1
|
Chen X, Ma Y, Huang M, Li W, Zeng D, Li J, Wang Y. Multiple herbicide resistance in a Cyperus difformis population in rice field from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105576. [PMID: 37666602 DOI: 10.1016/j.pestbp.2023.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone. Population GX-35 evolved multiple resistance to ALS-inhibiting herbicides (penoxsulam, bispyribac‑sodium, pyrazosulfuron-ethyl, halosulfuron-methly and imazapic) and auxin herbicide MCPA, with resistance levels of 140-, 1253-, 578-, 18-, 13-, and 21-fold, respectively, compared to the susceptible population. In this population, ALS gene expression was similar to that of the susceptible population. However, an Asp376Glu mutation in ALS gene was observed, leading to reduced inhibition of in-vitro ALS activities by five ALS-inhibiting herbicides. Furthermore, CYP71D8, CYP77A3, CYP78A5 and three ABC transporter genes (cluster-14412.23067, cluster-14412.25321, and cluster-14412.24716) over-expressed in absence of penoxsulam. On the other hand, an UGT73C1 and an ABC transporter (cluster-14412.25038) were induced by penoxsulam. Additionally, both over-expression and induction were observed for CYP74, CYP71A1, UGT88A1 and an ABC transporter (cluster-14412.21723). The GX-35 population has indeed evolved multiple herbicide resistance in China. Therefore, a diverse range of weed control tactics should be implemented in rice field.
Collapse
Affiliation(s)
- Xianyan Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Institute of Pesticide and Environmental Toxicology, Guangxi University, Nanning 530004, China
| | - Yonglin Ma
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Mengge Huang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Institute of Pesticide and Environmental Toxicology, Guangxi University, Nanning 530004, China
| | - Weisheng Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dongqiang Zeng
- Institute of Pesticide and Environmental Toxicology, Guangxi University, Nanning 530004, China
| | - Jingbo Li
- Guangxi Vocational University of Agriculture, Nanning 530007, China.
| | - Yanhui Wang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
Vercellino RB, Hernández F, Presotto A. The role of intraspecific crop-weed hybridization in the evolution of weediness and invasiveness: Cultivated and weedy radish (Raphanus sativus) as a case study. AMERICAN JOURNAL OF BOTANY 2023; 110:e16217. [PMID: 37659092 DOI: 10.1002/ajb2.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 09/04/2023]
Abstract
PREMISE The phenotype of hybrids between a crop and its wild or weed counterpart is usually intermediate and maladapted compared to that of their parents; however, hybridization has sometimes been associated with increased fitness, potentially leading to enhanced weediness and invasiveness. Since the ecological context and maternal genetic effects may affect hybrid fitness, they could influence the evolutionary outcomes of hybridization. Here, we evaluated the performance of first-generation crop-weed hybrids of Raphanus sativus and their parents in two contrasting ecological conditions. METHODS Using experimental hybridization and outdoor common garden experiments, we assessed differences in time to flowering, survival to maturity, plant biomass, and reproductive components between bidirectional crop-weed hybrids and their parents in agrestal (wheat cultivation, fertilization, weeding) and ruderal (human-disturbed, uncultivated area) conditions over 2 years. RESULTS Crop, weeds, and bidirectional hybrids overlapped at least partially during the flowering period, indicating a high probability of gene flow. Hybrids survived to maturity at rates at least as successful as their parents and had higher plant biomass and fecundity, which resulted in higher fitness compared to their parents in both environments, without any differences associated with the direction of the hybridization. CONCLUSIONS Intraspecific crop-weed hybridization, regardless of the cross direction, has the potential to promote weediness in weedy R. sativus in agrestal and ruderal environments, increasing the chances for introgression of crop alleles into weed populations. This is the first report of intraspecific crop-weed hybridization in R. sativus.
