1
|
Wang X, Chen X, Zhou T, Dai W, Zhang C. NADPH-cytochrome P450 reductase mediates resistance to neonicotinoid insecticides in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106406. [PMID: 40350226 DOI: 10.1016/j.pestbp.2025.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
As a crucial electron transfer partner of the P450 system, NADPH-cytochrome P450 reductase (CPR) plays an influential role in P450-mediated detoxification metabolism of xenobiotics. CPR has been found to be associated with insecticide resistance in several insects. However, the role of CPR in the cross-resistance of Bradysia odoriphaga to clothianidin and neonicotinoid insecticides remains to be elucidated. In this study, the CPR gene (BoCPR) of B. odoriphaga was cloned and characterized. The expression of BoCPR was more abundant in the adult stage and in the midgut and Malpighian tubules of larvae, and BoCPR was significantly overexpressed in the clothianidin-resistant (CL-R) strain compared to the susceptible (SS) strain. Exposure to clothianidin significantly increased BoCPR expression in both the SS and CL-R strains. In addition, knockdown of BoCPR in SS and CL-R strains significantly reduced CPR and P450 enzyme activities, and resulted in a significant increase in larval susceptibility to clothianidin, imidacloprid, and thiamethoxam. These results suggest that BoCPR plays an important role in B. odoriphaga resistance to clothianidin and cross-resistance to neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xinxiang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianglong Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taoling Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Lei L, Yang C, Du J, Liu Z, Wang Y, Wang H, Chi X, Xu B. Functional analysis of AccCPR in Apis cerana cerana under pesticide and heavy metal stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106296. [PMID: 40015888 DOI: 10.1016/j.pestbp.2025.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
NADPH-cytochrome P450 reductase (CPR) plays important roles in the metabolism of both endogenous and exogenous compounds through cytochrome P450, and is also involved in the detoxification of insecticides mediated by cytochrome P450. However, the CPR from Apis cerana cerana has not been well characterized and its function is still undescribed. This study isolated the CPR gene from Apis cerana cerana and investigated its functional role in the resistance to pesticide and heavy metal stress. Bioinformatic analysis revealed significant homology between the gene and its counterparts in other species. Functional investigations demonstrated diverse expression and localization patterns of this gene, with AccCPR primarily expressed in muscular tissues and the gut, suggesting its potential roles in flight activities and intestinal barrier function of bees. Furthermore, the expression levels of this gene were significantly modulated under pesticide and heavy metal stress. Notably, the overexpression of AccCPR led to a marked alteration the tolerance to external stressors in E. coli. Additionally, the silencing of the AccCPR gene resulted in a significant decrease in antioxidant enzyme activity and the expression levels of genes associated with antioxidant functions. Consequently, the mortality rate of Apis cerana cerana under imidacloprid stress was significantly elevated. Taken together, our findings suggest that AccCPR may play a pivotal role in the resistance of Apis cerana cerana to abiotic stresses such as pesticides and heavy metals by regulating antioxidant pathways.
Collapse
Affiliation(s)
- Li Lei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chunyu Yang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Jing Du
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
3
|
Huang ZH, Pan Q, Wu Z, Shen YC, Li SC, Yang QQ, Zhang SH, Lei S, Cui YY, Ding LL, Yu SJ, Liu L, Cong L, Lou BH, Wang XF, Ran C, Liao L. A UDP-glucuronosyltransferase gene UGT379A1 involved in detoxification of lufenuron in Diaphorina citri. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106260. [PMID: 40015853 DOI: 10.1016/j.pestbp.2024.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a devastating bacterial disease of commercial citrus. Presently, uridine diphosphate (UDP)-glycosyltransferases (UGTs), have been linked to the detoxification of pesticides, were known as phase II enzymes in the detoxification process. However, the role of UGTs in detoxification of lufenuron in Diaphorina citri is unknown. In this study, we identified a UGT gene, UGT379A1, which was significantly up-regulated under the exposure of lufenuron. The knockdown of UGT379A1 increased the susceptibility of D. citri to lufenuron. In vitro metabolism and Dixon plot analysis indicated that UGT379A1 could deplete lufenuron by sequestration. These results showed that UGT379A1 was involved in the lufenuron detoxification, which provides a theoretical basis for the prevention and control of D. citri.
