1
|
Shen J, Wu SY, Lin P, Jiang X, Hou Y. Identification and optimization of volatile organic compounds to enhance bait attractiveness for red imported fire ants (Solenopsis invicta Buren). PEST MANAGEMENT SCIENCE 2025; 81:3240-3249. [PMID: 39906913 DOI: 10.1002/ps.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The red imported fire ant (RIFA, Solenopsis invicta), a highly destructive invasive pest, has rapidly spread through human trade, posing significant threats to agricultural and forest ecosystems. Due to its preference for high-fat and high-protein foods, ham sausage is commonly used as bait to monitor RIFA populations in invaded areas. However, the presence of volatile organic compounds (VOCs) in such baits may affect their effectiveness because VOCs can act as either attractants or repellents. Identifying VOCs that specifically attract RIFA is essential to improve bait efficacy. RESULTS This study aimed to identify attractant compounds within bait VOCs for RIFA, leveraging the highly-expressed antennal odorant-binding protein 1 (OBP1) and reverse chemical ecology approach. Additionally, we examined the effects of mixtures of these attractants on RIFA behavior. Our findings revealed that anethole, 1S-(-)-β-pinene, and β-caryophyllene individually attracted RIFA at 0.1 μg/μL. Notably, a combination of anethole and 1S-(-)-β-pinene enhanced behavioral activity more than individual compounds, suggesting synergistic effects. Conversely, the addition of β-caryophyllene to anethole significantly reduced RIFA activity. These results provide a theoretical basis for developing behavioral regulators targeting RIFA. CONCLUSION This study demonstrates that the integration of OBP-based in vitro assays with computational simulations can effectively identify behaviorally active compounds for RIFA. Additionally, it clarifies the optimal ratios of active VOCs in baits, offering valuable theoretical guidance for enhancing RIFA population monitoring efforts. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiacheng Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng-Yen Wu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyi Jiang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Wang Z, Shang X, Wu Z, Wei J, Tian X, Zhang G. Identification of Behaviorally Active Odorants for Adult Chilo sacchariphagus Based on the Binding Properties of Odorant-Binding Proteins toward Host Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7669-7684. [PMID: 40110702 DOI: 10.1021/acs.jafc.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chilo sacchariphagus is the key pest of sugar cane. Due to the difficulty associated with pesticide application in middle and late growth stages of sugar cane, the use of odorant attractants is a beneficial alternative to pesticides. Odorant-binding proteins (OBPs) in the insect olfactory system represent excellent targets for screening odorant attractants. Here, we identified 12 OBPs from the head transcriptome of C. sacchariphagus adults, with four OBPs (CsacOBP1/2/5/12) highly enriched in adult antennae. Ligand-binding assays for the four CsacOBPs showed that they can bind with 10 of the 30 host volatiles tested. Behavioral assays revealed that (+)-cedrol and 1-hexadecanol from the 10 compounds can attract the moths of both sexes. Protein-ligand interaction analyses identified five key amino acid residues involved in CsacOBPs' binding to (+)-cedrol and 1-hexadecanol. These findings have enhanced our molecular understanding of the host plant selection in C. sacchariphagus and have facilitated the development of attractants for C. sacchariphagus.
Collapse
Affiliation(s)
- Zhixiong Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiankun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zixuan Wu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jili Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
3
|
Tan SQ, Wei HS, Li H, Li Z, Liu XX. Dissecting the role of pheromone-binding protein 2 in courtship behavior of male Grapholita molesta moths. Int J Biol Macromol 2025; 303:140606. [PMID: 39900166 DOI: 10.1016/j.ijbiomac.2025.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
For fruit-boring pests like Grapholita molesta, the courtship behavior of male moths is a crucial aspect that can be utilized for developing control methods. This study investigates the role of pheromone-binding proteins (PBPs) in the courtship behavior of male G. molesta moths, particularly how sex pheromone components affect PBP expression. We found that three GmolPBPs genes were mainly expressed in the antennae of adult males, with no expression in larvae or pupae. Notably, GmolPBP2 expression was significantly higher in males, while GmolPBP1 was more pronounced in females. Unmated males exposed to females or the sex pheromone component Z8-12:Ac showed marked upregulation of GmolPBPs expression. Using affinity chromatography, we purified GmolPBPs and confirmed their binding affinities. Especially for GmolPBP2, this protein had a high affinity for Z8-12:Ac and E8-12:Ac. RNA interference targeting GmolPBPs revealed that silencing GmolPBP2 significantly reduced male responses to sex pheromone components and courtship behavior towards females, while silencing GmolPBP1 and GmolPBP3 had no significant effects. These findings highlight the crucial role of GmolPBP2 in mediating male courtship behavior, emphasizing the importance of PBPs in pheromone communication and mating success in G. molesta.
