1
|
Miyano K, Uezono Y, Yamaguchi T, Hashimoto W, Komoriya S. Co-treatment with Gabapentinoid and Japanese Herbal Medicine Goshajinkigan for CIPN is Associated with Longer Duration and Higher Dose of Chemotherapy. Adv Ther 2025:10.1007/s12325-025-03173-z. [PMID: 40252163 DOI: 10.1007/s12325-025-03173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/10/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION In Japan, both gabapentinoids and the Japanese traditional herbal medicine goshajinkigan (GJG) are used to manage chemotherapy-induced peripheral neuropathy (CIPN); however, evidence for their effectiveness is inconclusive. Patients with CIPN experience reduced quality of life and often undergo reductions in dose or discontinuation of chemotherapy. Therefore, this retrospective cohort study used a real-world database to examine the efficacy of gabapentinoids and GJG therapy for patients with CIPN by evaluating chemotherapy duration and dose. METHODS Data from 145,384 patients diagnosed with CIPN while receiving platinum- or taxane-based chemotherapy between April 1, 2008 and March 31, 2022 were stratified by CIPN treatment: simultaneous gabapentinoid (mirogabalin or pregabalin) plus GJG (prescription dates overlap); non-simultaneous gabapentinoid plus GJG (prescription dates do not overlap); gabapentinoid alone; GJG alone; and neither gabapentinoids nor GJG. Duration and dose of chemotherapy were the primary outcomes. RESULTS Treatment with either a gabapentinoid or GJG alone was associated with longer duration and higher doses of chemotherapy versus neither gabapentinoids nor GJG in patients treated with carboplatin, cisplatin, or paclitaxel. Combined gabapentinoid plus GJG treatment elicited further longer duration and higher doses of chemotherapy versus gabapentinoid alone or GJG alone in patients treated with carboplatin, oxaliplatin, cisplatin, paclitaxel, or docetaxel. When stratified by cancer type, similar trends were observed regarding combination gabapentinoid plus GJG treatment among patients with colorectal cancer treated with oxaliplatin and patients with gastric, lung, or breast cancer treated with paclitaxel. CONCLUSION Combination treatment with gabapentinoid plus GJG might prevent reductions in dose or discontinuation of chemotherapy, and might be effective for the treatment of CIPN.
Collapse
Affiliation(s)
- Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-ku, Tokyo, Japan.
- Laboratory of Pharmacotherapeutics, Faculty of Pharmacy, Juntendo University, Hinode, Urayasu, Chiba, Japan.
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Wataru Hashimoto
- Data Intelligence Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Satoshi Komoriya
- R&D Division, R&D Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
2
|
Chen X, Mi W, Gao T, Ding F, Wang W. Astrocytes in the rostral ventromedial medulla mediate the analgesic effect of electroacupuncture in a rodent model of chemotherapy-induced peripheral neuropathic pain. Pain 2025; 166:916-926. [PMID: 39432736 DOI: 10.1097/j.pain.0000000000003433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathic pain aggravates cancer survivors' life burden. Electroacupuncture (EA) has exhibited promising analgesic effects on neuropathic pain in previous studies. We investigated whether EA was effective in a paclitaxel-induced neuropathic pain mouse model. We further explored the functional role of astrocytes in the rostral ventromedial medulla (RVM), a well-established pain modulation center, in the process of neuropathic pain as well as the analgesic effect of EA. We found that paclitaxel induced mechanical allodynia, astrocytic calcium signaling, and neuronal activation in the RVM and spinal cord, which could be suppressed by EA treatment. Electroacupuncture effectively alleviated paclitaxel-induced mechanical allodynia, and the effect was attenuated by the chemogenetic activation of astrocytes in the RVM. In addition, inhibiting astrocytic calcium activity by using either IP 3 R2 knockout (IP 3 R2 KO) mice or microinjection of AAV-mediated hPMCA2 w/b into the RVM to reduce non-IP 3 R2-dependent Ca 2+ signaling in astrocytes exhibited an analgesic effect on neuropathic pain, which mimicked the EA effect. The