1
|
Ni Z, Li Y, Xia S, Teng Z, Guo J, Liao J, Li H. The transcriptome reveals the potential mechanism of 20E terminating diapause in cotton bollworm, Helicoverpa armigera. BMC Genomics 2025; 26:365. [PMID: 40217173 PMCID: PMC11992794 DOI: 10.1186/s12864-025-11572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Diapause is a crucial adaptive strategy employed across numerous insect species, endowing them to survive in unfavorable environments. Helicoverpa armigera, one of the most destructive pests globally, undergoes diapause in the pupa stage, which is essential for its survival during the overwintering period and ultimately determines the following year's population density. 20E is a primary hormone that regulates the process of pupae diapause. However, a comprehensive analysis of the mechanisms by which 20E regulates the initiation and termination of diapause in H. armigera remains lacking. RESULTS In the present study, exogenous 20E was initially administered to diapausing pupae, and the results demonstrated that 20E markedly enhanced the development and eclosion rate of diapausing pupae, indicating that 20E treatment effectively terminated the diapause of H. armigera. Subsequently, RNA-Seq was employed to construct a comprehensive transcriptome map of the 20E-induced termination of diapause. The results demonstrated that there were 2836 differentially expressed genes, including 1315 genes that were upregulated and 1521 genes that were downregulated, in the 20E injection group relative to the control group. KEGG and GO enrichment analysis showed that these genes were associated with various metabolic pathways. Moreover, additional analysis revealed that the majority of the pivotal genes associated with metabolism (including glycolysis/gluconeogenesis, glycerolipid, amino sugar and nucleotide sugar metabolism), cell signaling pathways (such as insulin, Wnt, MAPK signaling pathways), the cell cycle, and stress resistance exhibited altered expression following 20E injection. These findings suggest that 20E exerts its primary influence on metabolic processes, cell signaling pathways, cell cycle, and stress resistance during the termination of diapause. CONCLUSIONS Our study presents a systematic and comprehensive analysis of the genes associated with 20E-induced diapause termination, thereby providing a foundation for elucidating the molecular mechanism of 20E regulating diapause. Furthermore, the findings lend support to the utilization of ecdysone analogs as pesticides in diapause-based pest management.
Collapse
Affiliation(s)
- Zhaohong Ni
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
| | - Yan Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
| | - Shunchao Xia
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
| | - Zhaolang Teng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
| | - Jing Liao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
| | - Haiyin Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
2
|
Kuang Y, Shangguan C, Wang C, Gao L, Yu X. Salivary effector DcE1 suppresses plant defense and facilitates the successful feeding of Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2025; 81:1717-1726. [PMID: 39543447 DOI: 10.1002/ps.8536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Piercing-sucking insects secrete diverse repertoires of effectors into their hosts to weaken host defenses and promote infestation. The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most destructive insect pest in citrus orchards because of its role as a vector for the huanglongbing pathogen, Candidatus Liberibacter asiaticus (CLas). However, specific effector proteins and their functions in D. citri remain unclear. RESULTS We demonstrate that DcE1, a salivary protein gene from D. citri, is predominantly expressed in the salivary gland tissues and is delivered into host plants during feeding. Transient expression in tobacco leaves revealed that DcE1 was subcellularly localized in the cytoplasm and plasma membrane, where it inhibited BAX- and INF1-induced cell death, suppressed callose deposition, and activated the salicylic acid pathway by upregulating the expression of endo-β-1,3-glucanase NtBGL2 and regulatory protein NtNPR1. Further, DcE1 knockdown by double-stranded RNA (dsRNA) injection decreased the survival rates of D. citri and interrupted D. citri phloem-feeding on host plants. CONCLUSION These results indicate that DcE1 is a novel effector that promotes plant susceptibility and enables D. citri feeding. These findings enhance our understanding of D. citri-plant interactions and offer a potential new target gene for the development of citrus protection strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinhui Kuang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chaozhi Shangguan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chuyang Wang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Liwei Gao
