. Yet, clinical trials utilizing this combination showed only modest therapeutic benefit. The low efficacy Orkambi has been attributed to VX-770-mediated destabilization of VX-809-rescued ΔF508 CFTR. Here we report that the negative effects of VX-770 can be reversed by increasing the half-life of the endoplasmic reticulum (ER) form (band B) of ΔF508 CFTR with another corrector (Corr-4a.) Although Corr-4a alone has only minimal effects on ΔF508 CFTR rescue, it increases the half-life of ΔF508 CFTR band B when it is present during half-life measurements. Our data shows that stabilization of band B ΔF508 CFTR with Corr-4a and simultaneous rescue with VX-809, leads to a >2-fold increase in cAMP-activated, CFTRinh-172-inhibited currents compared to VX-809 alone, or VX-809+VX-770. The negative effects of VX-770 and the Corr-4a protection are specific to the native I507-ATT ΔF508 CFTR without affecting the inherently more stable, synonymous variant I507-ATC ΔF508 CFTR. Our studies emphasize that stabilization of ΔF508 CFTR band B in the ER might improve its functional rescue by Orkambi.
Collapse
Affiliation(s)
- Vedrana Bali
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The Lung Injury and Repair Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Purushotham Guroji
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The Lung Injury and Repair Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The Lung Injury and Repair Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
38
|
Trimble AT, Donaldson SH. CFTR Modulator Therapies for Cystic Fibrosis. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2015; 28:230-236. [PMID: 35923001 DOI: 10.1089/ped.2015.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cloning of cystic fibrosis transmembrane conductance regulator (CFTR) set into motion a cascade of discoveries that have helped to reveal the underlying pathophysiologic basis of cystic fibrosis (CF). This discovery and the knowledge that followed have also provided the opportunity to target this basic defect, with the hope of reversing or preventing the serious clinical consequences that result from absent CFTR function. With the recent approval of 2 therapies that directly modulate CFTR function in more than half of the CF population, we are now at the beginning of a pathway to providing increasingly effective therapies that have the potential to provide a fundamental change in the outcome of most patients with CF.
Collapse
Affiliation(s)
- Aaron T Trimble
- Division of Pulmonary and Critical Care Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H Donaldson
- Division of Pulmonary and Critical Care Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
39
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
40
|
Loureiro CA, Matos AM, Dias-Alves Â, Pereira JF, Uliyakina I, Barros P, Amaral MD, Matos P. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Sci Signal 2015; 8:ra48. [PMID: 25990958 DOI: 10.1126/scisignal.aaa1580] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.
Collapse
Affiliation(s)
- Cláudia A Loureiro
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ana Margarida Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ângela Dias-Alves
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Joana F Pereira
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Inna Uliyakina
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|