1
|
Tian J, Bai D, He S, Li Z, Bai L, Pan L. Overexpression of cytochrome P450 CYP71AF43 contributing resistance to fenoxaprop-P-ethyl in Alopecurus myosuroides from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106355. [PMID: 40082045 DOI: 10.1016/j.pestbp.2025.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Black-grass (Alopecurus myosuroides), one of the most economically destructive herbicide-resistant weeds in Europe, is rapidly expanding in winter wheat regions of China. In recent years, the recommended application rate of fenoxaprop-P-ethyl in the field has failed to effectively control Alopecurus myosuroides populations, thereby threatening wheat yields at risk. In this study, we collected a suspected herbicide-resistant population (R-HB) of Alopecurus myosuroides from a wheat field in Hebei Province and confirmed its resistance to fenoxaprop-P-ethyl, with a resistance index of 26.73-fold. Sensitivity analyses of other ACCase-inhibiting herbicides revealed cross-resistance in the R-HB population to clethodim and pinoxaden. Molecular analysis indicated that the resistance phenotype in this population was not due to alterations in the target site. Pretreatment with the cytochrome P450 (P450) inhibitor malathion partially reversed fenoxaprop-P-ethyl resistance in the R-HB population. RNA-seq and RT-qPCR validation revealed the constitutive overexpression of the P450 gene CYP71AF43 in the R-HB population. Molecular docking predictions suggest that the CYP71AF43 protein may have metabolic activity toward fenoxaprop-P-ethyl. In genetically modified yeast, overexpression of AmCYP71AF43 was found to enhance tolerance to fenoxaprop-P-ethyl, but not to clethodim and pinoxaden. Additionally, rice calli overexpressing the AmCYP71AF43 gene exhibited resistance to fenoxaprop-P-ethyl, but not to clethodim or pinoxaden. Collectively, the increased expression of CYP71AF43 may enhance P450-mediated metabolism, conferring resistance to fenoxaprop-P-ethyl in the R-HB population. This is the first report of this mechanism in Alopecurus myosuroides. This discovery provides a novel perspective for the in-depth analysis of resistance mechanisms in weeds against the ACCase-inhibiting herbicide fenoxaprop-P-ethyl.
Collapse
Affiliation(s)
- Junhui Tian
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Dingyi Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sifen He
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Bernier D, Barber DM, Bojack G, Bollenbach-Wahl B, Churchman L, Döller U, Fahrenhorst-Jones T, Freigang J, Gatzweiler E, Hartfiel C, Hilmi C, Huet Y, Laber B, Lange G, Lee S, Lempereur V, Mosrin M, Müller T, Payne CM, Peters O, Posa L, Rees S, Reingruber AM, Rey J, Tiebes J, Tilmant K, Frackenpohl J. Aminoisothiazolamides, a new class of potent inhibitors of lysyl-tRNA synthetase. PEST MANAGEMENT SCIENCE 2025. [PMID: 40087844 DOI: 10.1002/ps.8759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Owing to the economic relevance of resistance evolution against herbicides, new chemical entities addressing unprecedented molecular targets are urgently needed to develop future sustainable weed control solutions. As part of our discovery research, the new class of aminoisothiazolamides was investigated. RESULTS Aminoisothiazolamide 3-amino-4-chloro-N-(cyclohexylmethyl)isothiazole-5-carboxamide 1a and several of its derivatives displayed potent herbicidal and fungicidal in vivo activity in initial glasshouse tests. Lysyl-tRNA synthetase 1 (KRS1) was identified as the putative target for 1a and was validated as a key contributor to the biochemical mode-of-action of aminoisothiazolamides. Thermal stability shift analysis with KRS1 from Arabidopsis thaliana (AtKRS1) revealed that 1a specifically increased the thermostability of this enzyme, proving the KRS1 enzyme as the aminoisothiazolamide target. It turned out that the inhibition of AtKRS1 and HsKRS was strongly correlated, as was the inhibition of AtKRS1 and the herbicidal activity of the aminoisothiazolamides. Hence, in vivo acute toxicity tests were initiated at a very early project stage complementing the enzyme tests. CONCLUSION The observed toxicological effects paired with the anticipated likelihood to overcome this problem, owing to the highly conserved active sites in different species, finally resulted in the conclusion to stop the further exploration of the otherwise promising class of herbicidal aminoisothiazolamides. Thus, we opted to discard several further herbicidal lead structures before the start of in-depth investigations when sequence analyses suggested similar levels of conservation between the respective binding pockets in plants and mammalians. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David Bernier
