1
|
Liu Z, Yang Y, Wang X, Chen Z, Ruan X, Chang Z, Huang Z, Gao W, Zhang C, Liu X. Pathogenic diversity and fungicide sensitivity of soybean root rot oomycetes in Heilongjiang Province, China. PEST MANAGEMENT SCIENCE 2025. [PMID: 40342205 DOI: 10.1002/ps.8881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Soybean root rot is a global threat to soybean yield and quality caused by several pathogens, which vary in fungicide sensitivity. Management is challenging due to fungicide resistance and limited synergistic strategies. To understand the pathogenic diversity, the pathogens causing soybean root rot in Heilongjiang Province were identified. The inhibitory activity of different fungicides and synergistic fungicide combinations was further investigated to further develop integrated management strategies for soybean root rot. RESULTS This study analyzed soybean root rot samples from 14 locations in Heilongjiang Province, China, identifying four oomycete species in three genera: Phytophthora sojae, Pythium periplocum, Pythium acanthicum, and Phytopythium chamaehyphon, the latter reported for the first time in China as a root rot pathogen. Sensitivity tests on six fungicides showed fluopicolide, azoxystrobin, and dimethomorph were effective against P. sojae but not Pythium periplocum, Py. acanthicum or Ph. chamaehyphon. Oxathiapiprolin is effective against P. sojae and Ph. chamaehyphon. Molecular docking revealed pathogen-specific binding affinities, confirming their selective efficacy. Metalaxyl-M and zoxamide displayed broad-spectrum activity against all three genera. A synergistic 5:1 combination of these fungicides significantly reduced median effective concentration (EC50) values across pathogens, offering an effective integrated management approach. CONCLUSION The results enhance our understanding of soybean root rot pathogens, fungicide sensitivities, and optimal combinations. The identification of Ph. chamaehyphon and the discovery of an effective metalaxyl-M and zoxamide combination provide foundations for sustainable control strategies to mitigate this devastating disease. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhanyun Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yige Yang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xueyang Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Ziyuan Chen
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xueyi Ruan
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhengjie Chang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wenna Gao
- Science and Technology Research Center of China Customs, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Chen S, Liu Z, Chang Z, Zheng Y, Wang X, Li N, Huang Z, Zhang C, Liu X. Exploring Fungicide Sensitivity in Soybean Stem Blight Pathogen Diaporthe longicolla, Emphasizing Genetic Variability Impact on Response to SDHI Fungicides Fluopyram and Pydiflumetofen. J Fungi (Basel) 2025; 11:292. [PMID: 40278113 PMCID: PMC12028546 DOI: 10.3390/jof11040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Diaporthe species are critical plant pathogens that contribute to a disease complex responsible for substantial yield losses in soybean production worldwide. However, reports on the primary Diaporthe species causing soybean stem blight and their sensitivity to various fungicides are scarce in China. In this study, a total of 46 D. longicolla strains were isolated and identified from diseased soybean stems and rots collected from 14 regions of Heilongjiang province in 2021 and 2022. Among the eight fungicides examined, fludioxonil, mefentrifluconazole, tebuconazole, and azoxystrobin demonstrated effective inhibition for D. longicolla, with EC50 values < 0.3 µg/mL. Interestingly, the EC50 values of D. longicolla to two succinate dehydrogenase inhibitors (SDHIs), pydiflumetofen and fluopyram, were 5.47 µg/mL and over 100 µg/mL, respectively. In molecular dynamics simulations, pydiflumetofen exhibited a smaller RMSD, while fluopyram had a higher binding free energy with Sdh proteins compared to pydiflumetofen. This difference may contribute to the higher activity of pydiflumetofen in D. longicolla. Further analysis of the electrostatic potential and structural conformations of the binding pocket revealed that pydiflumetofen formed more hydrophobic interactions with SdhC and SdhD and was positioned closer to the SdhD subunit. A mixture of fludioxonil and mefentrifluconazole at a ratio of 1:5, as well as fludioxonil and pydiflumetofen at a ratio of 1:5, exhibited synergistic effects. These findings demonstrated that several fungicides could be utilized to control Diaporthe stem blight, and the difference in binding affinity to the Sdh subunit impacts sensitivity to fluopyram and pydiflumetofen.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Zhanyun Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Zhengjie Chang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Yuxin Zheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Xueyang Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Ningwei Li
