1
|
Smith JL, van Herk WG, Schwinghamer T, Baute T, Limay-Rios V, Frewin A, Sevcik M, Vernon B. Wireworm species associated with corn and soybean agroecosystems in Ontario, Canada. ENVIRONMENTAL ENTOMOLOGY 2024; 53:760-770. [PMID: 39037436 PMCID: PMC11469084 DOI: 10.1093/ee/nvae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Wireworms, the larvae of click beetles (Coleoptera: Elateridae), are often the target of insecticide seed treatments commonly used in corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) production in North America. Nevertheless, there is a lack of knowledge of the species, life history, and economic impact of wireworms present in these agroecosystems. An extensive survey of wireworms was conducted in corn and soybean fields in Ontario, Canada, from 2014 to 2017 to document species distribution and co-occurrence and to identify risk factors related to their abundance. In total, 4,332 specimens were collected from 1,245 different sampling records. The dominant species collected was Limonius agonus (Say) (Coleoptera: Elateridae) comprising 71.5% of the specimens. The remaining wireworm specimens were identified as Hypnoidus abbreviatus (Say), Melanotus similis (Kirby), M. cribulosus (LeConte), M. depressus (Melsheimer), M. communis (Gyllenhal), Agriotes mancus (Say), Aeolus mellillus (Say), and Hemicrepidius spp (Germar). Multiple wireworm species were found to commonly occur within the same field and the same sample. Path analysis was conducted to investigate whether site, soil, and agronomic characteristics influenced wireworm distribution and abundance. Several significant relationships were found between wireworm species and geographic factors, soil texture, and agronomic practices. The results of this survey provide critical information that can be used to improve integrated pest management of the major wireworm genera found in corn and soybean agroecosystems in Ontario.
Collapse
Affiliation(s)
- Jocelyn L Smith
- School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown, ON, Canada
| | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Timothy Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tracey Baute
- Ontario Ministry of Agriculture, Food and Rural Affairs, Ridgetown, ON, Canada
| | - Victor Limay-Rios
- School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown, ON, Canada
| | - Andrew Frewin
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Mika Sevcik
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Bob Vernon
- Sentinel IPM Services, Chilliwack, BC, Canada
| |
Collapse
|
2
|
Rashed A, van Herk WG. Pest Elaterids of North America: New Insights and Opportunities for Management. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:1-20. [PMID: 37562049 DOI: 10.1146/annurev-ento-120220-123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The larval stages of click beetle (Coleoptera: Elateridae) species, several of which are serious agricultural pests, are called wireworms. Their cryptic subterranean habitat, resilience, among-species differences in ecology and biology, and broad host range, as well as the lack of objective economic injury thresholds, have rendered wireworms a challenging pest complex to control. Significant progress has been made in recent years, introducing a new effective class of insecticides and improving species identification and our understanding of species-specific phenology, chemical ecology (i.e., adult sex pheromones and larval olfactory cues), and abiotic and biotic factors influencing the efficacy of biological control agents. These new developments have created opportunities for further research into improving our risk assessment, monitoring, and integrated pest management capabilities.
Collapse
Affiliation(s)
- Arash Rashed
- Department of Entomology, Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, Virginia, USA;
| | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada;
| |
Collapse
|
3
|
Tchokponhoué DA, Achigan-Dako EG, Sognigbé N, Nyadanu D, Hale I, Odindo AO, Sibiya J. Genome-wide diversity analysis suggests divergence among Upper Guinea and the Dahomey Gap populations of the Sisrè berry (Syn: miracle fruit) plant (Synsepalum dulcificum [Schumach. & Thonn.] Daniell) in West Africa. THE PLANT GENOME 2023; 16:e20299. [PMID: 36661287 DOI: 10.1002/tpg2.20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Although Synsepalum dulcificum is viewed as one of the most economically promising orphan tree crops worldwide, its genetic improvement and sustainable conservation are hindered by a lack of understanding of its evolutionary history and current population structure. Here, we report for the first time the application of genome-wide single nucleotide polymorphism genotyping to a diverse panel of S. dulcificum accessions to depict the genetic diversity and population structure of the species in the Dahomey Gap (DG) and Upper Guinea (UG) regions to infer its evolutionary history. Our findings suggest low overall genetic diversity but strong population divergence within the species. Neighbor-joining analysis detected two genetic groups in the UG and DG regions, while STRUCTURE distinguished three genetic groups, corresponding to the UG, Western DG, and Central DG regions. Application of Monmonier's algorithm revealed the existence of a barrier disrupting connectivity between the UG and DG groups. The Western DG group consistently exhibited the highest levels of nucleotide and haplotype diversities, while that of the Central DG exhibited the lowest. Analyses of Tajima's D, Fu's Fs, and Achaz Y* statistics suggest that while both UG and Central DG groups likely experienced recent expansions, the Western DG group is at equilibrium. These findings suggest a geographical structuring of genetic variation which supports the conclusion of differential evolutionary histories among West African groups of S. dulcificum. These results provide foundational insights to guide informed breeding population development and design sustainable conservation strategies for this species.