Collapse
Affiliation(s)
- Ze-Hao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Pan
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Zhen Wu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yu-Chao Shen
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Si-Chen Li
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi-Qi Yang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shao-Hui Zhang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yang-Yang Cui
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi and Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, Guangxi, China
| | - Xue-Feng Wang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China.
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Zhen C, Wu R, Tan Y, Zhang A, Zhang L. NADPH-cytochrome P450 reductase involved in the lambda-cyhalothrin susceptibility on the green mirid bug Apolygus lucorum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:699-706. [PMID: 39354867 DOI: 10.1017/s0007485324000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
NADPH-cytochrome P450 reductase (CPR) is crucial for the detoxification process catalysed by cytochrome P450, which targets various exogenous xenobiotics, as well as pesticides. In our research, we successfully obtained the complete cDNA sequence of Apolygus lucorum's CPR (AlCPR) using reverse transcription PCR along with rapid amplification of cDNA ends technology. Bioinformatics analysis exhibited that the inferred amino acid sequence of AlCPR is characteristic of standard CPRs, featuring an N-terminal membrane anchor and three conserved FMN, FAD and NADP binding sites. Phylogenetic result revealed that AlCPR was positioned within the Hemiptera cluster, showing a close evolutionary relationship with the CPR of Cimex lectularius. The real-time quantitative PCR results demonstrated widespread expression of AlCPR across various life stages and tissues of A. lucorum, with the most prominent expression in adults and the abdominal region. Injecting double-stranded RNA of AlCPR only significantly increased the lambda-cyhalothrin susceptibility in lambda-cyhalothrin-resistant strain rather than the susceptible strain. These findings suggest a potential link between AlCPR and the P450-dependent defence mechanism against lambda-cyhalothrin in A. lucorum.
Collapse
Affiliation(s)
- Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
| | - Rui Wu
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Ansheng Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan 250100, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
| |
Collapse
|
5
|
Li YQ, Huang A, Li XJ, Edwards MG, Gatehouse AMR. RNAi targeting Na v and CPR via leaf delivery reduces adult emergence and increases the susceptibility to λ-cyholthin in Tuta absoluta (Meyrick). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106089. [PMID: 39277402 DOI: 10.1016/j.pestbp.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The tomato leafminer, Tuta absoluta (Meyrick), one of the most economically destructive pests of tomato, causes severe yields losses of tomato production globally. Rapid evolution of insecticide resistance requires the development of alternative control strategy for this pest. RNA interference (RNAi) represents a promising, innovative control strategy against key agricultural insect pests, which has recently been licensed for Colorado Potato Beetle control. Here two essential genes, voltage-gated sodium channel (Nav) and NADPH-cytochrome P450 reductase (CPR) were evaluated as targets for RNAi using an ex vivo tomato leaf delivery system. Developmental stage-dependent expression profiles showed TaNav was most abundant in adult stages, whereas TaCPR was highly expressed in larval and adult stages. T. absoluta larvae feeding on tomato leaflets treated with dsRNA targeting TaNav and TaCPR showed significant knockdown of gene expression, leading to reduction in adult emergence. Additionally, tomato leaves treated with dsRNA targeting these two genes were significantly less damaged by larval feeding and mining. Furthermore, bioassay with LC30 doses of λ-cyholthin showed that silencing TaNav and TaCPR increased T. absoluta mortality about 32.2 and 17.4%, respectively, thus indicating that RNAi targeting TaNav and TaCPR could increase the susceptibility to λ-cyholthin in T. absoluta. This study demonstrates the potential of using RNAi targeting key genes, like TaNav and TaCPR, as an alternative technology for the control of this most destructive tomato pests in the future.