Collapse
Affiliation(s)
- Shu-Qian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong-Shuang Wei
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao-Xia Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Feng HY, Zhao YQ, Yang T, Zhou YY, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, Zhang F, Smagghe G, He M, He P. Female contact sex pheromone recognition in the German cockroach (Blattella germanica) is mediated by two male antennae-enriched sensory neuron membrane proteins. PEST MANAGEMENT SCIENCE 2025; 81:572-584. [PMID: 39506909 DOI: 10.1002/ps.8530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The German cockroach Blattella germanica is a notorious urban health pest that has developed resistance to multiple pesticides. Thus, novel non-lethal pest control agents are urgently needed. Olfaction interference via disruption of sex pheromone recognition-related genes offers a promising approach. The German cockroach has a unique courtship behavior in which female adults emit contact sex pheromones (CSPs) in response to antennal touching, which subsequently triggers distinctive male sex behavioral responses. Due to the limited volatility of CSPs, the molecular mechanisms underlying their recognition and the specific olfactory pathways activated remain poorly defined. Although the odorant receptor coreceptor (Orco) is critical for most insect olfaction, sensory neuron membrane proteins (SNMPs), in particular SNMP1, also play crucial roles in sex pheromone recognition in moths and flies. While multiple SNMP1 homologs have been identified in multiple insect species, they have yet to be fully functionally characterized in cockroaches. RESULTS In this study, RNA-interference (RNAi)-mediated knockdown of BgerOrco reduced both the electrophysiology responses and courtship behaviors of males, indicating CSP perception proceeds via an olfaction pathway. Similar RNAi knockdown of BgerSNMP1e and BgerSNMP1d, which are predominantly expressed in male antennae, revealed critical roles in perceiving the major component of the Blattella germanica CSP blend. Unlike BgerSNMP1e, BgerSNMP1d was also found to function in the perception of the minor CSP component. Molecular docking analyses revealed no differences in the binding affinities of BgerSNMP1d for the major and minor CSP components, whereas the binding affinities of BgerSNMP1e displayed clear selectivity for the major component. CONCLUSION Our results show that the olfactory pathway is critical for CSP recognition and that two male-enriched SNMP genes, BgerSNMP1e and BgerSNMP1d, are crucial factors mediating the male response to CSP stimulation in German cockroaches. This study lays a foundation for studying the mechanisms of CSP recognition and provides novel molecular targets with potential to be exploited as disruptors of courtship behavior. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Yan Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Ya-Qin Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Tao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yang-Yuntao Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Fan Zhang
- College of Life Science, Shandong Normal University, Jinan, P. R. China
| | - Guy Smagghe
- Institute Entomology, Guizhou University, Guiyang, P. R. China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ming He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, P. R. China
| |
Collapse
|
5
|
Huang C, Ou X, Wang Y, Zhou Y, Zhang G, Liu W, Wan F, Jiang H, Zhang Y. Genome-Wide Identification, Evolution, and Female-Biased Expression Analysis of Odorant Receptors in Tuta absoluta (Lepidoptera: Gelechiidae). Life (Basel) 2024; 14:872. [PMID: 39063624 PMCID: PMC11277591 DOI: 10.3390/life14070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a highly destructive invasive pest targeting Solanaceae crops. Its olfactory system plays a crucial role in host location, mate finding, and other behavioral activities. However, there is a notable gap in the literature regarding the characterization of its chemosensory genes. In this study, we conducted a genome-wide identification of 58 odorant receptors (ORs) of T. absoluta. The identified ORs exhibit coding sequence (CDS) lengths ranging from 1062 bp to 1419 bp, encoding proteins of 354 to 473 amino acids. Gene structure analysis showed that the majority of these ORs consist of five, seven, eight, or nine exons, collectively representing 67% of the total ORs identified. Through chromosomal mapping, we identified several tandemly duplicate genes, including TabsOR12a, TabsOR12b, TabsOR12c, TabsOR21a, TabsOR21b, TabsOR34a, TabsOR34b, TabsOR34c, TabsOR62a, and TabsOR62b. The phylogenetic analysis indicated that six TabsORs were clustered within the lepidopteran sex pheromone receptor clade, while an expansion clade containing ten TabsORs resulted from tandem duplication events. Additionally, five TabsORs were classified into a specific OR clade in T. absoluta. Furthermore, through RNA-Seq and RT-qPCR analyses, we identified five TabsORs (TabsOR21a, TabsOR26a, TabsOR34a, TabsOR34c, and TabsOR36) exhibiting female-antennae-biased expression. Our study provides a valuable foundation to further investigations into the molecular and ecological functions of TabsORs, particularly in relation to oviposition behavior. These findings provide foundational data for the future exploration of the functions of female-biased expression OR genes in T. absoluta, thereby facilitating the further development of eco-friendly attract-and-kill techniques for the prevention and control of T. absoluta.