Collapse
Affiliation(s)
- Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, San Andrés 800, Bahía Blanca, 8000, Argentina
| | - Fernando Hernández
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, San Andrés 800, Bahía Blanca, 8000, Argentina
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, San Andrés 800, Bahía Blanca, 8000, Argentina
| |
Collapse
|
3
|
Du Y, Wang M, Chen Y, Deng Y, Zhang L, Bai T, Ji M. Occurrence and mechanism of target-site resistance to bensulfuron-methyl in Monochoria korsakowii from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105379. [PMID: 36963949 DOI: 10.1016/j.pestbp.2023.105379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Monochoria korsakowii is an increasingly significant threat to rice production across China, particularly in Liaoning province. Few studies have reported herbicide resistance in M. korsakowii, and resistance status and mechanisms are poorly understood. Here, thirty field populations of M. korsakowii were collected from 11 rice-growing regions of Liaoning, and 97% of populations had evolved resistance to bensulfuron-methyl (BM), with majority (24 of 28) showing high resistance levels (RI > 10). The first in-depth analysis of molecular features of AHAS1 and AHAS2 in BM-resistant populations showed that four Pro197 mutations (Pro197 to His, Ala, Leu or Ser) in AHAS1 and one mutation (Pro197Ser) in AHAS2 were identified. Notably, novel double Pro197Ser mutations co-occurred in both AHAS1 and AHAS2 in the most resistant line LN-20. Furthermore, resistant mutants were used to investigate the effect of Pro197 mutations on AHAS functionality, binding modes, gene expression and cross-resistance in M. korsakowii. All the detected Pro197 mutations considerably reduced in vitro AHAS sensitivity to BM by weakening hydrogen bonds and hydrophobic interactions in the predicted BM-AHAS complexes, especially the double Pro197Ser mutations. This novel resistance mutation combination slightly impacted the extractable AHAS activity, and increased the affinity and catalytic rate of pyruvate. Also, the AHAS expression level was significantly up-regulated. Moreover, all mutations provided resistance only to other sulfonylureas herbicides but not triazolopyrimidine or pyrimidinyl-benzoates herbicides. In conclusion, bensulfuron-methyl resistance in M. korsakowii was grim in Liaoning, China, and amino acid mutations on AHAS isozymes were the primary resistance mechanism. Double Pro197Ser mutations in both AHAS1 and AHAS2 confer higher herbicide resistance than single mutations in AHAS1. Thus, this work deepens our understanding of resistance status and mechanisms of M. korsakowii.
Collapse
Affiliation(s)
- Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Minlong Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yan Chen
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Yunyan Deng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Lulu Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlang Bai
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Vercellino RB, Hernández F, Pandolfo C, Ureta S, Presotto A. Agricultural weeds: the contribution of domesticated species to the origin and evolution of feral weeds. PEST MANAGEMENT SCIENCE 2023; 79:922-934. [PMID: 36507604 DOI: 10.1002/ps.7321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Agricultural weeds descended from domesticated ancestors, directly from crops (endoferality) and/or from crop-wild hybridization (exoferality), may have evolutionary advantages by rapidly acquiring traits pre-adapted to agricultural habitats. Understanding the role of crops on the origin and evolution of agricultural weeds is essential to develop more effective weed management programs, minimize crop losses due to weeds, and accurately assess the risks of cultivated genes escaping. In this review, we first describe relevant traits of weediness: shattering, seed dormancy, branching, early flowering and rapid growth, and their role in the feralization process. Furthermore, we discuss how the design of "super-crops" can affect weed evolution. We then searched for literature documenting cases of agricultural weeds descended from well-domesticated crops, and describe six case studies of feral weeds evolved from major crops: maize, radish, rapeseed, rice, sorghum, and sunflower. Further studies on the origin and evolution of feral weeds can improve our understanding of the physiological and genetic mechanisms underpinning the adaptation to agricultural habitats and may help to develop more effective weed-control practices and breeding better crops. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Fernando Hernández
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudio Pandolfo
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Soledad Ureta
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
5
|
Hernández F, Vercellino RB, Pandolfo C, Mandel JR, Presotto A. Rapid evolution of seed dormancy during sunflower de-domestication. J Hered 2022; 113:288-297. [PMID: 35192723 DOI: 10.1093/jhered/esac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Hybridization between crops and their wild relatives may promote the evolution of de-domesticated (feral) weeds. Wild sunflower (Helianthus annuus L.) is typically found in ruderal environments, but crop-wild hybridization may facilitate the evolution of weedy populations. Using one crop-specific mitochondrial marker (CMS-PET1) and 14 nuclear SSR markers, we studied the origin and genetic diversity of a recently discovered weedy population of sunflower (named BRW). Then, using a resurrection approach, we tested for rapid evolution of weedy traits (seed dormancy, herbicide resistance, and competitive ability) by sampling weedy and wild populations 10 years apart (2007 and 2017). All the weedy plants present the CMS-PET1 cytotype, confirming their feral origin. At the nuclear markers, BRW showed higher genetic diversity than the cultivated lines and low differentiation with one wild population, suggesting that wild hybridization increased their genetic diversity. We found support for rapid evolution towards higher seed dormancy, but not for higher competitive ability or herbicide resistance. Our results highlight the importance of seed dormancy during the earliest stages of adaptation and show that crop-wild hybrids can evolve quickly in agricultural environments.