current study revealed the pivotal role of the RVM astrocytes in mediating the analgesic effects of EA on chemotherapy-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Huang X, Hyuga S, Ito M, Goda Y, Kobayashi Y. Preventive and therapeutic effects of ephedrine alkaloids-free Ephedra Herb extract on paclitaxel-induced neuropathic pain. J Nat Med 2025; 79:107-121. [PMID: 39470960 DOI: 10.1007/s11418-024-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Currently, there are no effective prophylactic or therapeutic drugs for the treatment of paclitaxel (PTX)-induced peripheral neuropathic pain (PTX-PNP), highlighting the urgent need for the development of effective prophylactic and therapeutic drugs. In this study, we initially compared the efficacy of Ephedra Herb extract (EHE) with that of ephedrine alkaloids-free Ephedra Herb extract (EFE), which lacked ephedrine alkaloids (EAs)-associated side effects, against the onset of PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia in mice. EHE and EFE demonstrated comparable preventive effects on the PTX-PNP in a dose-dependent manner. These results indicated that the preventive properties of EHE were independent of the EAs. Since elderly people are overwhelmingly more susceptible to developing cancer, we considered that EFE has greater benefits than EHE, so we conducted a study focused on the effects of EFE. EFE showed dose-dependent preventive effects on the onset of PTX-PNP. As a result of detailed investigation, coadministration of PTX and EFE (Co-EFE) was more effective than preadministration of EFE alone (Pre-EFE). And the effects of Co-EFE was same with the effect of preadministration of EFE and then coadministration of PTX and EFE (P&C-EFE). Additionally, Co-EFE after the onset of PTX-PNP improved PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia, confirming the therapeutic efficacy of EFE on PTX-PNP. In contrast, goshajinkigan, a Kampo medicine, and diclofenac, a non-steroidal anti-inflammatory drug, showed minimal therapeutic effects on PTX-PNP. These findings demonstrate the significant potential of EFE as a novel, safe prophylactic and therapeutic agent against PTX-PNP.
Collapse
Affiliation(s)
- Xuedan Huang
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Sumiko Hyuga
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Tokyo, Japan.
| | - Michiho Ito
- National Institute of Health Sciences, Kawasaki, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshinori Kobayashi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
4
|
Pan T, Shi X, Bao Y, Wang S, Li T, Diao Y, Meng X. Metabolomics research on treatment of primary liver cancer with Cortex Juglandis Mandshuricae on LC-MS/MS technology. J Pharm Biomed Anal 2024; 248:116320. [PMID: 38959758 DOI: 10.1016/j.jpba.2024.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Diethylnitrosamine (DEN) was applied to create the primary liver cancer (PLC) animal model. In the study, the normal group, model group, cyclophosphamide (CTX) group, Cortex Juglandis Mandshuricae (CJM) extract group, myricetin group and myricitrin group were divided. LC-MS/MS technology was applied to determine the metabolites of liver tissue samples from different locations (nodular and non-nodular parts of liver tissue) in each group of rats. Through metabolomics research, the connection and difference of anti-PLC induced by the CJM extract, myricetin and myricitrin was analyzed. The surface of the liver tissues of rats in the model group was rough, dimly colored, inelastic, on which there were scattered gray white cancer nodules and blood stasis points. The number of cancer nodules was significantly reduced, and the degree of cell malignancy was low, but there were some inflammatory cell infiltrations, necrosis area and karyokinesis in the CJM extract group, myricetin group, myricitrin group and CTX group. The result of metabolic research indicated that 45 potential biomarkers of the PLC were found, as gamma-aminoisobutyrate, taurochenodeoxycholate, xanthurenic acid, etc. There were 22 differential metabolites in the CTX group, 16 differential metabolites in the CJM extract group, 14 differential metabolites in the myricetin group, 14 differential metabolites in the myricitrin group.