Collapse
Affiliation(s)
- Cong Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Xiaolan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yusheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yanan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| |
Collapse
|
6
|
Cao LJ, Yang F, Chen JC, Wei SJ. Nuclear and mitochondrial genomes of the plum fruit moth Grapholita funebrana. Sci Data 2024; 11:692. [PMID: 38926434 PMCID: PMC11208415 DOI: 10.1038/s41597-024-03522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The plum fruit moth Grapholita funebrana (Tortricidae, Lepidoptera) is an important pest of many wild and cultivated stone fruits and other plants in the family Rosaceae. Here, we assembled its nuclear and mitochondrial genomes using Illumina, Nanopore, and Hi-C sequencing technologies. The nuclear genome size is 570.9 Mb, with a repeat rate of 51.28%, and a BUCSO completeness of 97.7%. The karyotype for males is 2n = 56. We identified 17,979 protein-coding genes, 5,643 tRNAs, and 94 rRNAs. We also determined the mitochondrial genome of this species and annotated 13 protein-coding genes, 22 tRNAs, and 2 rRNA. These genomes provide resources to understand the genetics, ecology, and genome evolution of the tortricid moths.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
7
|
Wang P, Liu M, Lv C, Tian Z, Li R, Li Y, Zhang Y, Liu J. Identifying the Key Role of Plutella xylostella General Odorant Binding Protein 2 in Perceiving a Larval Attractant, ( E, E)-2,6-Farnesol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5690-5698. [PMID: 38447177 DOI: 10.1021/acs.jafc.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
There is currently a lack of effective olfaction-based techniques to control diamondback moth (DBM) larvae. Identifying behaviorally active odorants for DBM larvae and exploring their recognition mechanisms can provide insights into olfaction-based larval control strategies. Through the two-choice assay, (E,E)-2,6-farnesol (farnesol) was identified as a compound exhibiting significant attractant activity toward DBM larvae, achieving an attraction index of 0.48 ± 0.13. PxylGOBP1 and PxylGOBP2, highly expressed in the antennae of DBM larvae, both showed high affinity toward farnesol. RNAi technology was used to knock down PxylGOBP1 and PxylGOBP2, revealing that the attraction of DBM larvae to farnesol nearly vanished following the knockdown of PxylGOBP2, indicating its critical role in recognizing farnesol. Further investigation into the PxylGOBP2-farnesol interaction revealed the importance of residues like Thr9, Trp37, and Phe118 in PxylGOBP2's binding to farnesol. This research is significant for unveiling the olfactory mechanisms of DBM larvae and developing larval behavior regulation techniques.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changhong Lv
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Liu J, Li Y, Wang P, Zhang Y, Tian Z. High-efficiency removal of pyrethroids using a redesigned odorant binding protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132856. [PMID: 37913660 DOI: 10.1016/j.jhazmat.2023.132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Pyrethroids are ubiquitously present in environmental media and threaten both the ecosystem and human health. To explore effective ways to remove pyrethroids from the environment, an odorant binding protein (OBP) with affinity for various pyrethroids was investigated. Initially, the target OBP, Spodoptera littoralis pheromone binding protein 1 (SlitPBP1), underwent redesign to enhance its affinity for pyrethroids. The modified SlitPBP1E97ND106E demonstrated a substantially increased affinity for deltamethrin (DeltaM), with a dissociation constant of 0.77 ± 0.17 μM. The affinity of SlitPBP1E97ND106E for other pyrethroids also increased to varying extents. Consequently, SlitPBP1E97ND106E displayed a markedly enhanced capability to adsorb and remove pyrethroids. When exposed to free SlitPBP1E97ND106E in solution, the reduction in DeltaM surged from 16.78 ± 0.32% to 97.51 ± 0.56%. SlitPBP1E97ND106E was immobilized by coupling the protein to Ni2+-NTA agarose resin. Liquid chromatography results attested to the superior efficacy of immobilized SlitPBP1E97ND106E in removing pyrethroids, especially DeltaM. No significant differences in pyrethroid removal were detected across various water samples. Our findings introduce a potent tool for pyrethroid removal. A wider range of OBPs can similarly be optimized and applied to remove organic pollutants, including but not limited to pesticides.