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiudao Yu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
3
|
Han WH, Ji SX, Zhang FB, Song HD, Wang JX, Fan XP, Xie R, Liu SS, Wang XW. A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing. MOLECULAR PLANT 2025; 18:437-456. [PMID: 39754360 DOI: 10.1016/j.molp.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/14/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects can function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of the phloem-feeding whitefly (Bemisia tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum) plants. We show that the salivary gland-enriched BtmiR29-b is produced by BtDicer 1 and released into tobacco cells via salivary exosomes. Once inside the plant cells, BtmiR29-b hijacks tobacco Argonaute 1 to silence the defense gene Bcl-2-associated athanogene 4 (NtBAG4). In tobacco, NtBAG4 acts as the positive regulator of phytohormones salicylic acid (SA) and jasmonic acid (JA), enhancing plant defense against whitefly attacks. Interestingly, we also found that miR29-b acts as a salivary effector in another Hemipteran insect, the aphid Myzus persicae, which inhibits tobacco resistance by degrading NtBAG4. Moreover, miR29-b is highly conserved in Hemiptera and across other insect orders such as Coleoptera, Hymenoptera, Orthoptera, and Blattaria. Computational analysis suggests that miR29-b may also target the evolutionarily conserved BAG4 gene in other plant species. We further provide evidence showing BtmiR29-b-mediated BAG4 cleavage and defense suppression in tomato (Solanum lycopersicum). Taken together, our work reveals that a conserved miR29-b effector from insects fine-tunes plant SA- and JA-mediated defense by cross-kingdom silencing of the host plant BAG4 gene, providing new insight into the defense and counter-defense mechanisms between herbivores and their host plants.
Collapse
Affiliation(s)
- Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun-Xia Ji
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Da Song
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Rui Xie
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhou J, Yin Z, Shen D, Zhang Q, OYang Y, Li X, Ma Y, Ding L, Pei Y, Ai G, Dong Y, Yang D, Wang Y, Dou D, Xia A. A conserved protein family in mirid bug Riptortus pedestris plays dual roles in regulating plant immunity. PLANT PHYSIOLOGY 2024; 196:2812-2824. [PMID: 39230888 DOI: 10.1093/plphys/kiae468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 09/05/2024]
Abstract
The mirid bug (Riptortus pedestris), a major soybean pest, migrates into soybean fields during the pod filling stage and causes staygreen syndrome, which leads to substantial yield losses. The mechanism by which R. pedestris elicits soybean (Glycine max) defenses and counter-defenses remains largely unexplored. In this study, we characterized a protein family from R. pedestris, designated R.pedestris HAMP 1 (RPH1), and its putative paralogs (RPH1L1, 2, 3, 4, and 5), whose members exhibit dual roles in triggering and inhibiting plant immunity. RPH1 and RPH1L1 function as herbivore-associated molecular patterns (HAMPs), activating pattern-triggered immunity (PTI) in tobacco (Nicotiana benthamiana) and G. max. Furthermore, RPH1 stimulates jasmonic acid and ethylene biosynthesis in G. max, thereby enhancing its resistance to R. pedestris feeding. Additionally, RPH1 homologs are universally conserved across various herbivorous species, with many homologs also acting as HAMPs that trigger plant immunity. Interestingly, the remaining RPH1 putative paralogs (RPH1L2-5) serve as effectors that counteract RPH1-induced PTI, likely by disrupting the extracellular perception of RPH1. This research uncovers a HAMP whose homologs are conserved in both chewing and piercing-sucking insects. Moreover, it unveils an extracellular evasion mechanism utilized by herbivores to circumvent plant immunity using functionally differentiated paralogs.