Collapse
Affiliation(s)
- Fernando Hernández
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés, Bahía Blanca, Argentina.,CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga, Bahía Blanca, Argentina
| | - Roman B Vercellino
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés, Bahía Blanca, Argentina.,CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga, Bahía Blanca, Argentina
| | - Claudio Pandolfo
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés, Bahía Blanca, Argentina.,CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga, Bahía Blanca, Argentina
| | - Jennifer R Mandel
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN
| | - Alejandro Presotto
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés, Bahía Blanca, Argentina.,CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga, Bahía Blanca, Argentina
| |
Collapse
|
6
|
Palmieri VE, Alvarez CE, Permingeat HR, Perotti VE. A122S, A205V, D376E, W574L and S653N substitutions in acetolactate synthase (ALS) from Amaranthus palmeri show different functional impacts on herbicide resistance. PEST MANAGEMENT SCIENCE 2022; 78:749-757. [PMID: 34693637 DOI: 10.1002/ps.6688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Amaranthus palmeri S. Watson, a problematic weed infesting summer crops in Argentina, has developed multiple herbicide resistance. Resistance to acetolactate synthase (ALS)-inhibiting herbicides is particularly common, with high-level resistance mostly caused by different mutations in the ALS enzyme. Six versions of the enzyme were identified from a resistant A. palmeri population, carrying substitutions D376E, A205V, A122S, A282D, W574L and S653N. This work aims to provide a comparative analysis of these mutants and the wild-type (WT) enzyme to fully understand the herbicide resistance. Thus, all the versions of the ALS gene from A. palmeri were heterologously expressed and purified to evaluate their kinetics and inhibitory response against imazethapyr, diclosulam, chlorimuron-ethyl, flucarbazone-sodium and bispyribac-sodium. RESULTS A decrease in catalytic efficiency was detected in the A205V, A122S-A282D, W574L and S653N ApALS enzymes, whereas only A205V and W574L substitutions also produced a decrease in the substrate affinity. In vitro ALS inhibition assays confirmed cross-resistance to almost all the herbicides tested, with the exception of A282D ApALS, which was as susceptible as WT ApALS. Moreover, the results confirmed that the novel substitution A122S provides cross-resistance to at least one herbicide within each of the five families of ALS inhibitors, and this property could be explained by a lower number of hydrophobic interactions between the herbicides and the mutant enzyme. CONCLUSION This is the first report to compare various mutations in vitro from A. palmeri ALS. Our data contribute to understanding the impacts of herbicide resistance in this species. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valeria E Palmieri
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo R Permingeat
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
- Laboratorio de Biología Molecular, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
| | - Valeria E Perotti
- Laboratorio de Biología Molecular, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
| |
Collapse
|
7
|
Wu YP, Wang Y, Li JH, Li RH, Wang J, Li SX, Gao XY, Dong L, Li AQ. Design, synthesis, herbicidal activity, in vivo enzyme activity evaluation and molecular docking study of acylthiourea derivatives as novel acetohydroxyacid synthase inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Zhao N, Yan Y, Du L, Zhang X, Liu W, Wang J. Unravelling the effect of two herbicide resistance mutations on acetolactate synthase kinetics and growth traits. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3535-3542. [PMID: 32150619 PMCID: PMC7475246 DOI: 10.1093/jxb/eraa120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 05/04/2023]
Abstract
Gene mutations conferring herbicide resistance are hypothesized to have negative pleiotropic effects on plant growth and fitness, which may in turn determine the evolutionary dynamics of herbicide resistance alleles. We used the widespread, annual, diploid grass weed Alopecurus aequalis as a model species to investigate the effect of two resistance mutations-the rare Pro-197-Tyr mutation and the most common mutation, Trp-574-Leu-on acetolactate synthase (ALS) functionality and plant growth. We characterized the enzyme kinetics of ALS from two purified A. aequalis populations, each homozygous for the resistance mutation 197-Tyr or 574-Leu, and assessed the pleiotropic effects of these mutations on plant growth. Both mutations reduced sensitivity of ALS to ALS-inhibiting herbicides without significant changes in extractable ALS activity. The 197-Tyr mutation slightly decreased the substrate affinity (corresponding to an increased Km for pyruvate) and maximum reaction velocity (Vmax) of ALS, whereas the 574-Leu mutation significantly increased these kinetics. Significant decrease or increase in plant growth associated, respectively, with the 197-Tyr and 574-Leu resistance mutations was highly correlated with their impact on ALS kinetics, suggesting more likely persistence of the 574-Leu mutation than the 197-Tyr mutation if herbicide application is discontinued.