Collapse
Affiliation(s)
- Yong-Qiang Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Anqi Huang
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Xiao-Jie Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| |
Collapse
|
6
|
Jing TX, Jiang SD, Tang XP, Guo PY, Wang L, Wang JJ, Wei DD. Overexpression of an Integument Esterase Gene LbEST-inte4 Infers the Malathion Detoxification in Liposcelis bostrychophila (Psocoptera: Liposcelididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11221-11229. [PMID: 38703356 DOI: 10.1021/acs.jafc.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xin-Ping Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Peng-Yu Guo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Zhang JB, Lu ZJ, Yu HZ. Silencing of Glycogen Synthase Kinase 3 Significantly Inhibits Chitin and Fatty Acid Metabolism in Asian Citrus Psyllid, Diaphorina citri. Int J Mol Sci 2022; 23:ijms23179654. [PMID: 36077052 PMCID: PMC9455978 DOI: 10.3390/ijms23179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Glycogen is a predominant carbohydrate reserve in various organisms, which provides energy for different life activities. Glycogen synthase kinase 3 (GSK3) is a central player that catalyzes glucose and converts it into glycogen. In this study, a GSK3 gene was identified from the D. citri genome database and named DcGSK3. A reverse transcription quantitative PCR (RT-qPCR) analysis showed that DcGSK3 was expressed at a high level in the head and egg. The silencing of DcGSK3 by RNA interference (RNAi) led to a loss-of-function phenotype. In addition, DcGSK3 knockdown decreased trehalase activity, glycogen, trehalose, glucose and free fatty acid content. Moreover, the expression levels of the genes associated with chitin and fatty acid synthesis were significantly downregulated after the silencing of DcGSK3. According to a comparative transcriptomics analysis, 991 differentially expressed genes (DEGs) were identified in dsDcGSK3 groups compared with dsGFP groups. A KEGG enrichment analysis suggested that these DEGs were primarily involved in carbon and fatty acid metabolism. The clustering analysis of DEGs further confirmed that chitin and fatty acid metabolism-related DEGs were upregulated at 24 h and were downregulated at 48 h. Our results suggest that DcGSK3 plays an important role in regulating the chitin and fatty acid metabolism of D. citri.
Collapse
Affiliation(s)
- Jin-Bo Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Ganzhou 341000, China
- Correspondence:
| |
Collapse
|
8
|
Qiao JW, Fan YL, Wu BJ, Bai TT, Wang YH, Zhang ZF, Wang D, Liu TX. Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. INSECT SCIENCE 2022; 29:1105-1119. [PMID: 34723412 DOI: 10.1111/1744-7917.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is involved in the metabolism of endogenous and exogenous substances, and detoxification of insecticides. RNA interference (RNAi) of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides. However, the CPR of Acyrthosiphon pisum has not been characterized, and its function is still not understood. In this study, we investigated the biochemical functions of A. pisum CPR (ApCPR). ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage, and in the gut, head, and abdominal cuticle. After optimizing the dose and silencing duration of RNAi for downregulating ApCPR, we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents, and of cuticular waxy coatings. Deficiency in cuticular hydrocarbons (CHCs) decreased the survival rate of A. pisum under desiccation stress and increased its susceptibility to contact insecticides. Moreover, desiccation stress induced a significant increase in ApCPR mRNA levels. We further confirmed that ApCPR participates in CHC production. These results indicate that ApCPR modulates CHC production, desiccation tolerance, and insecticide susceptibility in A. pisum, and presents a novel target for pest control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ying-Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Yu H, Yi L, Lu Z. Silencing of Chitin-Binding Protein with PYPV-Rich Domain Impairs Cuticle and Wing Development in the Asian Citrus Psyllid, Diaphorina citri. INSECTS 2022; 13:insects13040353. [PMID: 35447795 PMCID: PMC9027310 DOI: 10.3390/insects13040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Molting