Collapse
Affiliation(s)
- Jiangxuan Zhou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingsong Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie OYang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxi Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yurong Ma
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanping Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Pei
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Ai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yumei Dong
- Department of Biological Science, School of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Donglei Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Wang X, Wu H, Yu Z, Wu J, Lu C, Wei T, Chen Q. Plant viruses exploit insect salivary GAPDH to modulate plant defenses. Nat Commun 2024; 15:6918. [PMID: 39134555 PMCID: PMC11319438 DOI: 10.1038/s41467-024-51369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongkai Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
7
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Characterization of the swede midge, Contarinia nasturtii, first instar larval salivary gland transcriptome. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100064. [PMID: 37575317 PMCID: PMC10415697 DOI: 10.1016/j.cris.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Proteins in saliva of gall-forming insect larvae govern insect-host plant interactions. Contarinia nasturtii, the swede midge, is a pest of brassicaceous vegetables (cabbage, cauliflower, broccoli) and canola. We examined the salivary gland (SG) transcriptome of first instar larvae reared on Brassica napus and catalogued genes encoding secreted proteins that may contribute to the initial stages of larval establishment, the synthesis of plant growth hormones, extra-oral digestion and evasion of host defenses. A significant portion of the secreted proteins with unknown functions were unique to C. nasturtii and were often members of larger gene families organized in genomic clusters with conservation patterns suggesting that they are undergoing selection.
Collapse
Affiliation(s)
- Boyd A. Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| | - Martin A. Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| | - Dwayne D. Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| |
Collapse
|
8
|
Li S, Qi L, Tan X, Li S, Fang J, Ji R. Small Brown Planthopper Nymph Infestation Regulates Plant Defenses by Affecting Secondary Metabolite Biosynthesis in Rice. Int J Mol Sci 2023; 24:ijms24054764. [PMID: 36902211 PMCID: PMC10003665 DOI: 10.3390/ijms24054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The small brown planthopper (SBPH, Laodelphax striatellus) is one of the most destructive insect pests in rice (Oryza sativa), which is the world's major grain crop. The dynamic changes in the rice transcriptome and metabolome in response to planthopper female adult feeding and oviposition have been reported. However, the effects of nymph feeding remain unclear. In this study, we found that pre-infestation with SBPH nymphs increased the susceptibility of rice plants to SBPH infestation. We used a combination of broadly targeted metabolomic and transcriptomic studies to investigate the rice metabolites altered by SBPH feeding. We observed that SBPH feeding induced significant changes in 92 metabolites, including 56 defense-related secondary metabolites (34 flavonoids, 17 alkaloids, and 5 phenolic acids). Notably, there were more downregulated metabolites than upregulated metabolites. Additionally, nymph feeding significantly increased the accumulation of seven phenolamines and three phenolic acids but decreased the levels of most flavonoids. In SBPH-infested groups, 29 differentially accumulated flavonoids were downregulated, and this effect was more pronounced with infestation time. The findings of this study indicate that SBPH nymph feeding suppresses flavonoid biosynthesis in rice, resulting in increased susceptibility to SBPH infestation.
Collapse
Affiliation(s)
- Shuai Li
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Liangxuan Qi
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinyang Tan
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jichao Fang
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (J.F.); (R.J.)
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: (J.F.); (R.J.)
| |
Collapse
|
9
|
Kil EJ, Kim D. The small brown planthopper (Laodelphax striatellus) as a vector of the rice stripe virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21992. [PMID: 36575628 DOI: 10.1002/arch.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.
Collapse
Affiliation(s)
- Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Donghun Kim
- Department of Entomology, Kyungpook National University, Sangju, Republic of Korea
- Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea
| |
Collapse
|
10
|
Parmagnani AS, Maffei ME. Calcium Signaling in Plant-Insect Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2689. [PMID: 36297718 PMCID: PMC9609891 DOI: 10.3390/plants11202689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In plant-insect interactions, calcium (Ca2+) variations are among the earliest events associated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS), Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission, whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin, Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic interactions requires innovative imaging techniques based on sensitive sensors and using genetically encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory and reviews the most recent Ca2+ imaging techniques and methods.