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (S.C.); (Z.L.); (Z.C.); (Y.Z.); (X.W.); (N.L.); (Z.H.); (X.L.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Li C, Tian S, Fu Y, Li Y, Miao J, Peng Q, Liu X. Activity of OSBPI fungicide fluoxapiprolin against plant-pathogenic oomycetes and its systemic translocation in plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106085. [PMID: 39277398 DOI: 10.1016/j.pestbp.2024.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Fluoxapiprolin, a novel piperidinyl thiazole isoxazoline fungicide, was developed by Bayer Crop Science in 2012. Despite its well-documented inhibitory activity against plant pathogenic oomycetes such as Phytophthora capsici and Phytophthora infestans, limited information regarding its antifungal spectrum and protective and curative activity is available. Fluoxapiprolin exhibited strong inhibitory activity against Phytophthora spp. and several Pythium spp., with EC50 values ranging from 2.12 × 10-4 to 2.92 μg/mL. It was much more effective against P. capsici in inhibiting mycelial growth, sporangium production, and cystospore germination than at reducing zoospore release. Moreover, fluoxapiprolin displayed both protective and curative activity against P. capsici infection in pepper plants under greenhouse conditions, with systemic translocation capability confirmed by High Performance Liquid Chromatography (HPLC) analysis. The results demonstrated the strong inhibitory activity of fluoxapiprolin against economically important plant oomycete pathogens, including Phytophthora spp. and several Pythium spp., and its certain translocation activity in pepper plants.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Song Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yixin Fu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiying Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qin Peng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
4
|
Zhou LM, Yang JF, Li HH, Chen W, Li YW, Zhu XL, Yang GF. Discovery of Novel Oxathiapiprolin Derivatives as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17649-17657. [PMID: 39047266 DOI: 10.1021/acs.jafc.4c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hong-Hao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yi-Wen Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
5
|
Dorrance AE, Vargas A, Navarro-Acevedo K, Wijertatne S, Myers J, Paredes JA. Picarbutrazox Effectiveness Added to a Seed Treatment Mixture for Management of Oomycetes that Impact Soybean in Ohio. PLANT DISEASE 2024; 108:2330-2340. [PMID: 38190367 DOI: 10.1094/pdis-06-23-1223-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
None of the current oomycota fungicides are effective towards all species of Phytophthora, Phytopythium, Globisporangium, and Pythium that affect soybean seed and seedlings in Ohio. Picarbutrazox is a new oomyceticide with a novel mode of action towards oomycete pathogens. Our objectives were to evaluate picarbutrazox to determine (i) baseline sensitivity (EC50) to 189 isolates of 29 species, (ii) the efficacy with a base seed treatment with three cultivars with different levels of resistance in 14 field environments; and (iii) if the rhizosphere microbiome was affected by the addition of the seed treatment on a moderately susceptible cultivar. The mycelial growth of all isolates was inhibited beginning at 0.001 μg, and the EC50 ranged from 0.0013 to 0.0483 μg of active ingredient (a.i.)/ml. The effect of seed treatment was significantly different for plant population and yield in eight of 14 and six of 12 environments, respectively. The addition of picarbutrazox at 1 and 2.5 g of a.i./100 kg seed to the base seed treatment compared to the base alone was associated with higher plant populations and yield in three and one environments, respectively. There was limited impact of the seed treatment mefenoxam 7.5 g of a.i. plus picarbutrazox 1 g of a.i./100 kg seed on the oomycetes detected in the rhizosphere of soybean seedlings collected at the V1 growth stage. Picarbutrazox has efficacy towards a wider range of oomycetes that cause disease on soybean, and this will be another oomyceticide tool to combat early season damping-off in areas where environmental conditions highly favor disease development.