Collapse
Affiliation(s)
- Ning Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Pesticide Toxicology and Application Technology, Shandong Agricultural University, Tai’an, China
| | - Yanyan Yan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Long Du
- Pest Bio-control Lab, Shandong Peanut Research Institute, Qingdao, China
| | - Xiaolin Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Pesticide Toxicology and Application Technology, Shandong Agricultural University, Tai’an, China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Pesticide Toxicology and Application Technology, Shandong Agricultural University, Tai’an, China
- Correspondence: or
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Pesticide Toxicology and Application Technology, Shandong Agricultural University, Tai’an, China
- Correspondence: or
| |
Collapse
|
9
|
Li Z, Li X, Chen J, Peng L, Wang J, Cui H. Variation in mutations providing resistance to acetohydroxyacid synthase inhibitors in Cyperus difformis in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104571. [PMID: 32448425 DOI: 10.1016/j.pestbp.2020.104571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Cyperus difformis has evolved resistance to pyrazosulfuron-ethyl and other acetohydroxyacid synthase (AHAS) inhibitors in paddy fields in China. To understand the distribution of resistance and the mutations involved, 38 populations collected were from 7 provinces and compared. Application of pyrazosulfuron-ethyl at 30 g a.i. ha-1 identified 16 populations that survived, demonstrating resistance to this herbicide. Two exons of 498 and 1428 bp in length and a 1228-1233-bp intron of AHAS were cloned by genome walking, and three pairs of primers were designed to amplify eight conserved regions in this gene. In the 16 resistant (R) populations, five different types of mutations in the conserved region of the AHAS gene were identified: Pro-197-Ser, Pro-197-Arg, Pro-197-Leu, Asp-376-Glu, and Trp-574-Leu. Three R populations, YX15-22, YX12-10 and YX15-38, were chosen for in vitro AHAS activity assays, and the results showed that AHAS from YX15-22 carrying the Pro-197 mutation was insensitive to pyrazosulfuron-ethyl (resistance index (RI) = 310.0) and penoxsulam (RI = 10.0), whereas the enzyme from YX12--10 and YX15-38 was insensitive to pyrazosulfuron-ethyl, penoxsulam, imazapic and bispyribac‑sodium (RI values ranging from 4.3 to 4462.0). AHAS inhibitor cross-resistance bioassays showed that YX12-10 and YX15-38 had cross-resistance to all of the tested herbicides (RI values ranging from 5.8 to 3321.9), while the YX15-22 population only had resistance to pyrazosulfuron-ethyl (RI = 827.4) and penoxsulam (RI = 6.6). This study clarified the distribution of resistant C. difformis in China and the different cross-resistance patterns given by various mutation types of AHAS.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xiangju Li
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Jingchao Chen
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Licun Peng
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Jingjing Wang
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Hailan Cui
- Key Laboratory of Weed Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
10
|
Breccia G, Gianotto L, Altieri E, Bulos M, Nestares G. Effect of Ahasl1-1 and Ahasl1-4 alleles on herbicide resistance and its associated dominance in sunflower. PEST MANAGEMENT SCIENCE 2019; 75:935-941. [PMID: 30187639 DOI: 10.1002/ps.5197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Acetohydroxyacid synthase large subunit 1 (Ahasl1) is a multiallelic locus involved in herbicide resistance in sunflower. Ahasl1-1 and Ahasl1-4 alleles harbor different point mutations that lead to different amino acid substitutions (Ala205Val and Trp574Leu, respectively). The objectives of this work were to evaluate the effect of these alleles at the