Collapse
|
11
|
Shi J, Jin H, Wang F, Stanley DW, Wang H, Fang Q, Ye G. The larval saliva of an endoparasitic wasp, Pteromalus puparum, suppresses host immunity. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104425. [PMID: 35878702 DOI: 10.1016/j.jinsphys.2022.104425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In the lengthy co-evolution between insects and their animal or plant hosts, insects have evolved a wide range of salivary strategies to help evade host defenses. Although there is a very large literature on saliva of herbivorous and hematophagous insects, little attention has been focused on the saliva of parasitoid wasps. Some parasitoid species are natural enemies that effectively regulate insect population sizes in nature that they are applied for biological control of agricultural pests. Here, we demonstrate the influence of the endoparasitoid, Pteromalus puparum, larval saliva on the cellular and humoral immunity of its host. Larval saliva increases mortality of hemocytes, and inhibits hemocyte spreading, a specific cellular immune action. We report that high saliva concentrations inhibit host cellular encapsulation of foreign invaders. The larval saliva also inhibits melanization in host hemolymph. The saliva inhibits the growth of some bacterial species, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa in vitro. This may promote larvae fitness by protecting them from infections. Insight into such functions of parasitic wasp saliva provides a new insight into host-parasitoid relationships and possibly leads to new agricultural pest management technologies.
Collapse
Affiliation(s)
- Jiamin Shi
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - David W Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA
| | - Huan Wang
- Department of Landscape Architecture Technology, Shanghai Vocational College of Agriculture and Forestry, 658 Zhongshan Second Road, Shanghai 201699, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
12
|
Sogatella furcifera Saliva Mucin-like Protein Is Required for Feeding and Induces Rice Defences. Int J Mol Sci 2022; 23:ijms23158239. [PMID: 35897828 PMCID: PMC9332473 DOI: 10.3390/ijms23158239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The white-backed planthopper (WBPH), Sogatella furcifera, is one of the most important piercing-sucking pests of rice (Oryza sativa) in Asia. Mucin-like salivary protein (SFMLP) is highly expressed in the salivary glands of WBPH, which plays an important role in WBPH feeding. In this study, WBPH injected with dsSFMLP had difficulty in sucking phloem sap from rice plants, which significantly reduced their food intake, weight, and survival. In contrast, the knockdown of the SFMLP gene had only a marginal effect on the survival of WBPH fed an artificial diet. Further studies showed that silencing SFMLP resulted in the short and single-branched salivary sheaths secretion and less formation of salivary flanges in rice. These data suggest that SFMLP is involved in the formation of the salivary sheath and is essential for feeding in WBPH. Overexpression of the SFMLP gene in rice plants promoted the feeding of WBPH, whereas silencing the gene in rice plants significantly decreased WBPH performance. Additionally, it was found that overexpression of SFMLP in rice plants elicited the signalling pathway of SA (salicylic acid) while suppressing JA (jasmonic acid); in contrast, silencing of the SFMLP gene in rice plants showed the opposite results. This study clarified the function of SFMLP in WBPH feeding as well as mediating rice defences.