- Research & Development, Disease Control, Division Crop Science, Bayer SAS, Lyon, France
| | - David M Barber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Guido Bojack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Luke Churchman
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Uwe Döller
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Tyler Fahrenhorst-Jones
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jörg Freigang
- Research & Development, Hit Discovery - Structural Biology, Division Crop Science, Bayer AG, Monheim, Germany
| | - Elmar Gatzweiler
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Caroline Hilmi
- Early Toxicology, Division Crop Science, Bayer SAS, Sophia Antipolis, France
| | - Yoann Huet
- Research & Development, Disease Control, Division Crop Science, Bayer SAS, Lyon, France
| | - Bernd Laber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Stephanie Lee
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Virginie Lempereur
- Research & Development, Disease Control, Division Crop Science, Bayer SAS, Lyon, France
| | - Marc Mosrin
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Thomas Müller
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - China M Payne
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Olaf Peters
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Luka Posa
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Shaun Rees
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Anna M Reingruber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jullien Rey
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jörg Tiebes
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Karen Tilmant
- Early Toxicology, Division Crop Science, Bayer SAS, Sophia Antipolis, France
| | - Jens Frackenpohl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
4
|
Sehgal D, Oliveira C, Mathioni S, Widdison S, Plumb W, Campos B, Kaundun SS. Genomic characterisation and dissection of the onset of resistance to acetyl CoA carboxylase-inhibiting herbicides in a large collection of Digitaria insularis from Brazil. Front Genet 2024; 15:1340852. [PMID: 38440194 PMCID: PMC10910277 DOI: 10.3389/fgene.2024.1340852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/19/2024] [Indexed: 03/06/2024] Open
Abstract
An in-depth genotypic characterisation of a diverse collection of Digitaria insularis was undertaken to explore the neutral genetic variation across the natural expansion range of this weed species in Brazil. With the exception of Minas Gerais, populations from all other states showed high estimates of expected heterozygosity (HE > 0.60) and genetic diversity. There was a lack of population structure based on geographic origin and a low population differentiation between populations across the landscape as evidenced by average Fst value of 0.02. On combining haloxyfop [acetyl CoA carboxylase (ACCase)-inhibiting herbicide] efficacy data with neutral genetic variation, we found evidence of presence of two scenarios of resistance evolution in this weed species. Whilst populations originating from north-eastern region demonstrated an active role of gene flow, populations from the mid-western region displayed multiple, independent resistance evolution as the major evolutionary mechanism. A target-site mutation (Trp2027Cys) in the ACCase gene, observed in less than 1% of resistant populations, could not explain the reduced sensitivity of 15% of the populations to haloxyfop. The genetic architecture of resistance to ACCase-inhibiting herbicides was dissected using a genome wide association study (GWAS) approach. GWAS revealed association of three SNPs with reduced sensitivity to haloxyfop and clethodim. In silico analysis of these SNPs revealed important non-target site genes belonging to families involved in herbicide detoxification, including UDPGT91C1 and GT2, and genes involved in vacuolar sequestration-based degradation pathway. Exploration of five genomic prediction models revealed that the highest prediction power (≥0.80) was achieved with the models Bayes A and RKHS, incorporating SNPs with additive effects and epistatic interactions, respectively.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Claudia Oliveira
- Syngenta Crop Protection, Holambra Research and Development Center, São Paulo, Brazil
| | - Sandra Mathioni
- Syngenta Crop Protection, Holambra Research and Development Center, São Paulo, Brazil
| | - Stephanie Widdison
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Will Plumb
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Breno Campos