Collapse
Affiliation(s)
- Anne E Dorrance
- Department of Plant Pathology and CFAES Center for Soybean Research, CFAES Wooster Campus, The Ohio State University, Wooster, OH 44691
| | - Amilcar Vargas
- Department of Plant Pathology and CFAES Center for Soybean Research, CFAES Wooster Campus, The Ohio State University, Wooster, OH 44691
| | - Krystel Navarro-Acevedo
- Department of Plant Pathology and CFAES Center for Soybean Research, CFAES Wooster Campus, The Ohio State University, Wooster, OH 44691
| | - Saranga Wijertatne
- Molecular Cellular Imaging Center, CFAES Wooster, The Ohio State University, Wooster, OH
| | - Jonell Myers
- Department of Plant Pathology and CFAES Center for Soybean Research, CFAES Wooster Campus, The Ohio State University, Wooster, OH 44691
| | - Juan A Paredes
- Department of Plant Pathology and CFAES Center for Soybean Research, CFAES Wooster Campus, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
6
|
Yolanda H, Jearawuttanakul K, Wannalo W, Kanjanasirirat P, Borwornpinyo S, Rujirawat T, Payattikul P, Kittichotirat W, Wichadakul D, Krajaejun T. Potential anti- Pythium insidiosum therapeutics identified through screening of agricultural fungicides. Microbiol Spectr 2024; 12:e0162023. [PMID: 38179943 PMCID: PMC10846074 DOI: 10.1128/spectrum.01620-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 01/06/2024] Open
Abstract
Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. Clinical manifestations of pythiosis include an eye, blood vessel, skin, or gastrointestinal tract infection. Pythiosis has been increasingly reported worldwide, with an overall mortality rate of 28%. Radical surgery is required to save patients' lives due to the limited efficacy of antimicrobial drugs. Effective medical treatments are urgently needed for pythiosis. This study aims to find anti-P. insidiosum agents by screening 17 agricultural fungicides that inhibit plant-pathogenic oomycetes and validating their efficacy and safety. Cyazofamid outperformed other fungicides as it can potently inhibit genetically diverse P. insidiosum isolates while exhibiting minimal cellular toxicities. The calculated therapeutic scores determined that the concentration of cyazofamid causing significant cellular toxicities was eight times greater than the concentration of the drug effectively inhibiting P. insidiosum. Furthermore, other studies showed that cyazofamid exhibits low-to-moderate toxicities in animals. The mechanism of cyazofamid action is likely the inhibition of cytochrome b, an essential component in ATP synthesis. Molecular docking and dynamic analyses depicted a stable binding of cyazofamid to the Qi site of the P. insidiosum's cytochrome b orthologous protein. In conclusion, our search for an effective anti-P. insidiosum drug indicated that cyazofamid is a promising candidate for treating pythiosis. With its high efficacy and low toxicity, cyazofamid is a potential chemical for treating pythiosis, reducing the need for radical surgeries, and improving recovery rates. Our findings could pave the way for the development of new and effective treatments for pythiosis.IMPORTANCEPythiosis is a severe infection caused by Pythium insidiosum. The disease is prevalent in tropical/subtropical regions. This infectious condition is challenging to treat with antifungal drugs and often requires surgical removal of the infected tissue. Pythiosis can be fatal if not treated promptly. There is a need for a new treatment that effectively inhibits P. insidiosum. This study screened 17 agricultural fungicides that target plant-pathogenic oomycetes and found that cyazofamid was the most potent in inhibiting P. insidiosum. Cyazofamid showed low toxicity to mammalian cells and high affinity to the P. insidiosum's cytochrome b, which is involved in energy production. Cyazofamid could be a promising candidate for the treatment of pythiosis, as it could reduce the need for surgery and improve the survival rate of patients. This study provides valuable insights into the biology and drug susceptibility of P. insidiosum and opens new avenues for developing effective therapies for pythiosis.