Collapse
|
13
|
Huo Y, Song Z, Wang H, Zhang Z, Xiao N, Fang R, Zhang Y, Zhang L. GrpE is involved in mitochondrial function and is an effective target for RNAi-mediated pest and arbovirus control. INSECT MOLECULAR BIOLOGY 2022; 31:377-390. [PMID: 35141960 PMCID: PMC9306519 DOI: 10.1111/imb.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Laodelphax striatellus is a sap-feeding pest and the main insect vector of rice stripe virus (RSV). There is an urgent need to identify molecular targets to control this insect pest and plant arboviruses. In this study, we identified a L. striatellus gene (named LsGrpE) encoding a GroP-E-like protein. We found that the LsGrpE protein localized to mitochondria. Using gene-specific dsRNA to interfere with the expression of LsGrpE led to a significant increase in insect mortality, and most of the surviving insects could not develop into adults. Further analyses revealed that LsGrpE deficiency caused mitochondrial dysfunction and inhibited the insulin pathway, resulting in diabetes-like symptoms such as elevated blood sugar, inactive behaviour, developmental delay, and death. In addition, LsGrpE deficiency significantly reduced the RSV titre in surviving L. striatellus, and indirectly prevented viral vertical transmission by reducing the number of adults. We generated transgenic rice plants expressing LsGrpE-specific dsRNA, and the dsRNA was acquired by L. striatellus during feeding, resulting in increased insect mortality and the prevention of arboviral transmission. This study clarifies the function of LsGrpE and demonstrates that LsGrpE can be used as a molecular target of plant-generated dsRNA to resist this sap-feeding pest, a17nd therefore, its transmitted arboviruses.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Zhiyu Song
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Haiting Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ziyu Zhang
- College of Life Sciences, Hebei UniversityBaodingChina
| | - Na Xiao
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Yuman Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Lili Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
A leafhopper saliva protein mediates horizontal transmission of viral pathogens from insect vectors into rice phloem. Commun Biol 2022; 5:204. [PMID: 35246603 PMCID: PMC8897447 DOI: 10.1038/s42003-022-03160-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous insects transmit viruses together with saliva to plant phloem, but the roles of saliva components remain elusive. Here, we report that calcium-binding protein (CBP), a universal insect saliva protein, is modified to benefit horizontal transmission of a devastating rice reovirus into plant phloem. CBP effectively competes with virus-induced filaments to target and traverse actin-based apical plasmalemma into saliva-stored cavities in salivary glands of leafhopper vector. Thus, the inhibition of CBP expression by viral infection facilitates filament-mediated viral secretion into salivary cavities and then into plant phloem. Furthermore, virus-mediated reduction of CBP secretion causes an increase of cytosolic Ca2+ levels in rice, triggering substantial callose deposition and H2O2 production. Thus, viruliferous vectors encounter stronger feeding barriers, probe more frequently, and secrete more saliva into plants, ultimately enhancing viral transmission. We thus conclude that the inhibition of CBP secretion facilitates viral secretion and increases host defense response to benefit viral transmission. CBP, a calcium binding protein found in insect saliva, allows for the transmission of the devastating rice gall dwarf virus into plant phloem. This interaction with CBP is compounded by stronger feeding barriers, more frequent probing behavior, and increased saliva secretion into plants by insect vectors, all increasing the likelihood of viral transmission.
Collapse
|
15
|
Fu J, Shi Y, Wang L, Tian T, Li J, Gong L, Zheng Z, Jing M, Fang J, Ji R. Planthopper-Secreted Salivary Calmodulin Acts as an Effector for Defense Responses in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:841378. [PMID: 35295635 PMCID: PMC8918949 DOI: 10.3389/fpls.2022.841378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The brown planthopper (Nilaparvata lugens, BPH) and small brown planthopper (Laodelphax striatellus, SBPH) are major pests of rice (Oryza sativa) in Asia. These piercing-sucking insects secrete saliva into the host during feeding. Nevertheless, it is largely unknown how planthoppers use salivary effectors to enable continuous feeding on rice. Here, we screened their salivary proteomes and selected eight salivary proteins conserved between SBPH and BPH as candidate effectors. Silencing calmodulin (CaM) impeded BPH and SBPH from penetrating the phloem. Hence, their food intake, survival, and fecundity on rice plants were reduced. By contrast, CaM silencing had a small effect on the survival rate of BPH and SBPH raised on artificial diet. The CaM amino acid sequences were the same for both BPH and SBPH. CaM was highly expressed in their salivary glands and secreted into the rice plants during feeding. Bacterially expressed recombinant CaM protein exhibited calcium-binding activity. In planta expression disclosed that CaM was localized to the plant cytoplasms and nuclei and suppressed plant defenses such as hydrogen peroxide (H2O2) accumulation and callose deposition. CaM-silenced BPH and SBPH nymphs elicited relatively high levels of H2O2 and callose accumulation in rice plants. The foregoing results reveal that CaM is an effector as it enables the planthopper to reach the phloem by suppressing callose deposition and H2O2 accumulation in rice.