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Shiv Shankhar Kaundun
- Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| |
Collapse
|
5
|
Brunharo CACG, Tranel PJ. Repeated evolution of herbicide resistance in Lolium multiflorum revealed by haplotype-resolved analysis of acetyl-CoA carboxylase. Evol Appl 2023; 16:1969-1981. [PMID: 38143902 PMCID: PMC10739073 DOI: 10.1111/eva.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/27/2023] [Accepted: 10/24/2023] [Indexed: 12/26/2023] Open
Abstract
Herbicide resistance in weeds is one of the greatest challenges in modern food production. The grass species Lolium multiflorum is an excellent model species to investigate evolution under similar selection pressure because populations have repeatedly evolved resistance to many herbicides, utilizing a multitude of mechanisms to neutralize herbicide damage. In this work, we investigated the gene that encodes acetyl-CoA carboxylase (ACCase), the target site of the most successful herbicide group available for grass weed control. We sampled L. multiflorum populations from agricultural fields with history of intense herbicide use, and studied their response to three ACCase-inhibiting herbicides. To elucidate the mechanisms of herbicide resistance and the genetic relationship among populations, we resolved the haplotypes of 97 resistant and susceptible individuals by sequencing ACCase amplicons using long-read DNA sequencing technologies. Our dose-response data indicated the existence of many, often unpredictable, resistance patterns to ACCase-inhibiting herbicides, where populations exhibited as much as 37-fold reduction in herbicide response. The majority of the populations exhibited resistance to all three herbicides studied. Phylogenetic and molecular genetic analyses revealed multiple evolutionary origins of resistance-endowing ACCase haplotypes, as well as widespread admixture in the region regardless of cropping system. The amplicons generated were diverse, with haplotypes exhibiting 26-110 polymorphisms. Polymorphisms included insertions and deletions 1-31 bp in length, none of which were associated with the resistance phenotype based on an association analysis. We also found evidence that some populations have multiple mechanisms of resistance. Our results highlight the astounding genetic diversity in L. multiflorum populations, and the potential for repeated evolution of herbicide resistance across the landscape that challenges weed management approaches and jeopardizes sustainable weed control practices. We provide an in-depth discussion of the evolutionary and practical implications of our results.
Collapse
Affiliation(s)
- Caio A. C. G. Brunharo
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | |
Collapse
|
6
|
Alnafta N, Beffa R, Bojack G, Bollenbach-Wahl B, Brant NZ, Dörnbrack C, Dorn N, Freigang J, Gatzweiler E, Getachew R, Hartfiel C, Heinemann I, Helmke H, Hohmann S, Jakobi H, Lange G, Lümmen P, Willms L, Frackenpohl J. Designing New Protoporphyrinogen Oxidase-Inhibitors Carrying Potential Side Chain Isosteres to Enhance Crop Safety and Spectrum of Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18270-18284. [PMID: 37269295 DOI: 10.1021/acs.jafc.3c01420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are several methods to control weeds, which impose particular challenges for farmers in all parts of the world, although applying small molecular compounds still remains the most efficient technology to date. However, plants can evolve to become resistant toward active ingredients which is also the case for protoporphyrinogen oxidase (PPO) inhibitors, a class of highly effective herbicides in use for more than 50 years. Hence, it is essential to continuously discover and develop new herbicidal PPO inhibitors with enhanced intrinsic activity, an improved resistance profile, enhanced crop safety, favorable physicochemical properties, and a clean toxicological profile. By modifying structural key features from known PPO inhibitors such as tiafenacil, inspired by isostere and mix&match concepts in combination with modeling investigations based on a wild-type Amaranthus crystal structure, we have found new promising lead structures showing strong activity in vitro and in vivo against several notorious dicotyledon and monocotyledon weeds with emerging resistance (e.g., Amaranthus palmeri, Amaranthus tuberculatus, Lolium rigidum, and Alopecurus myosuroides). While several phenyl uracils carrying an isoxazoline motif in their thio-linked side chain showed promising resistance-breaking potential against different Amaranthus species, introducing a thioacrylamide side chain afforded outstanding efficacy against resistant grass weeds.
