1
|
Tůma P. Advances in capillary electrophoresis for plant analysis. Talanta 2025; 293:128171. [PMID: 40252503 DOI: 10.1016/j.talanta.2025.128171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Capillary and microchip electrophoresis plays an important role in the analysis of the chemical composition of plants and nutrient soils, which finds applications in plant physiology, agrochemistry, medicine, toxicology and food science. Electrophoretic methods are used to determine minerals such as nutrients, heavy metal ions, primary and secondary metabolites, herbicides, phytohormones, peptides, proteins and extracellular vesicles. Progress is particularly evident in the following topics: i) development of mobile electrophoretic analysers for field-based monitoring of soil mineral supply, ii) direct analysis of xylem sap without sample treatment, iii) coupling of capillary and microchip electrophoresis with mass spectrometry for comprehensive metabolome and proteome characterization, iv) determination of secondary metabolites as biologically active compounds with a range of therapeutic and toxicological effects, v) monitoring of herbicides and their degradation dynamics, vi) research on plant exudates, extracellular vesicles and specific protein interactions.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czechia.
| |
Collapse
|
2
|
Engelbart L, Bieger S, Thompson K, Fischer L, Bader T, Kramer M, Haderlein SB, Röhnelt AM, Martin PR, Buchner D, Bloch R, Rügner H, Huhn C. In-situ formation of glyphosate and AMPA in activated sludge from phosphonates used as antiscalants and bleach stabilizers in households and industry. WATER RESEARCH 2025; 280:123464. [PMID: 40112459 DOI: 10.1016/j.watres.2025.123464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
The herbicide glyphosate and aminomethyl phosphonic acid (AMPA), a transformation product of glyphosate and other aminopolyphosphonates are widespread pollutants in European rivers. We recently showed that besides rain-driven input after agricultural or urban herbicide application, municipal wastewater significantly contributes to glyphosate contamination in European rivers. The rather constant mass fluxes over the year, made an explanation by herbicide applications difficult. In our search for a new source of glyphosate and AMPA, we here provide experimental evidence that a certain aminopolyphosphonate, used as antiscalant and bleach stabilizer in household detergents and numerous industrial processes, is a precursor of both glyphosate and AMPA. During incubation experiments with diethylenetriamine penta(methylene phosphonic acid) (DTPMP) in fresh activated sludge, we observed the formation of glyphosate with yields ranging from 0.017 to 0.040 mol% and formation of AMPA in the range of 0.402 to 1.72 mol% after 72 h. Both compounds are formed from DTPMP and possible intermediates, but they are also further transformed themselves in consecutive reactions. Glyphosate formation from DTPMP was further proven by incubating 13C-labeled DTPMP, which transformed into 13C-glyphosate and 13C-AMPA. The addition of DTPMP to azide-treated activated sludge yielded similar or even higher glyphosate and AMPA concentrations indicating that abiotic processes dominate the transformation process. In order to judge the relevance of this in-situ formation of glyphosate and AMPA from the laundry additive DTPMP, we estimated the average concentrations in wastewater.
Collapse
Affiliation(s)
- L Engelbart
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - S Bieger
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - K Thompson
- Universität Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Germany
| | - L Fischer
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany
| | - T Bader
- Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Germany
| | - M Kramer
- Eberhard Karls Universität Tübingen, Institute of Organic Chemistry, Department of Chemistry, Germany
| | - S B Haderlein
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - A M Röhnelt
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - P R Martin
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - D Buchner
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - R Bloch
- Berliner Wasserbetriebe, Germany
| | - H Rügner
- Eberhard Karls Universität Tübingen, Geo- and Environmental Research Center, Department of Geosciences, Germany
| | - C Huhn
- Eberhard Karls Universität Tübingen, Institute of Physical and Theoretical Chemistry, Department of Chemistry, Germany.