Collapse
Affiliation(s)
- Taowen Pan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 11644, China
| | - Xiaoli Shi
- Pharmacy Department of Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yunpeng Diao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 11644, China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
5
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
6
|
Li H, Ward SJ. Paclitaxel-Associated Mechanical Sensitivity and Neuroinflammation Are Sex-, Time-, and Site-Specific and Prevented through Cannabigerol Administration in C57Bl/6 Mice. Int J Mol Sci 2024; 25:4277. [PMID: 38673862 PMCID: PMC11050247 DOI: 10.3390/ijms25084277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients. One identified mechanism underlying CIPN is neuroinflammation. Most of this research has been conducted in only male or female rodent models, making direct comparisons regarding the role of sex differences in the neuroimmune underpinnings of CIPN limited. Moreover, most measurements have focused on the dorsal root ganglia (DRG) and/or spinal cord, while relatively few studies have been aimed at characterizing neuroinflammation in the brain, for example the periaqueductal grey (PAG). The overall goals of the present study were to determine (1) paclitaxel-associated changes in markers of inflammation in the PAG and DRG in male and female C57Bl6 mice and (2) determine the effect of prophylactic administration of an anti-inflammatory cannabinoid, cannabigerol (CBG). In Experiment 1, male and female mice were treated with paclitaxel (8-32 mg/kg/injection, Days 1, 3, 5, and 7) and mechanical sensitivity was measured using Von Frey filaments on Day 7 (Cohort 1) and Day 14 (Cohort 2). Cohorts were euthanized on Day 8 or 15, respectively, and DRG and PAG were harvested for qPCR analysis of the gene expression of markers of pain and inflammation Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. In Experiment 2, male and female mice were treated with vehicle or 10 mg/kg CBG i.p. 30 min prior to each paclitaxel injection. Mechanical sensitivity was measured on Day 14. Mice were euthanized on Day 15, and PAG were harvested for qPCR analysis of the gene expression of Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. Paclitaxel produced a transient increase in potency to produce mechanical sensitivity in male versus female mice. Regarding neuroinflammation, more gene expression changes were apparent earlier in the DRG and at a later time point in the PAG. Also, more changes were observed in females in the PAG than males. Overall, sex differences were observed for most markers at both time points and regions. Importantly, in both the DRG and PAG, most increases in markers of neuroinflammation and pain occurred at paclitaxel doses higher than those associated with significant changes in the mechanical threshold. Two analytes that demonstrated the most compelling sexual dimorphism and that changed more in males were Cxcl9 and Ccl2, and Tlr4 in females. Lastly, prophylactic administration of CBG protected the male and female mice from increased mechanical sensitivity and female mice from neuroinflammation in the PAG. Future studies are warranted to explore how these sex differences may shed light on the mechanisms of CIPN and how non-psychoactive cannabinoids such as CBG may engage these targets to prevent or attenuate the effects of paclitaxel and other chemotherapeutic agents on the nervous system.
Collapse
Affiliation(s)
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
7
|
Bacalhau C, Costa-Pereira JT, Tavares I. Preclinical research in paclitaxel-induced neuropathic pain: a systematic review. Front Vet Sci 2023; 10:1264668. [PMID: 38188718 PMCID: PMC10766764 DOI: 10.3389/fvets.2023.1264668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a common consequence of cancer treatment and pain is a frequent complaint of the patients. Paclitaxel, a cytostatic drug, generates a well-described peripheral nerve injury and neuroinflammation, which may be experimentally mimicked in animal models. We conducted a systematic review analyzing the experimental design, reporting and mechanisms underlying paclitaxel-induced neuropathy in the included studies to establish the perspectives of translation of the current literature in models of CIPN. Methods We elected studies published in Pubmed and Scopus between 1 January 2018 and 3 December 2022. Results According to a defined mesh of keywords searched, and after applying exclusion and inclusion criteria, 70 original studies were included and analyzed in detail. Most studies used male Sprague-Dawley rats to induce paclitaxel-induced neuropathy, used low doses of paclitaxel, and the analyzed studies mainly focused at 14-28 days of CIPN. Mechanical nociceptive tests were preferred in the behavioral evaluation. The mechanisms under study were mainly neuroinflammation of peripheral nerves. The overall methodological quality was considered moderate, and the risk of bias was unclear. Discussion Despite the ample preclinical research in paclitaxel-induced neuropathy, this systematic review alerts to some flaws in the experimental design along with limitations in reporting, e.g., lack of representation of both sexes in experimental work and the lack of reporting of the ARRIVE guidelines. This may limit the reproducibility of preclinical studies in CIPN. In addition, the clinical features of CIPN should be considered when designing animal experiments, such as sex and age of the CIPN patients. In this way the experimental studies aiming to establish the mechanisms of CIPN may allow the development of new drugs to treat CIPN and translation in the research of CIPN could be improved.
Collapse
Affiliation(s)
- Carolina Bacalhau
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Saito K, Koizumi S. A promising drug for neuropathic pain: identification of vesicular nucleotide transporter as a novel target of eicosapentaenoic acid. Purinergic Signal 2023; 19:587-589. [PMID: 36627401 PMCID: PMC10754788 DOI: 10.1007/s11302-022-09918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
- Yamanashi GLIA Center, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- Yamanashi GLIA Center, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
9
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
10
|
Koizumi S. Glial pharmacology in Asia & Beyond. Pharmacol Res Perspect 2021; 9:e00881. [PMID: 34676997 PMCID: PMC8532131 DOI: 10.1002/prp2.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Schuichi Koizumi
- Department of NeuropharmacologyGraduate School of MedicineUniversity of YamanashiYamanashiJapan
- GLIA CenterUniversity of YamanashiYamanashiJapan
| |
Collapse
|