Collapse
Affiliation(s)
- Hanna Yolanda
- Program in Translational Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Warawuth Wannalo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Penpan Payattikul
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | - Duangdao Wichadakul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Wang Z, Lv X, Wang R, He Z, Feng W, Liu W, Yang C, Wang Z, Ke Q, Tao K, Chen Q. Use of oxathiapiprolin for controlling soybean root rot caused by Phytophthora sojae: efficacy and mechanism of action. PEST MANAGEMENT SCIENCE 2023; 79:381-390. [PMID: 36168957 DOI: 10.1002/ps.7207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oxathiapiprolin is a new isoxazoline fungicide developed by DuPont to control oomycete diseases. Although oxathiapiprolin has shown strong inhibitory activity against oomycete pathogens, little is known about its ability to control Phytophthora sojae. RESULTS Oxathiapiprolin showed high inhibitory activity against Phytophthora sojae, with 50% effective concentration (EC50 ) values ranging from 1.15 × 10-4 to 4.43 × 10-3 μg mL-1 . Oxathiapiprolin inhibited various stages of Phytophthora sojae development, including mycelial growth, sporangium formation, oospore production, and zoospore release. Electron microscopy studies revealed that oxathiapiprolin caused severe morphological and ultrastructural damage to Phytophthora sojae. Oxathiapiprolin affected the cell membrane and wall of Phytophthora sojae, making it more sensitive to osmotic and cell wall stress. Oxathiapiprolin exhibited translocation activity; it was absorbed by soybean roots and then translocated to the leaves. It was effective at reducing soybean Phytophthora root rot under glasshouse and field conditions. Both fungicide seed treatment and foliar spray significantly reduced disease incidence and yield losses compared with untreated controls in the field. CONCLUSION Oxathiapiprolin exhibits high inhibitory activity against Phytophthora sojae, and has multiple mechanisms of action including severe mycelial damage and modulation of osmotic and cell wall stress. These results indicate that oxathiapiprolin can be used at low concentrations for highly effective management of soybean Phytophthora root rot caused by Phytophthora sojae. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhixin Wang
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Xin Lv
- Institute of Quality Standards & Testing Technology, and Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongbo Wang
- Institute of Quality Standards & Testing Technology, and Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zibin He
- Crop Division, Zhangzhou Institute of Agricultural Sciences, Zhangzhou, China
| | - Wanzhen Feng
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Wenjing Liu
- Institute of Quality Standards & Testing Technology, and Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chenxiao Yang
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Zhengyang Wang
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Qihan Ke
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Kezhu Tao
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Qinghe Chen
- Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
8
|
Wang Z, Ke Q, Tao K, Li Q, Xia Y, Bao J, Chen Q. Activity and Point Mutation G699V in PcoORP1 Confer Resistance to Oxathiapiprolin in Phytophthora colocasiae Field Isolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14140-14147. [PMID: 36315898 DOI: 10.1021/acs.jafc.2c06707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The oxysterol-binding protein inhibitor oxathiapiprolin is a new fungicide for controlling oomycetes diseases. Besides, laboratory mutagenesis oxathiapiprolin-resistance among phytopathogenic oomycetes in the field remains unknown. Here, the sensitivity of 97 P. colocasiae isolates to oxathiapiprolin was examined that were collected between 2011 and 2016. We obtained a baseline sensitivity with a mean EC50 value of 5.2639 × 10-4 μg mL-1. We showed that 6/32 isolates collected in Fujian Province from 2019 to 2020 were resistant to oxathiapiprolin without a significant fitness penalty on sporulation, vegetative growth, and virulence of the field isolates. The oxathiapiprolin resistance field isolates contained the point mutation glycine to valine at 699 in PcoORP1. The point mutation G699V was verified to confer resistance of P. colocasiae to oxathiapiprolin using the CRISPR/Cas9 system. The mutation G699V decreased the binding affinity between oxathiapiprolin and PcoORP1. These results will improve our understanding of the mechanism of P. colocasiae resistance to oxathiapiprolin under field conditions.