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pei Wang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Li Y, Ni S, Wang Y, Li R, Sun H, Ye X, Tian Z, Zhang Y, Liu J. The chemosensory protein 1 contributes to indoxacarb resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2023; 79:2456-2468. [PMID: 36809665 DOI: 10.1002/ps.7415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Insecticide resistance continuously poses a threat to agricultural production. Chemosensory protein-mediated resistance is a new mechanism of insecticide resistance discovered in recent years. In-depth research on resistance mediated by chemosensory proteins (CSPs) provides new insight into aid insecticide resistance management. RESULTS Chemosensory protein 1 in Plutella xylostella (PxCSP1) was overexpressed in the two indoxacarb-resistant field populations and PxCSP1 has a high affinity with indoxacarb. PxCSP1 was upregulated when exposed to indoxacarb and the knockdown of this gene elevated sensitivity to indoxacarb, which demonstrate that PxCSP1 is involved in the indoxacarb resistance. Considering that CSPs may confer resistance in insects via binding or sequestering, we explored the binding mechanism of indoxacarb in PxCSP1-mediated resistance. Using molecular dynamics simulations and site-directed mutation, we found that indoxacarb forms a solid complex with PxCSP1 mainly through van der Waals interactions and electrostatic interactions. Between these, the electrostatic interaction provided by the Lys100 side chain in PxCSP1, and especially the hydrogen bonding between the NZ atom and the O of the carbamoyl carbonyl group of indoxacarb, are the key factors for the high affinity of PxCSP1 to indoxacarb. CONCLUSIONS The overexpression of PxCPS1 and its high affinity to indoxacarb is partially responsible for indoxacarb resistance in P. xylostella. Modification of indoxacarb's carbamoyl group has the potential to alleviate indoxacarb resistance in P. xylostella. These findings will contribute to solving chemosensory protein-mediated indoxacarb resistance and provide a better understanding of the insecticide resistance mechanism. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shujun Ni
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yunping Wang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Dong JF, Sun YL, Wang K, Guo H, Wang SL. Expression, affinity, and binding mode analysis of antennal-binding protein X in the variegated cutworm Peridroma saucia (Hübner). Int J Biol Macromol 2023; 242:124671. [PMID: 37137349 DOI: 10.1016/j.ijbiomac.2023.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
The variegated cutworm Peridroma saucia (Hübner) is a worldwide pest that causes serious damage to many crops. Odorant-binding proteins (OBPs) are small soluble proteins involved in the first step of odorant reception. In moths, antennal-binding protein Xs (ABPXs) represent a main subfamily of classic OBPs. However, their functions remain unclear. Here, we cloned the ABPX gene from the antennae of P. saucia. RT-qPCR and western-blot analyses showed that PsauABPX is antenna-predominant and male-biased. Further temporal expression investigation indicated that the expression of PsauABPX started 1 day before eclosion and reached the highest 3 days after eclosion. Next, fluorescence binding assays revealed that recombinant PsauABPX had high binding affinities with P. saucia female sex pheromone components Z11-16: Ac and Z9-14: Ac. Then, molecular docking, molecular dynamics simulation, and site-directed mutagenesis were employed to identify key amino acid residues involved in the binding of PsauABPX to Z11-16: Ac and Z9-14: Ac. The results demonstrated that Val-32, Gln-107 and Tyr-114 are essential for the binding to both sex pheromones. This study not only give us insight into the function and binding mechanism of ABPXs in moths, but could also be used to explore novel strategies to control P. saucia.