Collapse
Affiliation(s)
- Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Lei Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhouting Zheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
16
|
Walker GP. Sieve element occlusion: Interactions with phloem sap-feeding insects. A review. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153582. [PMID: 34953413 DOI: 10.1016/j.jplph.2021.153582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/30/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Phloem sieve element (SE) occlusion has been hypothesized for decades to be a mechanism of resistance against phloem sap-feeding insects. Few studies have tested this hypothesis although it is likely a widespread phenomenon. This review focuses on SE occlusion by callose and P-proteins. Both are reversible, which would allow the plant to defend itself against phloem sap-feeders when SEs are penetrated and resume normal function when the insects give up and withdraw their stylets. Callose (β-1,3 glucans with some β-1,6 branches) serves many roles in plant physiology in many different tissues, each being under the control of different callose synthase genes; only callose deposited in SE sieve pores is relevant to SE occlusion. The amount of callose in sieve pores (and consequently how much it impedes sap flow) is determined by the balance in activity between callose synthase and β-1,3 glucanase. Sieve pore callose deposition has been shown to provide resistance to some phloem sap-feeders in a few studies, and in one, the difference in resistance between a susceptible and resistant rice variety was due to the ability or inability of the insect to upregulate the plants' β-1,3 glucanase that degrades the callose deposition. P-proteins occur only in dicotyledons and include a variety of proteins, not all of which are involved in SE occlusion. In some plants, P-proteins form distinct bodies in mature functional SEs. In papilionid legumes, these discrete bodies, called forisomes can expand and contract. In their expanded state, they effectively plug SEs and stop the flow of sap while in their contracted state, they provide negligible resistance to sap flow. Expansion of forisomes is triggered by an influx of Ca2+ into the SE. Penetration of a legume (Vicia faba) SE by a generalist aphid not adapted to legumes triggers forisome expansion which occludes the SE and prevents the aphid from ingesting sap. In contrast, a legume specialist aphid, Acyrthosiphon pisum, does not trigger forisome expansion and readily ingests sap from V. faba. P-protein bodies in SEs of non-legumes do not appear to be involved in SE occlusion. In most dicotyledons, P-proteins do not form discrete bodies, but rather occur as filamentous aggregations adhering to the parietal margins of the SE and in response to damage, are released into the lumen where they are carried by the flow of sap to the downstream sieve plate where they back up and clog the sieve pores. Their effectiveness at actually stopping the flow of sap is controversial. In one study, they seemed to provide little resistance to the flow of sap while in other studies, they provided considerable resistance. In response to injury in melon, they completely stop the flow of sap, and in an aphid-resistant melon, penetration of SEs by the melon aphid, Aphis gossypii, triggers P-protein occlusion which prevents the aphids from ingesting sap. The first P-protein described, PP1, occurs only in the genus Cucurbita, and although it has been often cited to function as a SE occlusion protein, experimental evidence suggests it does not play a significant role in SE occlusion. The most common strategy for phloem sap-feeders to mitigate P-protein occlusion seems to be avoid triggering it. A widely cited in vitro study suggested that aphid saliva can reverse P-protein occlusion, but a subsequent study demonstrated that saliva was ineffective at reversing P-protein occlusion in vivo. Lastly, SE callose deposition in wheat triggered by Russian wheat aphid has been hypothesized to create an artificial sink that benefits the aphid, but additional studies are needed to test that hypothesis.