Collapse
Affiliation(s)
- Zhixin Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Qihan Ke
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Kezhu Tao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Qianqian Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yeqiang Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Bao
- The Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghe Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Vargas A, Paul PA, Winger J, Balk CS, Eyre M, Clevinger B, Noggle S, Dorrance AE. Oxathiapiprolin Alone or Mixed with Metalaxyl Seed Treatment for Management of Soybean Seedling Diseases Caused by Species of Phytophthora, Phytopythium, and Pythium. PLANT DISEASE 2022; 106:2127-2137. [PMID: 35133185 DOI: 10.1094/pdis-09-21-1952-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Species of Phytophthora, Phytopythium, and Pythium affect soybean seed and seedlings each year, primarily through reduced plant populations and yield. Oxathiapiprolin is effective at managing several foliar diseases caused by some oomycetes. The objectives of these studies were to evaluate oxathiapiprolin in a discriminatory dose assay in vitro; evaluate oxathiapiprolin as a soybean seed treatment on a moderately susceptible cultivar in 10 environments; compare the impact of seed treatment on plant populations and yields in environments with low and high precipitation; and compare a seed treatment mixture on cultivars with different levels of resistance in four environments. There was no reduction in growth in vitro among 13 species of Pythium at 0.1 µg ml-1. Soybean seed treated with the base fungicide plus oxathiapiprolin (12 and 24 µg a.i. seed-1) alone, oxathiapiprolin (12 µg a.i. seed-1) plus mefenoxam (6 µg a.i. seed-1), or oxathiapiprolin (24 µg a.i. seed-1) plus ethaboxam (12.1 µg a.i. seed-1) had greater yields in environments that received ≥50 mm of precipitation within 14 days after planting compared with those that received less. Early plant population and yield were significantly higher for seed treated with oxathiapiprolin (24 µg a.i. seed-1) + metalaxyl (13.2 µg a.i. seed-1) compared with nontreated for six of seven cultivars in at least one of four environments. Oxathiapiprolin combined with another Oomycota fungicide applied to seed has the potential to be used to protect soybean plant establishment and yield in regions prone to poor drainage after high levels of precipitation.
Collapse
Affiliation(s)
- Amilcar Vargas
- Former Graduate Research Associates, Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Pierce A Paul
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Jonell Winger
- Former Graduate Research Associates, Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Christine Susan Balk
- Former Graduate Research Associates, Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Meredith Eyre
- Former Graduate Research Associates, Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Bruce Clevinger
- Department of Extension, The Ohio State University, Columbus, OH 43210
| | - Sarah Noggle
- Department of Extension, The Ohio State University, Columbus, OH 43210
| | - Anne E Dorrance
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
10
|
Miao J, Li C, Liu X, Zhang X, Li G, Xu W, Zhang C, Liu X. Activity and Resistance-Related Point Mutations in Target Protein PcORP1 of Fluoxapiprolin in Phytophthora capsici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3827-3835. [PMID: 33764782 DOI: 10.1021/acs.jafc.0c05119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluoxapiprolin is a new piperidinyl thiazole isoxazoline fungicide developed by Bayer Crop Science in 2012, but the sensitivity and resistance mechanism of fluoxapiprolin are unclear. In this study, the sensitivities of 130 Phytophthora capsici isolates to fluoxapiprolin were determined, and a unimodal distribution was observed with a mean EC50 value of 0.00043 μg/mL. Nine stable fluoxapiprolin-resistant mutants were obtained by fungicide adaption. The fitness of mutants was similar to or lower than that of the corresponding parental isolate. Seven heterozygous point mutations in the target protein PcORP1 were found in these mutants. These point mutations were confirmed in PsORP1 of P. sojae homologue positions using the CRISPR/Cas9 system. G770V and N835S+I877F do confer high fluoxapiprolin resistance (resistance factor, RF > 1000), and ΔN835, N767I, and N837T+S910C lead to low resistance (RF < 100). P. sojae transformants containing L733W, S768F, S768Y, ΔG818/F819, N837Y, N837F, P861H, L863W, and I877Y in PsORP1 were also associated with high fluoxapiprolin resistance (RF > 100). In conclusion, the resistance risk of P. capsici to fluoxapiprolin is moderate, and multiple point mutations in PcORP1 could confer different resistance levels to fluoxapiprolin.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Chengcheng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Xiaofei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Guixiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Wenyuan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, People's Republic of China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, People's Republic of China
| |
Collapse
|