1
|
Busi R, Flower K, Goggin D, Onofri A. Patterns of herbicide resistance in Raphanus raphanistrum revealed by comprehensive testing and statistical analysis. PEST MANAGEMENT SCIENCE 2024; 80:6555-6565. [PMID: 39229851 DOI: 10.1002/ps.8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Raphanus raphanistrum causes $40 million total revenue losses annually in Western Australia partly due to its historically-documented ability to evolve herbicide resistance to multiple modes of action. In this study, 376 field-sampled populations of R. raphanistrum were tested for resistance to 21 herbicides applied at the recommended label rate. Eight treatments were herbicide mixtures with two, three or four modes of action. RESULTS A total of 7199 individual resistance tests were conducted across 4 years by screening approximately 104 000 individual seeds and seedlings. The mean survival of individuals within a population for all standalone herbicides was 9%, whereas survival was significantly decreased to 3.5% with a herbicide mixture. Some herbicides such as triasulfuron (herbicide Group 2), 2,4-D (Group 4) or diflufenican (Group 12) were highly impacted by resistance, with frequencies of resistant populations being > 50%. Conversely, there was negligible resistance to glyphosate (Group 9) or protoporphyrinogen oxidase (PPO) inhibitors (tiafenacil, saflufenacil + trifludimoxazin, fomesafen: Group 14), and pre-emergence herbicides (i.e., atrazine or mesotrione: Groups 5 and 27, respectively) remained largely effective. Binary, ternary or quaternary mixtures of Groups 4, 6, 12 and 27 herbicides reduced the frequency of high-level resistant populations to 7.1%, 3.8% or 0%, respectively. CONCLUSIONS The cost-effective control of R. raphanistrum remains a challenge due to herbicide resistance. Raphanus raphanistrum management relies heavily on herbicide uses not yet compromised by resistance, such as pre-emergence herbicides (atrazine, fomesafen, mesotrione), glyphosate, and mixtures of two, three or four modes of action including bromoxynil, diflufenican, MCPA, picolinafen, pyrasulfotole and topramezone. Strategies that integrate effective herbicide use patterns, novel modes of action and efficiently-mechanized non-chemical weed control options (i.e., seed destructors) can completely constrain the selection of herbicide resistance in this highly adaptable species. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Ken Flower
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Danica Goggin
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Zhang HX, Huang D, Ren MN, Li WQ, Wei SP, Ji ZQ. Discovery of N-benzyl-6-methylpicolinamide as a potential scaffold for bleaching herbicides. PEST MANAGEMENT SCIENCE 2024; 80:3269-3277. [PMID: 38363171 DOI: 10.1002/ps.8030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND In pesticide research, bleaching herbicides have always been a hot topic. Our previous research showed that N-(4-fluorobenzyl)-2-methoxybenzamide is an innovative lead compound for bleaching herbicides. RESULTS A total of 40 derivatives of picolinamides were prepared and evaluated for their herbicidal activity by Petri dish tests and postemergence trials. The structure-activity relationship (SAR) revealed that introducing electron-withdrawing groups at the 3- or 4-positions of the benzyl significantly enhances herbicidal activity. Furthermore, ZI-04 induced similar symptoms such as bleaching effect in treated weeds and accumulation of biosynthetic precursors for carotenoids as observed with diflufenican. ZI-04 also exhibited significant cross-resistance to diflufenican and had a lower resistance risk than diflufenican. CONCLUSION N-benzyl-6-methylpicolinamides were discovered as a novel scaffold for bleaching herbicides. The accumulation of phytoene, phytofluene and ζ-Carotene in radish cotyledons, and cross-resistance observed with diflufenican, showed that title compounds can interfere with carotenoid biosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui-Xia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Di Huang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Meng-Nan Ren
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wen-Qi Li
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shao-Peng Wei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| | - Zhi-Qin Ji