| |
Collapse
|
3
|
Kourtaki K, Buchner D, Martin PR, Thompson KJ, Haderlein SB. Influence of organophosphonates as alternative P-sources on bacterial transformation of glyphosate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125872. [PMID: 39984020 DOI: 10.1016/j.envpol.2025.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Glyphosate biotransformation under phosphorus (P)-limiting conditions has been demonstrated for numerous bacterial strains. However, besides glyphosate bacteria can utilize a broad spectrum of other biogenic and synthetic organophosphorus compounds (e.g., organophosphonates, OPs) as P-sources. The ubiquity of OPs in the environment reduces the likelihood that bacteria will encounter conditions where glyphosate is the only P-containing compound. To study the impact of co-existing OPs on the biotransformation of glyphosate, we conducted batch cultivation experiments with the bacterial strains Achromobacter insolitus strain Kg 19 (A. Kg 19) and Ochrobactrum pituitosum strain GPr1-13 (O. GPr1-13) in which glyphosate and an additional OP were simultaneously provided as P-sources. Experiments with glyphosate and one additional monophosphonate (aminomethylphosphonate (AMPA), 2-aminoethylphosphonate (AEP), or phenylphosphonate (PPA)) showed that glyphosate was the least preferred P-source. Furthermore, the repeated supply of excess AMPA or AEP hindered the biotransformation of glyphosate. For strain A. Kg 19, AEP and AMPA threshold concentrations above which no glyphosate transformation occurred were approximately 40 and 120 μM, respectively. Conversely, in the presence of a synthetic diphosphonate (iminodi(methylene phosphonate) (IDMP) or 1-hydroxyethane 1,1-diphosphonate (HEDP)), strain A. Kg 19 preferred glyphosate as P-source. While IDMP was transformed after the depletion of glyphosate, HEDP concentration remained constant throughout the experiment and its presence retarded both cell growth and transformation of glyphosate. In light of the ubiquitous presence of AMPA and other OPs in the environment, our findings indicate that the presence of OPs may compromise the biotransformation potential of glyphosate, leading to lower transformation rates than those reported in previous studies.
Collapse
Affiliation(s)
- Kleanthi Kourtaki
- Department of Geosciences, Eberhard Karls University Tübingen, Germany
| | - Daniel Buchner
- Department of Geosciences, Eberhard Karls University Tübingen, Germany.
| | - Philipp R Martin
- Department of Geosciences, Eberhard Karls University Tübingen, Germany
| | - Katharine J Thompson
- Institute of Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Germany
| | | |
Collapse
|
4
|
Röhnelt AM, Martin PR, Athmer M, Bieger S, Buchner D, Karst U, Huhn C, Schmidt TC, Haderlein SB. Glyphosate is a transformation product of a widely used aminopolyphosphonate complexing agent. Nat Commun 2025; 16:2438. [PMID: 40069182 PMCID: PMC11897348 DOI: 10.1038/s41467-025-57473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Diethylenetriamine penta(methylenephosphonate) (DTPMP) and related aminopolyphosphonates (APPs) are widely used as chelating agents in household and industrial applications. Recent studies have linked APP emissions to elevated levels of the herbicide glyphosate in European surface waters. However, the transformation processes and products of APPs in the environment are largely unknown. We show that glyphosate is formed from DTPMP by reaction with manganese at near neutral pH in pure water and in wastewater. Dissolved Mn2+ and O2 or suspended MnO2 lead to the formation of glyphosate, which remains stable after complete DTPMP conversion. Glyphosate yields vary with the reaction conditions and reach up to 0.42 mol%. The ubiquitous presence of manganese in natural waters and wastewater systems underscores the potential importance of Mn-driven DTPMP transformation as a previously overlooked source of glyphosate in aquatic systems. These findings challenge the current paradigm of herbicide application as the sole source of glyphosate contamination and necessitate a reevaluation of water resource protection strategies.
