1
|
Zdybicka-Barabas A, Stączek S, Kunat-Budzyńska M, Cytryńska M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int J Mol Sci 2025; 26:1320. [PMID: 39941087 PMCID: PMC11818254 DOI: 10.3390/ijms26031320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Melanogenesis and melanin deposition are processes essential for the effective immune response of insects to various invaders. Phenoloxidase (PO), produced in specialized cells as an inactive precursor prophenoloxidase (proPO), is the key enzyme for melanin formation. The precursor is activated via limited proteolysis by a dedicated serine proteinase, which is the final element in the cascade of serine proteinases (SPs) that make up the PO system. Melanogenesis provides different cytotoxic molecules active in fighting infections, as well as melanin, which is important for sequestration of invaders. However, since the cytotoxic reactive compounds generated during melanization also pose a threat to host cells, strict control of the PO system is necessary for host self-protection. Different pathogens and parasites influence the PO system and melanization through various strategies, which allow them to survive and develop in the host insect body. In this review, we characterize "the lights and shadows" of PO system activation, indicating, on one hand, its advantages as an efficient and effective mechanism of the insect immune response and, on the other hand, the dangers for the insect host associated with the improper functioning of this system and selected strategies for regulating its activity by entomopathogenic organisms.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (A.Z.-B.); (S.S.); (M.K.-B.)
| |
Collapse
|
2
|
Fan J, Jiang S, Zhang T, Gao H, Chang BH, Qiao X, Han P. Sgabd-2 plays specific role in immune response against biopesticide Metarhizium anisopliae in Aphis citricola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106003. [PMID: 39084799 DOI: 10.1016/j.pestbp.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Metarhizium anisopliae is an effective biopesticide for controlling Aphis citricola, which has developed resistance to many chemical pesticides. However, the powerful immune system of A. citricola has limited the insecticidal efficacy of M. anisopliae. The co-evolution between insects and entomogenous fungi has led to emergence of new antifungal immune genes, which remain incompletely understood. In this study, an important immune gene Sgabd-2 was identified from A. citricola through transcriptome analysis. Sgabd-2 gene showed high expression in the 4th instar nymph and adult stages, and was mainly distributed in the abdominal region of A. citricola. The recombinant protein (rSgabd-2) exhibited no antifungal activity but demonstrated clear agglutination activity towards the conidia of M. anisopliae. RNA interference of Sgabd-2 by dsRNA feeding resulted in decreased phenoloxidase (PO) activity and weakened defense for A. citricola against M. anisopliae. Simultaneous silence of GNBP-1 and Sgabd-2 effectively reduced the immunity of A. citricola against M. anisopliae more than the individual RNAi of GNBP-1 or Sgabd-2. Furthermore, a genetically engineered M. anisopliae expressing double-stranded RNA (dsSgabd-2) targeting Sgabd-2 in A. citricola successfully suppressed the expression of Sgabd-2 and demonstrated increased virulence against A. citricola. Our findings elucidated Sgabd-2 as a critical new antifungal immune gene and proposed a genetic engineering strategy to enhance the insecticidal virulence of entomogenous fungi through RNAi-mediated inhibition of pest immune genes.
Collapse
Affiliation(s)
- Jiqiao Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Shirong Jiang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Tao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Huiyan Gao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Babar Hussain Chang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Xiongwu Qiao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China.
| | - Pengfei Han
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China.
| |
Collapse
|
3
|
Hao M, Ding H, Li L, Lv M, Xu H. Discovery of Pesticide Candidates from Natural Plant Products: Semisynthesis and Characterization of Andrographolide-Based Esters and Study of Their Pesticidal Properties and Toxicology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5574-5584. [PMID: 38468388 DOI: 10.1021/acs.jafc.3c06681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
To explore the use of nonfood plant-derived secondary metabolites for plant protection, a series of ester derivatives for controlling the major migratory agricultural pests were obtained by structural modification of andrographolide, a labdane diterpenoid isolated from Andrographis paniculata. Compound Id showed good insecticidal activity against the fall armyworm Spodoptera frugiperda Smith. Compounds IIa (LC50: 0.382 mg/mL) and IIIc (LC50: 0.563 mg/mL), the acaricidal activities of which were, respectively, 13.1 and 8.9 times that of andrographolide (LC50: 4.996 mg/mL), exhibited strong acaricidal and control effects against Tetranychus cinnabarinus Boisduval. Against Aphis citricola Van der Goot, compounds IIIc and IVb displayed 3.9- and 3.7-fold pronounced aphicidal activity of andrographolide. Effects of compound Id on three protective enzymes (superoxide dismutase, peroxidase, and catalase) of S. frugiperda were also observed. The obvious differences of epidermal cuticle structures of mites treated with compound IIa were determined by scanning electron microscopy. Structure-activity relationships indicated that 14-ester derivatives of andrographolide showed potential insecticidal/acaricidal activities and can be further utilized as lead compounds.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haixia Ding
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lulu Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
4
|
Hong S, Shang J, Sun Y, Tang G, Wang C. Fungal infection of insects: molecular insights and prospects. Trends Microbiol 2024; 32:302-316. [PMID: 37778923 DOI: 10.1016/j.tim.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaneli Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024; 14:1329843. [PMID: 38259477 PMCID: PMC10800808 DOI: 10.3389/fimmu.2023.1329843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Insects constitute approximately 75% of the world's recognized fauna, with the majority of species considered as pests. Entomopathogenic fungi (EPF) are parasitic microorganisms capable of efficiently infecting insects, rendering them potent biopesticides. In response to infections, insects have evolved diverse defense mechanisms, prompting EPF to develop a variety of strategies to overcome or circumvent host defenses. While the interaction mechanisms between EPF and insects is well established, recent findings underscore that their interplay is more intricate than previously thought, especially evident across different stages of EPF infection. This review primarily focuses on the interplay between EPF and the insect defense strategies, centered around three infection stages: (1) Early infection stage: involving the pre-contact detection and avoidance behavior of EPF in insects, along with the induction of behavioral responses upon contact with the host cuticle; (2) Penetration and intra-hemolymph growth stage: involving the initiation of intricate cellular and humoral immune functions in insects, while symbiotic microbes can further contribute to host resistance; (3) Host insect's death stage: involving the ultimate confrontation between pathogens and insects. Infected insects strive to separate themselves from the healthy population, while pathogens rely on the infected insects to spread to new hosts. Also, we discuss a novel pest management strategy underlying the cooperation between EPF infection and disturbing the insect immune system. By enhancing our understanding of the intricate interplay between EPF and the insect, this review provides novel perspectives for EPF-mediated pest management and developing effective fungal insecticides.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|