Collapse
Affiliation(s)
- Neanne Alnafta
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Roland Beffa
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicola Z Brant
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christine Dörnbrack
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicole Dorn
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jörg Freigang
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Elmar Gatzweiler
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rahel Getachew
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ines Heinemann
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Harald Jakobi
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Gudrun Lange
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Peter Lümmen
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Lothar Willms
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Li J, Li Y, Fang F, Xue D, Li R, Gao X, Li M. A novel naturally Phe206Tyr mutation confers tolerance to ALS-inhibiting herbicides in Alopecurus myosuroides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105156. [PMID: 35973769 DOI: 10.1016/j.pestbp.2022.105156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Herbicide-resistant weeds pose a serious threat to world food production. The rapid and widespread development of target-site based resistance limits the application of herbicides. Alopecurus myosuroides Huds. (blackgrass) has spread rapidly in winter wheat regions in China, and the field recommended dose of ALS herbicides no longer controls blackgrass populations in recent years. A highly resistant population TW18(R) was collected in 2018 from Shandong Province. Dose-response assays showed that the TW18 was resistant to mesosulfuron-methyl, flucarbazone-sodium, and imazethapyr, with resistance index values of 5.96, 6.1, and 4.09, respectively. DNA sequencing of the TW18 population revealed a Phe206Tyr (F206Y) mutation in the ALS, which was not yet reported. Blackgrass ALS gene with the F206Y mutation (R gene) was expressed in Arabidopsis and rice. Transgenic studies have shown that both Arabidopsis and rice expressing this R gene have resistance to imazethapyr. However, it did not confer resistance to tribenuron methyl and florasulam in transgenic Arabidopsis. This study showed that the F206Y substitution caused herbicide resistance in blackgrass. To our knowledge, this is the first-reported F206Y mutation of a weed species in the natural environment. Transgenic plants showed this functional site could be utilized to generate imazethapyr-resistant rice to control herbicide-resistant weed damage.
Collapse
Affiliation(s)
- Jian Li
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng Fang
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Dexing Xue
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Rumei Li
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China
| | - Xingxiang Gao
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China.
| | - Mei Li
- Weed Science Department, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, No. 202 of Gongye North Road, Jinan 250100, China.
| |
Collapse
|
8
|
Comont D, MacGregor DR, Crook L, Hull R, Nguyen L, Freckleton RP, Childs DZ, Neve P. Dissecting weed adaptation: Fitness and trait correlations in herbicide-resistant Alopecurus myosuroides. PEST MANAGEMENT SCIENCE 2022; 78:3039-3050. [PMID: 35437938 PMCID: PMC9324217 DOI: 10.1002/ps.6930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Unravelling the genetic architecture of non-target-site resistance (NTSR) traits in weed populations can inform questions about the inheritance, trade-offs and fitness costs associated with these traits. Classical quantitative genetics approaches allow study of the genetic architecture of polygenic traits even where the genetic basis of adaptation remains unknown. These approaches have the potential to overcome some of the limitations of previous studies into the genetics and fitness of NTSR. RESULTS Using a quantitative genetic analysis of 400 pedigreed Alopecurus myosuroides seed families from nine field-collected populations, we found strong heritability for resistance to the acetolactate synthase and acetyl CoA carboxylase inhibitors (h2 = 0.731 and 0.938, respectively), and evidence for shared additive genetic variance for resistance to these two different herbicide modes of action, rg = 0.34 (survival), 0.38 (biomass). We find no evidence for genetic correlations between life-history traits and herbicide resistance, indicating that resistance to these two modes of action is not associated with large fitness costs in blackgrass. We do, however, demonstrate that phenotypic variation in plant flowering characteristics is heritable, h2 = 0.213 (flower height), 0.529 (flower head number), 0.449 (time to flowering) and 0.372 (time to seed shed), demonstrating the potential for adaptation to other nonchemical management practices (e.g. mowing of flowering heads) now being adopted for blackgrass control. CONCLUSION These results highlight that quantitative genetics can provide important insight into the inheritance and genetic architecture of NTSR, and can be used alongside emerging molecular techniques to better understand the evolutionary and fitness landscape of herbicide resistance. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David Comont