Collapse
Affiliation(s)
- Anna M Röhnelt
- Geo- and Environmental Research Center, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Philipp R Martin
- Geo- and Environmental Research Center, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Division of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Mathis Athmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Sarah Bieger
- Institute of Physical and Theoretical Chemistry, Department of Chemistry, University of Tübingen, Tübingen, Germany
| | - Daniel Buchner
- Geo- and Environmental Research Center, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Department of Chemistry, University of Tübingen, Tübingen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Stefan B Haderlein
- Geo- and Environmental Research Center, Department of Geosciences, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Mäder P, Stache F, Engelbart L, Huhn C, Hochmanová Z, Hofman J, Poll C, Kandeler E. Effects of MCPA and difenoconazole on glyphosate degradation and soil microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124926. [PMID: 39260542 DOI: 10.1016/j.envpol.2024.124926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Modern agriculture relies heavily on pesticide use to meet the demands of food quality and quantity. Therefore, pesticides are often applied in mixtures, leading to a diverse cocktail of chemicals and their metabolites in soils, which can affect non-target organisms such as soil microorganisms. Pesticides are tested for their single effects, but studies on their interactive effects are scarce. This study aimed to determine the effects of up to three simultaneously applied pesticides on the soil microbial community and on their special function in pesticide degradation. Agricultural soil without previous pesticide application was exposed to different mixtures of the herbicide glyphosate (GLP), the phenoxy herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) and the fungicide difenoconazole (DFC) for up to 56 days. Isotopic and molecular methods were used to investigate effects of the mixtures on the microbial community and to follow the mineralization and utilization of GLP. An initial increase in the metabolic quotient by up to 35 % in the presence of MCPA indicated a stress reaction of the microbial community. The presence of multiple pesticides reduced both gram positive bacterial fatty acid methyl esters (FAMEs) by 13 % and the abundance of microorganisms with the genetic potential for GLP degradation via the AMPA (aminomethylphosphonic acid) pathway. Both the number of pesticides and the identities of individual pesticides played major roles. Surprisingly, an increase in 13C-labelled GLP mineralization of up to 40 % was observed while carbon use efficiency (CUE) decreased. Interactions between multiple pesticides might alter the behavior of individual pesticides and be reflected in the microbial community. Our results highlight the importance of investigating not only single pesticides, but also pesticide mixtures and their interactions.
Collapse
Affiliation(s)
- Philipp Mäder
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany.
| | - Fabian Stache
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Lisa Engelbart
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Zuzana Hochmanová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Christian Poll
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| |
Collapse
|
6
|
Franck N, Stopper P, Ude L, Urteaga R, Kler PA, Huhn C. Paper-based isotachophoretic preconcentration technique for low-cost determination of glyphosate. Anal Bioanal Chem 2024; 416:6745-6757. [PMID: 39352471 PMCID: PMC11579070 DOI: 10.1007/s00216-024-05544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 11/21/2024]
Abstract
Electrophoretic microfluidic paper-based analytical devices (e-µPADs) are promising for low-cost and portable technologies, but quantitative detection remains challenging. In this study, we develop a paper-based isotachophoretic preconcentration and separation method for the herbicide glyphosate as a model analyte. The device, consisting of two electrode chambers filled with leading and terminating electrolytes and a nitrocellulose strip as the separation carrier, was illuminated by a flat light source and operated with a voltage supply of 400 V. Detection was accomplished using a simple camera. Colorimetric detection was optimized through competitive complexation between glyphosate, copper ions, and pyrocatechol violet as a dye. The buffer system was optimized using simulations, (i) ensuring the pH was optimal for the demetallation of the blue pyrocatechol violet-copper complex [PV] to the yellow free dye and (ii) ensuring the electrophoretic migration of glyphosate into the slower [PV] for the colorimetric reaction. A new data evaluation method is presented, analyzing the RGB channel intensities. The linear range was between 0.8 and 25 µM, with a LOD of approximately 0.8 µM. The ITP separation preconcentrated glyphosate by a factor of 820 in numerical simulations. The method may be applied to control glyphosate formulations, especially in developing countries where herbicide sales and applications are poorly regulated.
Collapse
Affiliation(s)
- Nicolás Franck
- Centro de Investigación en Métodos Computacionales, UNL-CONICET, Predio CCT CONICET RN 168, S3000GLN, Santa Fe, Argentina
- Instituto de Física del Litoral, UNL-CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
| | - Pascal Stopper
- Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Lukas Ude
- Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Raul Urteaga
- Instituto de Física del Litoral, UNL-CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
| | - Pablo A Kler
- Centro de Investigación en Métodos Computacionales, UNL-CONICET, Predio CCT CONICET RN 168, S3000GLN, Santa Fe, Argentina.