Collapse
Affiliation(s)
- Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ke Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Guo
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Shao-Li Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Walker WB, Mori BA, Cattaneo AM, Gonzalez F, Witzgall P, Becher PG. Comparative transcriptomic assessment of the chemosensory receptor repertoire of Drosophila suzukii adult and larval olfactory organs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101049. [PMID: 36528931 DOI: 10.1016/j.cbd.2022.101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA.
| | - Boyd A Mori
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Alberto M Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Research and Development, ChemTica Internacional S.A., Apdo. 640-3100, Santo Domingo, Heredia, Costa Rica.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
12
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
13
|
Ren Y, Wang T, Jiang Y, Chen P, Tang J, Wang J, Jin D, Guo J. Research of Synergistic Substances on Tobacco Beetle [ Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae)] Adults Attractants. Front Chem 2022; 10:921113. [PMID: 35755262 PMCID: PMC9213786 DOI: 10.3389/fchem.2022.921113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, four kinds of chemical substances (2,3,5,6-tetramethylpyrazine, β-ionone, citronellal, and paeonol), three kinds of plant essential oils (tea tree essential oil, lavender essential oil, and myrrh essential oil), and their combinations were selected to explore their synergistic effects on tobacco beetle [Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae)] adults by the behavioral test and laboratory simulation test. Behavioral test results showed that some of the combinations revealed a synergistic effect on tobacco beetle adults, especially the sexual attractant +2,3,5,6-tetramethylpyrazine + β-ionone + citronellal + paeonol (SABCD, one portion of sexual attractant, and 1 mg/L synergistic substances) combination and the food attractant +2,3,5,6-tetramethylpyrazine + paeonol (FAD, 1 ml of food attractant and 1 mg/L synergistic substances) combination showed the best behavioral effect on tobacco beetle adults with average dwell times of 120.97 and 126.74 s, respectively, compared to those of other combinations. Meanwhile, SABCD had the highest selection rate [89.47%, about 1.5 times that of the sexual attractant (S)] on tobacco beetle adults compared with those of other combinations. In addition, laboratory simulation test results showed that the SABCD combination had the highest average selection rate (37.31%, about 2 times that of S) on tobacco beetle adults at 1 mg/L. However, our results showed that there was no significant difference in the indoor simulation results of food attractant synergistic substances. Our results will provide guidance for the development of new pesticides for tobacco beetle adults.
Collapse
Affiliation(s)
- Yanling Ren
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang, China.,Guizhou Light Industry Technical College, Guiyang, China
| | - Tao Wang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang, China.,Guizhou Light Industry Technical College, Guiyang, China
| | - Yingjie Jiang
- Guizhou Light Industry Technical College, Guiyang, China
| | - Pengchao Chen
- Guizhou Light Industry Technical College, Guiyang, China
| | - Jian Tang
- Guizhou Light Industry Technical College, Guiyang, China
| | - Juan Wang
- Guizhou Light Industry Technical College, Guiyang, China
| | - Daochao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang, China
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Liu J, Zhou T, Li R, Tian Z. Structural insights into the discrepant synergistic activity of Codlemone and (Z)-8-dodecenol towards Grapholita molesta pheromones. PEST MANAGEMENT SCIENCE 2022; 78:1953-1962. [PMID: 35085422 DOI: 10.1002/ps.6813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insect pheromone synergists have been widely used to produce potent pheromone products for environment-friendly pest control. Codlemone (Cod) and (Z)-8-dodecenol (Dod) are two major Grapholita molesta pheromone synergists, with Cod having greater synergism and affinity for G. molesta pheromone binding protein 2 (GmolPBP2). Uncovering structural information key to the different binding affinity of Cod and Dod to GmolPBP2 would gain insights into what causes their synergy activity discrepancy. RESULTS Binding modes of the two synergists in the binding pocket of GmolPBP2 were analyzed and compared by molecular dynamics-based approaches. Although Cod and Dod were stabilized in a similar hydrophobic pocket, their interaction details with GmolPBP2 were divergent due to the extra double bond (C10═C11) in Cod. The C10═C11 improved the hydrophobic interactions of Cod with around residues. Such hydrophobic interaction improvement was also reflected in the raised importance of Phe11 in the GmolPBP2-Cod interaction. Not only that, the increased hydrophobic forces introduced by the C10═C11 changed the CH2-OH orientation in the GmolPBP2-Cod complex, which improved the H-bond interaction. Electrostatic complementarity analysis further indicated the positive role of C10═C11 in optimizing GmolPBP2-Cod interaction. CONCLUSION The C10═C11 is thought to contribute greatly to Cod's stronger synergy as a group key to the higher GmolPBP2-affinity, based on which the improvement directions for Cod and Dod were addressed as well. Our findings will aid in the development and optimization of more effective pheromone synergists, resulting in more effective pheromone-based pest management.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|