1
|
Xu C, Guo X, Tian X, Zhang X, Zhang H, Wu Q, Chen H, Yang H. Control of wheat powdery mildew using fluopyram seed treatment. PEST MANAGEMENT SCIENCE 2025; 81:3328-3338. [PMID: 39927410 DOI: 10.1002/ps.8706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Wheat powdery mildew is an airborne multi-cycle disease caused by Blumeria graminis f. sp. tritici. This disease can cause severe yield reduction or total crop loss. Fluopyram is a succinate dehydrogenase inhibitor (SDHI) used for the prevention and control of gray mold, powdery mildew, and downy mildew in fruits and vegetables. RESULTS We used fluopyram to treat wheat seeds and demonstrated excellent control of powdery mildew. Fluopyram treatment did not affect wheat seed germination. After seed treatment, the residual amounts of fluopyram in harvested wheat grains and in soil were lower than the maximum residue limit (MRL, 0.07 mg kg-1). We explored the mechanism of action of fluopyram on wheat powdery mildew using eukaryotic reference transcriptome analysis. The differentially expressed genes (DEGs) in wheat plants treated with fluopyram were mostly enriched in the photosynthesis pathway. SPAD (soil-plant analysis development) value measurements showed a significant increase in chlorophyll content after treatment. The enzyme activity of chitinase and the relative expression levels of related genes (Cht3 and Cht4) were significantly up-regulated, indicating that the defense response of wheat was activated. CONCLUSION Fluopyram seed treatment is expected to be developed for the control of wheat powdery mildew. The research in this study will provide important theoretical basis for controlling wheat powdery mildew caused by Blumeria graminis f. sp. tritici in the field. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Xu
- Jiangsu Hilly Area Zhenjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong, China
| | - Xiaomeng Guo
- Jiangsu Hilly Area Zhenjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong, China
| | - Xiaoya Tian
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Xuebiao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hong Zhang
- Institute of Agriculture Sciences, The Fourth Agriculture Production Division of Xinjiang Production and Construction Crops, Cocodala, China
| | - Qinyan Wu
- Jiangsu Hilly Area Zhenjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong, China
| | - Hongzhou Chen
- Jiangsu Hilly Area Zhenjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong, China
| | - Hongfu Yang
- Jiangsu Hilly Area Zhenjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong, China
| |
Collapse
|
2
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
3
|
Ku T, Hu J, Zhou M, Xie Y, Liu Y, Tan X, Guo L, Li G, Sang N. Cardiac energy metabolism disorder mediated by energy substrate imbalance and mitochondrial damage upon tebuconazole exposure. J Environ Sci (China) 2024; 136:270-278. [PMID: 37923437 DOI: 10.1016/j.jes.2022.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2023]
Abstract
Tebuconazole exposure has been described as an increasing hazard to human health. An increasing number of recent studies have shown a positive association between tebuconazole exposure and cardiovascular disease risk, which is characterized by the reduction of adenosine triphosphate (ATP) synthesis. However, researches on the damage of tebuconazole exposure to energy metabolism and the related molecular mechanisms are limited. In the present study, male C57BL/6 mice were treated with tebuconazole at different low concentrations for 4 weeks. The results indicated that tebuconazole could accumulate in the heart and further induce the decrease of ATP content in the mouse heart. Importantly, tebuconazole induced an obvious shift in substrate utilization of fatty acid and glucose by disrupting their corresponding transporters (GLUT1, GLUT4, CD36, FABP3 and FATP1) expression, and significantly repressed the expression of mitochondrial biogenesis (Gabpa and Tfam) and oxidative phosphorylation (CS, Ndufa4, Sdhb, Cox5a and Atp5b) related genes in a dose-dependent manner. Further investigation revealed that these alterations were related to the IRS1/AKT and PPARγ/RXRα pathways. These findings contribute to a better understanding of triazole fungicide-induced cardiovascular disease by revealing the key indicators associated with this phenomenon.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Jindong Hu
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Mengmeng Zhou
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yuanyuan Xie
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yutong Liu
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Xin Tan
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Lin Guo
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Nan Sang