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Dana R MacGregor
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
- Department of BiosciencesUniversity of DurhamDurhamUK
| | - Laura Crook
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Richard Hull
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Lieselot Nguyen
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
| | - Robert P Freckleton
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireUK
| | - Dylan Z Childs
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireUK
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted Research, HarpendenHertfordshireUK
- Department of Plant and Environmental Sciences, Section for Crop SciencesUniversity of CopenhagenTaastrupDenmark
| |
Collapse
|
9
|
Diversity of Herbicide-Resistance Mechanisms of Avena fatua L. to Acetyl-CoA Carboxylase-Inhibiting Herbicides in the Bajio, Mexico. PLANTS 2022; 11:plants11131644. [PMID: 35807596 PMCID: PMC9269088 DOI: 10.3390/plants11131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Herbicide resistance is an evolutionary process that affects entire agricultural regions’ yield and productivity. The high number of farms and the diversity of weed management can generate hot selection spots throughout the regions. Resistant biotypes can present a diversity of mechanisms of resistance and resistance factors depending on selective conditions inside the farm; this situation is similar to predictions by the geographic mosaic theory of coevolution. In Mexico, the agricultural region of the Bajio has been affected by herbicide resistance for 25 years. To date, Avena fatua L. is one of the most abundant and problematic weed species. The objective of this study was to determine the mechanism of resistance of biotypes with failures in weed control in 70 wheat and barley crop fields in the Bajio, Mexico. The results showed that 70% of farms have biotypes with target site resistance (TSR). The most common mutations were Trp–1999–Cys, Asp–2078–Gly, Ile–2041–Asn, and some of such mutations confer cross-resistance to ACCase-inhibiting herbicides. Metabolomic fingerprinting showed four different metabolic expression patterns. The results confirmed that in the Bajio, there exist multiple selection sites for both resistance mechanisms, which proves that this area can be considered as a geographic mosaic of resistance.
Collapse
|
10
|
Intra- and interspecies competition of blackgrass and wheat in the context of herbicidal resistance and environmental conditions in Poland. Sci Rep 2022; 12:8720. [PMID: 35610348 PMCID: PMC9130282 DOI: 10.1038/s41598-022-12777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Blackgrass (Alopecurus myosuroides Huds.), one of the most aggressive grass weeds in Europe, is also a strong competitor of crops. This study aimed to assess the impact of environmental conditions on the competition between (1) ACC-ase and ALS herbicide-resistant (BR) and herbicide-susceptible (BS) blackgrass biotypes, (2) BR and winter wheat cv. Arkadia (W), and (3) BS and W. In the replacement series model, the experiment was conducted at seven sites across Poland during two seasons (2018/19 and 2019/20). In the BR-BS experiment, the BS biotype was in majority more competitive toward the BR biotype. However, in the regime of optimal hydrothermal conditions and at a higher sand content in the soil we observed a higher competitiveness of BR towards BS. The combined interactions between W and BR or BS were also affected by environmental conditions, i.e., soil texture and hydrothermal coefficient, as explained by PCA and k-means cluster analysis. At most sites, W was more competitive toward both BS and BR, which could result from earlier emergence of W in relation to B in majority of sites. Except for two cases, located on heavy, clay soils, during humid seasons, where B was more competitive toward W. We summarize that blackgrass competitiveness towards other biotypes and wheat depends to some extent on environmental conditions; however, the phenomenon should be explored in more detail.
Collapse
|
11
|
Gonçalves Netto A, Cordeiro EMG, Nicolai M, de Carvalho SJP, Ovejero RFL, Brunharo CACG, Zucchi MI, Christoffoleti PJ. Population genomics of Digitaria insularis from soybean areas in Brazil. PEST MANAGEMENT SCIENCE 2021; 77:5375-5381. [PMID: 34302709 PMCID: PMC9291757 DOI: 10.1002/ps.6577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Digitaria insularis is a weed species that has gained considerable importance in Brazil's soybean production areas that rely on glyphosate-resistant cultivars. Herbicide-resistant weed populations of this species have been reported in many regions in Brazil, first in the south, followed by later reports in the north. We hypothesized that the spread of herbicide-resistant D. insularis is facilitated by movement of agricultural machinery from the southern regions of Brazil. RESULTS Population genomics revealed a weak or no genetic structure (FST = [0; 0.16]), moderate expected heterozygosity (HE = 0.15; 0.44) and low inbreeding (FIS = [-0.1; 0.1]) in D. insularis populations. Our data supported the hypothesis that herbicide resistance gene flow predominantly occurred in a south-to-north direction based on a migration analysis. We also found evidence of local adaptation of resistant populations in the northern soybean-growing regions of Brazil. CONCLUSION Evidence in our work suggests that gene flow of glyphosate-resistant D. insularis is associated with movement of agricultural machinery, although local selection pressure seems to play an important role in the evolution of herbicide resistance throughout the country. Our results suggest preventive practices such as equipment sanitation should be implemented to limit the spread of herbicide resistant D. insularis. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Acácio Gonçalves Netto