Collapse
Affiliation(s)
- G P Walker
- Department of Entomology, University of California, Riverside, United States.
| |
Collapse
|
17
|
Dong Y, Huang X, Yang Y, Li J, Zhang M, Shen H, Ren Y, Li X, Tian J, Shen D, Dou D, Xia A. Characterization of Salivary Secreted Proteins That Induce Cell Death From Riptortus pedestris (Fabricius) and Their Roles in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:912603. [PMID: 35860545 PMCID: PMC9289560 DOI: 10.3389/fpls.2022.912603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 05/22/2023]
Abstract
Riptortus pedestris (Fabricius) is a polyphagous hemipteran crop pest that mainly feeds on the leguminous plants, resulting in shriveled and dimpled seeds. With recent several outbreaks in the Huang-Huai-Hai region of China, as well as in South Korea and Japan, this species has caused enormous economic losses to soybean crops. In the present study, we found that R. pedestris feeding results in local lesions at the infestation sites. To identify the key effectors that induce plant damage during feeding, the salivary glands of R. pedestris were dissected for transcriptome sequencing, and 200 putative secreted proteins were transiently expressed in N. benthamiana. Among them, three intracellular effectors (RP191, RP246, and RP302) and one apoplastic effector (RP309) were identified as necrosis-inducing proteins (NIPs), which also triggered the reactive oxidative burst. Yeast signal sequence trap and qRT-PCR analysis suggested that these proteins might be secreted into plant tissue during R. pedestris infestation. Pathogenicity assays revealed that RP191, 246, and 302 promote Phytophthora capsici infection or induce Spodoptera litura feeding by inhibiting plant immunity. RP302 is localized to the cytoplasm and nuclei, while RP191 and 246 are endoplasmic reticulum (ER) resident proteins. RP309 stimulates the expression of PTI marker genes, and its induced cell death depends on co-receptors NbBAK1 and NbSOBIR1, indicating that it is a HAMP. Bioinformatics analysis demonstrated that four NIPs are recently evolved effectors and only conserved in the Pentatomidae. In this study, saliva-secreted proteins were used as the starting point to preliminarily analyze the harm mechanism of R. pedestris, which might provide a new idea and theoretical basis for this species control.
Collapse
|
18
|
Fu W, Liu X, Rao C, Ji R, Bing X, Li J, Wang Y, Xu H. Screening Candidate Effectors of the Bean Bug Riptortus pedestris by Proteomic and Transcriptomic Analyses. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.760368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The damage of Riptortus pedestris is exceptional by leading soybean plants to keep green in late autumn. Identification of the salivary proteins is essential to understand how the pest-plant interaction occurs. Here, we have tried to identify them by a combination of proteomic and transcriptomic analyses. The transcriptomes of salivary glands from R. pedestris males, females and nymphs showed about 28,000 unigenes, in which about 40% had open reading frames (ORFs). Therefore, the predicted proteins in the transcriptomes with secretion signals were obtained. Many of the top 1,000 expressed transcripts were involved in protein biosynthesis and transport, suggesting that the salivary glands produce a rich repertoire of proteins. In addition, saliva of R. pedestris males, females and nymphs was collected and proteins inside were identified. In total, 155, 20, and 11 proteins were, respectively, found in their saliva. We have tested the tissue-specific expression of 68 genes that are likely to be effectors, either because they are homologs of reported effectors of other sap-feeding arthropods, or because they are within the top 1,000 expressed genes or found in the salivary proteomes. Their potential functions in regulating plant defenses were discussed. The datasets reported here represent the first step in identifying effectors of R. pedestris.
Collapse
|
19
|
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann AA, Zhu-Salzman K, Fang J. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. THE NEW PHYTOLOGIST 2021; 232:802-817. [PMID: 34260062 DOI: 10.1111/nph.17620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Shiying Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jiafei Ju
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| |
Collapse
|