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Xu Y, Zhang Y, Tao Q, Sun Q, Zheng Y, Yin D, Yang Y. A possible but unrecognized risk of acceptable daily intake dose triazole pesticides exposure-bile acid disturbance induced pharmacokinetic changes of oral medication. CHEMOSPHERE 2023; 322:138209. [PMID: 36822518 DOI: 10.1016/j.chemosphere.2023.138209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Triazole antifungal pesticides work by inhibiting the activity of lanosterol-14-α-demethylase, a member of cytochrome P450 enzymes (CYPs), but this effect is non-specific. Bile acids (BAs) are important physical surfactants for lipids absorption in intestine, and synthesized by CYPs 7A1/27A1. Thus, we presume that triazole exposure might influence the therapeutic effect or safety of oral medication through disturbing the BAs pool, even though the exposure is under an acceptable daily intake (ADI) dose. Short- and long-term of ADI dose tebuconazole (TEB) exposure animal models were established through various routes, and statins with different hydrophilic and lipophilic properties were gavaged. It exhibited that the activity of CYP7A1/27A1 was indeed inhibited but the expression was up-regulated, the BAs pool was changed either the content and the composition, and the absorption behavior of statins with strong and medium degree of lipid-solubility were significantly changed. A series of experiments performed on models of intestinal mucus, Caco-2 cell monolayer and Caco-2/HT29 co-culture system revealed that the TEB-exposure induced BAs disturbance made impacts on drug absorption in many aspects, including drug solubility and the structure of intestinal barriers. This study suggests us to be more alert about the hazard of pesticides residues for elderly and chronically ill groups.
Collapse
Affiliation(s)
- Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Yufeng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Quan Tao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Yuyu Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
5
|
Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A, Phung DT, Sadler R, Connell D. Exposure Routes and Health Risks Associated with Pesticide Application. TOXICS 2022; 10:335. [PMID: 35736943 PMCID: PMC9231402 DOI: 10.3390/toxics10060335] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Pesticides play an important role in agricultural development. However, pesticide application can result in both acute and chronic human toxicities, and the adverse effects of pesticides on the environment and human health remain a serious problem. There is therefore a need to discuss the application methods for pesticides, the routes of pesticide exposure, and the health risks posed by pesticide application. The health problems related to pesticide application and exposure in developing countries are of particular concern. The purpose of this paper is to provide scientific information for policymakers in order to allow the development of proper pesticide application technics and methods to minimize pesticide exposure and the adverse health effects on both applicators and communities. Studies indicate that there are four main pesticide application methods, including hydraulic spraying, backpack spraying, basal trunk spraying, and aerial spraying. Pesticide application methods are mainly selected by considering the habits of target pests, the characteristics of target sites, and the properties of pesticides. Humans are directly exposed to pesticides in occupational, agricultural, and household activities and are indirectly exposed to pesticides via environmental media, including air, water, soil, and food. Human exposure to pesticides occurs mainly through dermal, oral, and respiratory routes. People who are directly and/or indirectly exposed to pesticides may contract acute toxicity effects and chronic diseases. Although no segment of the general population is completely protected against exposure to pesticides and their potentially serious health effects, a disproportionate burden is shouldered by people in developing countries. Both deterministic and probabilistic human health risk assessments have their advantages and disadvantages and both types of methods should be comprehensively implemented in research on exposure and human health risk assessment. Equipment for appropriate pesticide application is important for application efficiency to minimize the loss of spray solution as well as reduce pesticide residuals in the environment and adverse human health effects due to over-spraying and residues. Policymakers should implement various useful measures, such as integrated pest management (IPM) laws that prohibit the use of pesticides with high risks and the development of a national implementation plan (NIP) to reduce the adverse effects of pesticides on the environment and on human health.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Hongying Li
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China;
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Shuangmei Tong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Qiming Jimmy Yu
- School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia;
| | - Huada Daniel Ruan
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China;
| | - Albert Atabila
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana;
| | - Dung Tri Phung
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Ross Sadler
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia;
| |
Collapse
|