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticides, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Gómez-Martínez D, Bengtson J, Nilsson AK, Clarke AK, Nilsson RH, Kristiansson E, Corcoll N. Phenotypic and transcriptomic acclimation of the green microalga Raphidocelis subcapitata to high environmental levels of the herbicide diflufenican. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162604. [PMID: 36878298 DOI: 10.1016/j.scitotenv.2023.162604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Herbicide pollution poses a worldwide threat to plants and freshwater ecosystems. However, the understanding of how organisms develop tolerance to these chemicals and the associated trade-off expenses are largely unknown. This study aims to investigate the physiological and transcriptional mechanisms underlying the acclimation of the green microalgal model species Raphidocelis subcapitata (Selenastraceae) towards the herbicide diflufenican, and the fitness costs associated with tolerance development. Algae were exposed for 12 weeks (corresponding to 100 generations) to diflufenican at the two environmental concentrations 10 and 310 ng/L. The monitoring of growth, pigment composition, and photosynthetic performance throughout the experiment revealed an initial dose-dependent stress phase (week 1) with an EC50 of 397 ng/L, followed by a time-dependent recovery phase during weeks 2 to 4. After week 4, R. subcapitata was acclimated to diflufenican exposure with a similar growth rate, content of carotenoids, and photosynthetic performance as the unexposed control algae. This acclimation state of the algae was explored in terms of tolerance acquisition, changes in the fatty acids composition, diflufenican removal rate, cell size, and changes in mRNA gene expression profile, revealing potential fitness costs associated with acclimation, such as up-regulation of genes related to cell division, structure, morphology, and reduction of cell size. Overall, this study demonstrates that R. subcapitata can quickly acclimate to environmental but toxic levels of diflufenican; however, the acclimation is associated with trade-off expenses that result in smaller cell size.
Collapse
Affiliation(s)
- Daniela Gómez-Martínez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Johanna Bengtson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adrian K Clarke
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Rolf Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Park W, Park J, Park S, Lim W, Song G. Picolinafen exposure induces ROS accumulation and calcium depletion, leading to apoptosis in porcine embryonic trophectoderm and uterine luminal epithelial cells during the peri-implantation period. Theriogenology 2023; 201:12-23. [PMID: 36809717 DOI: 10.1016/j.theriogenology.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The global use of herbicides accounts for more than 48% of total pesticide usage. Picolinafen is a pyridine carboxylic acid herbicide that is predominantly used to control broadleaf weeds in wheat, barley, corn, and soybeans. Despite its widespread use in agriculture, its toxicity in mammals has rarely been studied. In this study, we first identified the cytotoxic effects of picolinafen on porcine trophectoderm (pTr) and luminal epithelial (pLE) cells, which are involved in the implantation process during early pregnancy. Picolinafen treatment significantly decreased the viability of pTr and pLE cells. Our results demonstrate that picolinafen increased the number of sub-G1 phase cells and early/late apoptosis. In addition, picolinafen disrupted mitochondrial function and resulted in the accumulation of intracellular ROS, leading to a reduction in calcium levels in both the mitochondria and cytoplasm of pTr and pLE cells. Moreover, picolinafen was found to significantly inhibit the migration of pTr. These responses were accompanied by the activation of the MAPK and PI3K signal transduction pathways by picolinafen. Our data suggest that the deleterious effects of picolinafen on the viability and migration of pTr and pLE cells might impair their implantation potential.
Collapse
Affiliation(s)
- Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Palma-Bautista C, Vázquez-García JG, Domínguez-Valenzuela JA, Ferreira Mendes K, Alcántara de la Cruz R, Torra J, De Prado R. Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14792-14801. [PMID: 34852464 DOI: 10.1021/acs.jafc.1c04279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The repeated use of herbicides can lead to the selection of multiple resistance weeds. Some populations of Conyza bonariensis occurring in olive groves from southern Spain have developed resistance to various herbicides. This study determined the resistance levels to 2,4-D, glyphosate, diflufenican, paraquat, and tribenuron-methyl in a putative resistant (R) C. bonariensis population, and the possible non-target-site resistance (NTSR) mechanisms involved were characterized. Resistance factors varied as follows: glyphosate (8.9), 2,4-D (4.8), diflufenican (5.0), tribenuron-methyl (19.6), and paraquat (85.5). Absorption of 14C-glyphosate was up to 25% higher in the susceptible (S) population compared to the R one, but 14C-paraquat absorption was similar (up to 70%) in both populations. S plants translocated more than 60% of both 14C-glyphosate and 14C-paraquat toward shoots and roots, while R plants translocated less than 10%. The R population was able to metabolize 57% of the 2,4-D into nontoxic metabolites and 68% of the tribenuron-methyl into metsulfuron-methyl (10%), metsulfuron-methyl-hydroxylate (18%), and conjugate-metsulfuron-methyl (40%). Among the NTSR mechanisms investigated, absorption and translocation could be involved in glyphosate resistance, but only translocation for paraquat. Proofs of the presence of enhanced metabolism as a resistance mechanism were found for tribenuron-methyl and 2,4-D, but not for diflufenican. This research informs the first occurrence of multiple resistance to five herbicide classes (acetolactate synthase inhibitors, 5-enolpyruvylshikimate-3-phosphate synthase inhibitors, photosystem I electron diverters, photosystem II inhibitors, and synthetic auxin herbicides) in C. bonariensis.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14014 Córdoba, Spain