- Crop Science DepartmentLuiz de Queiroz College of Agriculture, University of São PauloPiracicabaBrazil
| | - Erick MG Cordeiro
- Crop Science DepartmentLuiz de Queiroz College of Agriculture, University of São PauloPiracicabaBrazil
| | - Marcelo Nicolai
- Agro do Mato Consulting, Santa Barbara D'OesteSão PauloBrazil
| | - Saul JP de Carvalho
- Federal Institute of Education, Science and Technology of the South of Minas GeraisMachadoMinas GeraisBrazil
| | | | - Caio ACG Brunharo
- Department of Crop and Soil ScienceOregon State UniversityCorvallisORUSA
| | - Maria I Zucchi
- Secretariat of Agriculture and Food Supply of Sao Paulo StatePiracicabaBrazil
| | - Pedro J Christoffoleti
- Crop Science DepartmentLuiz de Queiroz College of Agriculture, University of São PauloPiracicabaBrazil
| |
Collapse
|
12
|
Ravet K, Sparks CD, Dixon AL, Küpper A, Westra EP, Pettinga DJ, Tranel PJ, Felix J, Morishita DW, Jha P, Kniss A, Stahlman PW, Neve P, Patterson EL, Westra P, Gaines TA. Genomic-based epidemiology reveals independent origins and gene flow of glyphosate resistance in Bassia scoparia populations across North America. Mol Ecol 2021; 30:5343-5359. [PMID: 34614274 PMCID: PMC9297870 DOI: 10.1111/mec.16215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Genomic-based epidemiology can provide insight into the origins and spread of herbicide resistance mechanisms in weeds. We used kochia (Bassia scoparia) populations resistant to the herbicide glyphosate from across western North America to test the alternative hypotheses that (i) a single EPSPS gene duplication event occurred initially in the Central Great Plains and then subsequently spread to all other geographical areas now exhibiting glyphosate-resistant kochia populations or that (ii) gene duplication occurred multiple times in independent events in a case of parallel evolution. We used qPCR markers previously developed for measuring the structure of the EPSPS tandem duplication to investigate whether all glyphosate-resistant individuals had the same EPSPS repeat structure. We also investigated population structure using simple sequence repeat markers to determine the relatedness of kochia populations from across the Central Great Plains, Northern Plains and the Pacific Northwest. We found that the original EPSPS duplication genotype was predominant in the Central Great Plains where glyphosate resistance was first reported. We identified two additional EPSPS duplication genotypes, one having geographical associations with the Northern Plains and the other with the Pacific Northwest. The EPSPS duplication genotype from the Pacific Northwest seems likely to represent a second, independent evolutionary origin of a resistance allele. We found evidence of gene flow across populations and a general lack of population structure. The results support at least two independent evolutionary origins of glyphosate resistance in kochia, followed by substantial and mostly geographically localized gene flow to spread the resistance alleles into diverse genetic backgrounds.
Collapse
Affiliation(s)
- Karl Ravet
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Present address:
Department of Soil and Crop SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Crystal D. Sparks
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Andrea L. Dixon
- Rothamsted ResearchWest Common HarpendenHertfordshireUK
- Center for Outcomes Research and EpidemiologyCollege of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Anita Küpper
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Crop Science DivisionWeed ControlBayer AGFrankfurt am MainGermany
| | - Eric P. Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Dean J. Pettinga
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - Joel Felix
- Oregon State University, Malheur Experiment StationOntarioORUSA
| | - Don W. Morishita
- Kimberly Research and Extension CenterUniversity of IdahoKimberlyIdahoUSA
| | - Prashant Jha
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Andrew Kniss
- Department of Plant SciencesUniversity of WyomingLaramieWyomingUSA
| | | | - Paul Neve
- Rothamsted ResearchWest Common HarpendenHertfordshireUK
- Department of Plant & Environmental SciencesUniversity of CopenhagenTaastrupDenmark
| | - Eric L. Patterson
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Philip Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Todd A. Gaines
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|