- Departamento de Ingeniería en Sistemas de Información, FRSF-UTN, Lavaise 610, S3000GLN, Santa Fe, Argentina.
| | - Carolin Huhn
- Chemistry Department, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
7
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
8
|
Wimmer B, Langarica-Fuentes A, Schwarz E, Kleindienst S, Huhn C, Pagel H. Mechanistic modeling indicates rapid glyphosate dissipation and sorption-driven persistence of its metabolite AMPA in soil. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:393-405. [PMID: 36417923 DOI: 10.1002/jeq2.20437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Residual concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) are often observed in soils. The factors controlling their biodegradation are currently not well understood. We analyzed sorption-limited biodegradation of glyphosate and AMPA in soil with a set of microcosm experiments. A mechanistic model that accounts for equilibrium and kinetic sorption facilitated interpretation of the experimental results. Both compounds showed a biphasic dissipation with an initial fast (up to Days 7-10) and subsequent slower transformation rate, pointing to sorption-limited degradation. Glyphosate transformation was well described by considering only equilibrium sorption. Model simulations suggested that only 0.02-0.13% of total glyphosate was present in the soil solution and thus bioavailable. Glyphosate transformation was rapid in solution (time required for 50 % dissipation of the total initially added chemical [DT50 ] = 3.9 min), and, despite strong equilibrium sorption, total glyphosate in soil dissipated quickly (DT50 = 2.4 d). Aminomethylphosphonic acid dissipation kinetics could only be described when considering both equilibrium and kinetic sorption. In comparison to glyphosate, the model simulations showed that a higher proportion of total AMPA was dissolved and directly bioavailable (0.27-3.32%), but biodegradation of dissolved AMPA was slower (DT50 = 1.9 h). The model-based data interpretation suggests that kinetic sorption strongly reduces AMPA bioavailability, leading to increased AMPA persistence in soil (DT50 = 12 d). Thus, strong sorption combined with rapid degradation points to low risks of glyphosate leaching by vertical transport through soil in the absence of preferential flow. Ecotoxicological effects on soil microorganisms might be reduced. In contrast, AMPA persists, rendering these risks more likely.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Adrian Langarica-Fuentes
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
| | - Erik Schwarz
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
- Dep. of Physical Geography and Bolin Centre for Climate Research, Stockholm Univ., Stockholm, Sweden
| | - Sara Kleindienst
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
- Dep. of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Univ. of Stuttgart, Stuttgart, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Holger Pagel
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Mellage A, Dörrich M, Haderlein SB. Capturing In Situ Glyphosate (De)sorption Kinetics in Floodplain Aquifer Sediment Columns: Geophysical Measurements and Reactive Transport Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12955-12964. [PMID: 36049056 DOI: 10.1021/acs.est.1c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glyphosate, an ionizable organic herbicide, is frequently detected in soils and groundwater globally despite its strong retention via sorption. Understanding its apparent mobility hinges on our ability to quantify its system-specific sorption behavior, hindered by its affinity to adsorb onto sediments, yielding very low aqueous concentrations. Here, we present findings from a saturated flow-through column experiment in which we monitored glyphosate sorption onto a natural calcareous aquifer sediment, using the noninvasive geophysical method spectral induced polarization (SIP). Our kinetic sorption reactive transport model predicted the strong nonlinear reversible retention of glyphosate and reproduced the spatial profile of retained glyphosate in the sediment, with a measured maximum of 0.06 mg g-1. The strong contribution of sorption to pore fluid conduction masked the expected variations in imaginary conductivity, σ″. However, time constants derived from a Cole-Cole model matched the timing and spatial distribution of model-predicted sorbed concentration changes, increasing from 0.8 × 10-3 to 1.7 × 10-3 s with an increase in sorbed glyphosate of 0.1 mg g-1. Thus, glyphosate sorption modified the surface charging properties of the sediment proportional to the solid-bound concentrations. Our findings link SIP signal variations to sorption dynamics and provide a framework for improved monitoring of charged organic contaminants in natural sediments.