| | - José G Vázquez-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14014 Córdoba, Spain
| | | | - Kassio Ferreira Mendes
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | | | - Joel Torra
- Department d'Hortofruticultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, 25198 Lleida, Spain
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14014 Córdoba, Spain
| |
Collapse
|
6
|
Lee JY, Park S, Lim W, Song G. Picolinafen exerts developmental toxicity via the suppression of oxidative stress and angiogenesis in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104734. [PMID: 33357556 DOI: 10.1016/j.pestbp.2020.104734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Picolinafen, a phytoene desaturase-inhibiting herbicide, has been used since 2001 to control the growth of broadleaf weeds. Picolinafen has lower solubility and volatility, and shows lower toxicity to non-target insect species than other types of herbicide. Although picolinafen has been detected in lakes near urban environments and induces chronic toxicity in the mammals, birds, and some aquatic organisms, no study has investigated the toxicity or mode of action of picolinafen in zebrafish. In this study, we demonstrated the lethality and acute LC50 value of picolinafen towards zebrafish embryos. Picolinafen hampered the development of embryos by the induction of morphological abnormalities via apoptosis. Additionally, picolinafen suppressed the generation of reactive oxygen species and angiogenesis. Also, the angiogenesis related genes, flt1 and flt4 mRNA expression was decreased in zebrafish embryos. This study provides a mechanistic understanding of the developmental toxicity of picolinafen in vertebrates.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Lu H, Yu Q, Han H, Owen MJ, Powles SB. Non-target-site resistance to PDS-inhibiting herbicides in a wild radish (Raphanus raphanistrum) population. PEST MANAGEMENT SCIENCE 2020; 76:2015-2020. [PMID: 31867843 DOI: 10.1002/ps.5733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diflufenican resistance has been reported in wild radish populations since 1998, but the resistance mechanisms have not been investigated. Recently, we identified a wild radish population (H2/10) from the Western Australian grain belt that is resistant (R) to the phytoene desaturase (PDS)-inhibiting herbicide diflufenican. RESULTS Dose-response results showed this R population is 4.9-fold more resistant than the susceptible (S) population based on the LD50 R/S ratio. In addition, the R population also exhibits cross-resistance to the PDS-inhibiting herbicide fluridone. The cytochrome P450 inhibitor malathion reversed diflufenican resistance and partially reversed fluridone resistance in the R population. The full coding sequences of the PDS gene were cloned from the S and R plants and there are natural variations in the PDS gene transcripts/alleles with no correlation to resistance. In addition, the R plants had a level of PDS gene expression that is not significantly different from the S plants. CONCLUSION These results demonstrated that diflufenican resistance in this R wild radish population is likely due to non-target-site based enhanced herbicide metabolism involving cytochrome P450s. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Lu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Mechelle J Owen
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Murphy BP, Tranel PJ. Target-Site Mutations Conferring Herbicide Resistance. PLANTS 2019; 8:plants8100382. [PMID: 31569336 PMCID: PMC6843678 DOI: 10.3390/plants8100382] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/01/2022]
Abstract
Mutations conferring evolved herbicide resistance in weeds are known in nine different herbicide sites of action. This review summarizes recently reported resistance-conferring mutations for each of these nine target sites. One emerging trend is an increase in reports of multiple mutations, including multiple amino acid changes at the glyphosate target site, as well as mutations involving two nucleotide changes at a single amino acid codon. Standard reference sequences are suggested for target sites for which standards do not already exist. We also discuss experimental approaches for investigating cross-resistance patterns and for investigating fitness costs of specific target-site mutations.
Collapse
Affiliation(s)
- Brent P Murphy
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|