Collapse
Affiliation(s)
- Dèdéou A Tchokponhoué
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Laboratory of Genetics, Biotechnology and Seed Science (GBioS), School of Plant Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Enoch G Achigan-Dako
- Laboratory of Genetics, Biotechnology and Seed Science (GBioS), School of Plant Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - N'Danikou Sognigbé
- Laboratory of Genetics, Biotechnology and Seed Science (GBioS), School of Plant Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
- Ecole d'Horticulture et d'Aménagement des Espaces Verts, Université Nationale d'Agriculture, Kétou, Republic of Benin
- World Vegetable Center, East and Southern Africa, Arusha, Tanzania
| | - Daniel Nyadanu
- Cocoa Research Institute of Ghana (CRIG), Akim Tafo, Ghana
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Alfred O Odindo
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Julia Sibiya
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
4
|
Field Evaluation of Selected Plant Volatiles and Conspecific Pheromones as Attractants for Agriotes obscurus and A. lineatus (Coleoptera: Elateridae). INSECTS 2022; 13:insects13020173. [PMID: 35206746 PMCID: PMC8877583 DOI: 10.3390/insects13020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023]
Abstract
Sex pheromones are commonly used in traps to monitor populations and movements of male click beetles, but to date few attractants have been identified for females. Notable exceptions are plant-derived kairomones for female Agriotes brevis and A. ustulatus, allowing the monitoring of both males and females of these species with lures containing both pheromones and plant volatiles. The attractiveness of these plant volatiles for two congeners, A. obscurus and A. lineatus, which are agricultural pests in Europe and North America, was evaluated in the current study. Both the four-component MINIM plant-derived lure for A. brevis, and the blend of (E)-anethol and (E)-cinnamaldehyde for A. ustulatus, were not attractive to A. obscurus and A. lineatus, and instead appeared to reduce captures—both when compared to blank controls, and when blended with and compared to the sex pheromones of these species. This was most pronounced in A. obscurus, where (E)-anethol and (E)-cinnamaldehyde reduced male captures by 43 and 37%, respectively. Combining the pheromones of A. obscurus and A. lineatus reduced captures of these species by 77 and 19%, respectively, compared to these pheromones singly. This suggests that attractants for female click beetles can be highly species-specific, and that the blending of pheromones of congeneric species with each other, or with plant volatiles, can reduce captures. Further research into developing such attractants for economic species is urgently needed.
Collapse
|
5
|
Drahun I, Wiebe KF, Gohl P, Koloski CW, Koiter AJ, van Herk WG, Cassone BJ. Three years of surveillance associates agro-environmental factors with wireworm infestations in Manitoba, Canada. PEST MANAGEMENT SCIENCE 2022; 78:369-378. [PMID: 34538023 DOI: 10.1002/ps.6650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wireworms, the soil-dwelling larvae of click beetles, are a major threat to global agricultural production. This is largely due to their generalist polyphagous feeding capabilities, extended and cryptic life cycles, and limited management options available. Although wireworms are well-documented as economically important pests in the Canadian Prairies, including Manitoba, there are gaps in knowledge on species distributions, subterranean behaviour and life cycles, feeding ecology and damage capacity, and economic thresholds for crop yield loss. RESULTS We carried out 3 years (2018-2020) of intensive surveillance of larval populations across Manitoba. A total of 31 fields (24 in ≥ 2 consecutive years) were surveyed in early spring using standardized bait trapping approaches. Wireworms were present in 94% of surveyed sites, but the catch within fields varied year to year. While Hypnoidus bicolor predominated (94% of larvae), several other pest species were identified. We then explored the relationships between wireworm trap numbers and agro-environmental factors. The larval catch tended to decrease under conditions of low soil temperatures and increased clay content, coupled with high soil moisture and precipitation during the trapping period. Treatment and cultural methods appeared less influential; however, wheat production in either of the previous two growing seasons was associated with increased wireworm catch. Our models failed to predict a relationship between wireworm catch and crop yields, although infestations were rare in our region. CONCLUSION Our findings better infer the risks posed by wireworms to crop production in the Canadian Prairies, and the agro-environmental factors that represent the greatest contributors to these risks. This information should be incorporated into future integrated pest management (IPM) strategies for wireworms. © 2021 Her Majesty the Queen in Right of Canada Pest Management Science © 2021 Society of Chemical Industry Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.
Collapse
Affiliation(s)
- Ivan Drahun
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Kiana F Wiebe
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Patrick Gohl
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Cody W Koloski
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Alex J Koiter
- Department of Geography and Environment, Brandon University, Brandon, MB, Canada
| | - Willem G van Herk
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB, Canada
| |
Collapse
|