is extremely important for insect growth and development, which is accompanied the degradation of old cuticle and synthesis of new cuticle. Chitin and proteins, as major components of insect cuticle, maintain the rigidity of the exoskeleton. The functions of chitin-binding proteins have not, to date, been characterized in Diaphorina citri. In the current study, we identified a cuticle protein (DcCP64) according to chitin column purification and LC-MS/MS analysis. Silencing of DcCP64 induced an abnormal phenotype and increased the permeability of the abdomen and wings. Additionally, the mortality and malformation rate significantly increased, and the molting rate decreased after inhibition of DcCP64. Transcriptome sequencing analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in MAPK and FoxO signaling pathways. Our results provide a basis for further functional research on DcCP64 in D. citri. Abstract Chitin is a major component of the arthropod exoskeleton, always working together with chitin-binding proteins to maintain the functions of extracellular structures. In the present study, we identified a cuticle protein 64 from Diaphorina citri using a chitin-binding assay. Bioinformatics analysis revealed that DcCP64 contained eight conserved PYPV motifs but lacked a Rebers–Riddiford (R–R) consensus and other chitin-binding domains. RT-qPCR analysis suggested that DcCP64 had the highest expression level in the wing and fifth-instar nymph stage. Knockdown of DcCP64 by RNA interference (RNAi) resulted in a malformed-wing phenotype, higher mortality and decreased molting rate. Furthermore, transcriptomics analysis revealed that 1244 differentially expressed genes (DEGs) were up-regulated and 580 DEGs were down-regulated, compared with dsDcCP64 groups and dsGFP groups. KEGG enrichment analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in the MAPK and FoxO signaling pathways. Moreover, inhibition of DcCP64 significantly affected the cuticle surface, and increased the permeability of the abdomen and wings. Further chitin- and cellulose-binding assay confirmed the chitin-binding properties of recombinant DcCP64 in vitro. These results indicate that DcCP64 might play an important role in the cuticle and wing development of D. citri.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| |
Collapse
|
10
|
Wang ZC, Tao S, Cheng X, Li DT, Zhang CX, Bao YY. CPR Gene Contributes to Integument Function and Ovary Development in a Rice Planthopper. Int J Mol Sci 2022; 23:ijms23052875. [PMID: 35270018 PMCID: PMC8910901 DOI: 10.3390/ijms23052875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is an essential enzyme that transfers electrons from NADPH to cytochrome P450 monooxygenases. CPR is involved in cuticular hydrocarbon (CHC) synthesis in insects and is vital for insect development and survival. Here, we clarify the physiological function of a CPR gene in Nilaparvata lugens, an important rice pest, by using RNA interference. CPR gene knockdown leads to the functional loss of waterproofing and water retention in the integument of female adults, which causes significantly reduced body weight and a lethal phenotype. Scanning electron microscopy shows that the lipid layer on the outermost surface of the abdominal cuticle becomes thin in dsCPR-injected adults. Furthermore, CHC profile analysis reveals that CPR knockdown significantly decreases the contents of CHCs with a carbon chain length ≥ C27 in adult females. Moreover, we find that CPR knockdown generates a deficient phenotype in ovaries with deformed oocytes and a complete failure of egg-laying. These findings suggest that CPR plays multiple functional roles in CHC biosynthesis and embryo development in insects.
Collapse
Affiliation(s)
- Zhe-Chao Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-C.W.); (S.T.); (X.C.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Shuai Tao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-C.W.); (S.T.); (X.C.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-C.W.); (S.T.); (X.C.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Chuan-Xi Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-C.W.); (S.T.); (X.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (C.-X.Z.); (Y.-Y.B.); Tel.: +86-(571)-88982995 (Y.-Y.B.)