Collapse
Affiliation(s)
- Adrian Mellage
- Civil and Environmental Engineering, University of Kassel, Kurt-Wolters-Str. 3, 34125 Kassel, Germany
| | - Manuel Dörrich
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Stefan B Haderlein
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Graf HG, Rudisch BM, Ude L, Müller L, Huhn C. Picomolar detection limits for glyphosate by two-dimensional column-coupled isotachophoresis/capillary zone electrophoresis-mass spectrometry. J Sep Sci 2022; 45:3887-3899. [PMID: 35998068 DOI: 10.1002/jssc.202200519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Capillary electrophoresis-mass spectrometry often lacks sufficient limits of detection for trace substances in the environment due to its low loadability. To overcome this problem, we conducted a feasibility study for column-coupling isotachophoresis to capillary electrophoresis-mass spectrometry. The first dimension isotachophoresis preconcentrated the analytes. The column-coupling of both dimensions was achieved by a hybrid capillary microfluidic chip setup. Reliable analyte transfer by voltage switching was enabled by an in-chip capacitively coupled contactless conductivity detector placed around the channel of the common section between two T-shaped crossings in the chip connecting both dimensions. This eliminated the need to calculate the moment of analyte transfer. A commercial capillary electrophoresis-mass spectrometry instrument with easily installable adaptations operated the setup. Prior to coupling isotachophoresis with capillary zone electrophoresis-mass spectrometry, both dimensions were optimized individually by simulations and verified experimentally. Both dimensions were able to stack/separate all degradation products of glyphosate, the most important herbicide applied worldwide. The first dimension isotachophoresis also removed phosphate, which is a critical matrix component in many environmental samples. Enrichment and separation of glyphosate and its main degradation product aminomethylphosphonic acid by the 2D setup provided an excellent limit of detection of 150 pM (25 ng/L) for glyphosate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Lukas Ude
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Linda Müller
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Schlögl J, Wimmer B, Cramaro L, Wirsching J, Poll C, Pagel H, Kandeler E, Huhn C, Griebler C, Stumpp C, Haderlein SB. Heavy rainfall following a summer drought stimulates soil redox dynamics and facilitates rapid and deep translocation of glyphosate in floodplain soils. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:825-838. [PMID: 35485927 DOI: 10.1039/d1em00527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present field data on the effects of heavy rainfall after drought on the mobility of glyphosate and redox conditions in a clayey floodplain soil. By applying glyphosate together with deuterated water as conservative tracer in combination with time resolved in situ redox potential measurements, the spatial and temporal patterns of water infiltration and pesticide transport as well as the concomitant changes of the redox conditions were revealed. Our findings demonstrate that shrinkage cracks in dry soils can serve as effective transport paths for atmospheric oxygen, water and glyphosate. The rain intensity of a typical summer storm event (approx. 25 mm within one hour) was sufficient to translocate deuterated water and glyphosate to the subsoil (50 cm) within 2 hours. Soil wetting induced partial closure of the shrinkage cracks and stimulated microbial activity resulting in pronounced dynamics of in situ soil redox conditions. Redox potentials in 40 to 50 cm depth dropped permanently to strongly reducing conditions within hours to days but fluctuated between reducing and oxidizing conditions in 10 to 30 cm depth. Our findings highlight the close link between the presence of macropores (shrinkage cracks), heavy rainfall after drought, redox dynamics and pesticide translocation to the subsoil and thus call for further studies addressing the effects of dynamic redox conditions as a limiting factor for glyphosate degradation.
Collapse
Affiliation(s)
- Johanna Schlögl
- Environmental Mineralogy, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| | - Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Lena Cramaro
- Department of Functional and Evolutionary Ecology, Division of Limnology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Johannes Wirsching
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, 70593 Stuttgart, Germany
| | - Christian Poll
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, 70593 Stuttgart, Germany
| | - Holger Pagel
- Department of Biogeophysics, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Str. 27, 70593 Stuttgart, Germany
| | - Ellen Kandeler
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, 70593 Stuttgart, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of Limnology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Vienna, Department of Water, Atmosphere and Environment, Institute for Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan B Haderlein
- Environmental Mineralogy, Center for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| |
Collapse
|