enzymatic and whole-plant levels, and to determine the dominance relationships for imazapyr and metsulfuron-methyl herbicides. RESULTS Resistant near-isogenic lines showed significantly lower specific AHAS activity than susceptible near-isoline. However, kinetic studies indicated that mutations did not change AHAS pyruvate affinity. Dose-response for six near-isolines carrying different combinations of Ahasl1-1 and Ahasl1-4 alleles and two herbicides (imazapyr and metsulfuron-methyl) were evaluated at whole-plant and enzymatic levels. Ahasl1-1 allele conferred moderate resistance to imazapyr and low resistance to metsulfuron-methyl. Conversely, Ahasl1-4 allele endowed high levels of resistance for both herbicides. Dominance of resistance at whole-plant level showed a semi-dominant behavior among the alleles for both herbicides. CONCLUSION Ahasl1-4 allele confers higher resistance levels than Ahasl1-1 when evaluated with imazapyr and metsulfuron-methyl. Dominance estimations suggested that both parental lines should carry a resistance trait when developing hybrids. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabriela Breccia
- IICAR, UNR, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Laura Gianotto
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
| | | | - Mariano Bulos
- Department of Biotechnology, Nidera S.A., Santa Fe, Argentina
| | - Graciela Nestares
- IICAR, UNR, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
| |
Collapse
|
11
|
Shergill LS, Bish MD, Jugulam M, Bradley KW. Molecular and physiological characterization of six-way resistance in an Amaranthus tuberculatus var. rudis biotype from Missouri. PEST MANAGEMENT SCIENCE 2018; 74:2688-2698. [PMID: 29797476 DOI: 10.1002/ps.5082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Previous research reported the first case of six-way herbicide resistance in a common waterhemp (Amaranthus tuberculatus var. rudis) biotype from Missouri, USA designated MO-Ren. This study investigated the mechanisms of multiple-resistance in the MO-Ren biotype to herbicides from six site-of-action (SOA) groups, i.e. synthetic auxins, 5-enolypyruvyl-shikimate-3-phosphate synthase (EPSPS)-, protoporphyrinogen oxidase (PPO)-, acetolactate synthase (ALS)-, photosystem II (PSII)-, and 4-hydroxyphenyl-pyruvate-dioxygenase (HPPD)-inhibitors. RESULTS Genomic DNA sequencing confirmed the presence of known mutations associated with ALS- or PPO-inhibiting herbicide resistance: the Trp-574-Leu amino acid substitution in the ALS enzyme and the codon deletion corresponding to the ΔG210 in the PPX2 enzyme. No target-site point mutations associated with resistance to PSII- and EPSPS-inhibitors were detected. Quantitative polymerase chain reaction (qPCR) indicated that MO-Ren plants contained five-fold more copies of the EPSPS gene than susceptible plants. Malathion in combination with 2,4-D (2,4-dichlorophenoxyacetic acid), mesotrione, and chlorimuron POST enhanced the activity of these herbicides indicating that metabolism due to cytochrome P450 monooxygenase activity was involved in herbicide resistance. 4-Chloro-7-nitrobenzofurazan (NBD-Cl), a glutathione-S-transferase (GST)-inhibitor, in combination with atrazine did not reduce the biomass accumulation. Reduced absorption or translocation of 2,4-D did not contribute to resistance. However, the resistant biotype metabolized 2,4-D, seven- to nine-fold faster than the susceptible. CONCLUSION Target-site point mutations, gene amplification, and elevated rates of metabolism contribute to six-way resistance in the MO-Ren biotype, suggesting both target site and non-target site mechanisms contribute to multiple herbicide resistance in this Amaranthus tuberculatus biotype. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mandy D Bish
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin W Bradley
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|