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-C.W.); (S.T.); (X.C.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Correspondence: (C.-X.Z.); (Y.-Y.B.); Tel.: +86-(571)-88982995 (Y.-Y.B.)
| |
Collapse
|
11
|
Song JC, Lu ZJ, Yi L, Yu HZ. Functional Characterization of a Trehalose-6-Phosphate Synthase in Diaphorina citri Revealed by RNA Interference and Transcriptome Sequencing. INSECTS 2021; 12:1074. [PMID: 34940162 PMCID: PMC8709273 DOI: 10.3390/insects12121074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Trehalose-6-phosphate synthase (TPS) plays an important role in the synthesis of trehalose. In the current study, a TPS gene was obtained from Diaphorina citri, and named as DcTPS1 which encoded a protein of 833 amino acid residues. Real-time quantitative PCR (qPCR) analysis revealed that DcTPS1 had the highest expression level in the midgut and fifth-instar nymph stage. Knockdown of DcTPS1 by RNA interference (RNAi) induced an abnormal phenotype and increased mortality and malformation rate with a decreased molting rate. In addition, silencing of DcTPS1 significantly inhibited D. citri chitin metabolism and fatty acid metabolism, while the expression levels of fatty acid decomposition-related genes were downregulated. Furthermore, comparative transcriptomics analysis revealed that 791 differentially expressed genes (DEGs) were upregulated and 678 DEGs were downregulated when comparing dsDcTPS1 groups with dsGFP groups. Bioinformatics analysis showed that upregulated DEGs were mainly involved in oxidative phosphorylation, whereas downregulated DEGs were mainly attributed to the lysosome and ribosome. These results indicated that DcTPS1 played an important role in the growth and development of D. citri.
Collapse
Affiliation(s)
- Jian-Chun Song
- College of Life Science, Gannan Normal University, Ganzhou 341000, China; (J.-C.S.); (Z.-J.L.)
| | - Zhan-Jun Lu
- College of Life Science, Gannan Normal University, Ganzhou 341000, China; (J.-C.S.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
| | - Long Yi
- College of Life Science, Gannan Normal University, Ganzhou 341000, China; (J.-C.S.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Science, Gannan Normal University, Ganzhou 341000, China; (J.-C.S.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
| |
Collapse
|
12
|
Bosch-Serra D, Rodríguez MA, Avilla J, Sarasúa MJ, Miarnau X. Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults. INSECTS 2021; 12:insects12040329. [PMID: 33917008 PMCID: PMC8067761 DOI: 10.3390/insects12040329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Cacopsylla pyri (L.) (Hemiptera: Psyllidae) is a key pest of pear orchards in Spain. The large number of insecticide treatments necessary for control may be an important contributor to the emergence of resistance. Laboratory toxicity and biochemical assays are necessary to validate the existence of insecticide resistance and establish the underlying mechanisms. All the methodologies developed to evaluate enzyme activity in C. pyri to date have incorporated "pools" of adults to detect minimum activity ranges. In this study, we determined the optimal working conditions for evaluation of the activities of esterase, glutathione S-transferase and NADPH-cytochrome P450 reductase in individual insects via colorimetric methods using a microplate reader. The main factors affecting enzymatic analysis activity, such as enzyme source and substrate concentration, filter wavelength, buffer pH, reaction time and additives, were evaluated for optimization. Determining the frequency of resistant individuals within a population could be used as an indicator for the evolution of insecticide resistance over time. Two laboratory strains, one of them selected with cypermethrin, and two field populations were analyzed for this purpose. The data obtained revealed high values and great variation in the activity ranges of esterase (EST) in the insecticide-selected population as well as in the field populations validating the applied methodology.
Collapse
Affiliation(s)
- Dolors Bosch-Serra
- Department of Sustainable Plant Protection, Food and Agriculture Research Institute (IRTA), ETSEA Campus, Av. Rovira Roure 191, 25198 Lleida, Spain
- Correspondence:
| | - Marcela A. Rodríguez
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
| | - Jesús Avilla
- Department of Crop and Forest Sciences, Agrotecnio-CERCA Center, University of Lleida (UdL), Av. Rovira Roure 191, 25198 Lleida, Spain; (J.A.); (M.J.S.)
| | - María José Sarasúa
- Department of Crop and Forest Sciences, Agrotecnio-CERCA Center, University of Lleida (UdL), Av. Rovira Roure 191, 25198 Lleida, Spain; (J.A.); (M.J.S.)
| | - Xavier Miarnau
- Fruit Production Program, Food and Agriculture Research Institute (IRTA), Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida (PCiTAL), Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| |
Collapse
|