1
|
Yang J, Tu H, Tian B, Zhao Z, Wang Y, Yang Z, Wu J. Rational Design and Synthesis of Isoxazoline Derivatives with Low Bee-Toxicity Based on Bee GABA Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9489-9498. [PMID: 40223315 DOI: 10.1021/acs.jafc.4c08476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The isoxazoline insecticide, such as fluralaner, exhibits strong insecticidal activity against pests while showing no cross-resistance. However, due to its toxicity to bees, the use of Fluralaner is restricted in veterinary antiparasitic applications. Hence, how to modify the structure of fluralaner to maintain the insecticidal activity and reduce the toxicity to bees is vital and meaningful. In this study, a virtual screening of 11 diamide substructures was conducted based on the GABA receptor of bees (Apis mellifera), and four compounds with lower docking scores were regarded as potential low bee toxicity compounds. Among them, compound Y11 containing a thiophene diamine motif was used as a lead compound. Subsequently, compounds A1-A16 and B1-B11 were synthesized based on compound Y11. Interestingly, compound A13 exhibited LC50 values of 1.4 μg/mL against the diamondback moth (Plutella xylostella), outperforming the commercial insecticide ethiprole (LC50 = 2.9 μg/mL). Furthermore, compound A13 exhibited LC50 values of 9.9 μg/mL against fall armyworm (Spodoptera frugiperda), also outperforming the commercial insecticide Fipronil (LC50 = 78.8 μg/mL). Compound B1 exhibited LC50 values of 12.4 μg/mL against the corn borer (Pyrausta nubilalis), which surpassed that of the commercial insecticide ethiprole (30.8 μg/mL). Although the insecticidal activity of compound A13 against P. xylostella and S. frugiperda was not as potent as Fluralaner, its toxicity to bees was only 1/200 that of Fluralaner. Molecular dynamics studies elucidated the interaction mode of A13 with the GABA receptor of the bee. A13 has the potential to serve as a candidate isoxazoline insecticide and a low-toxicity alternative to Fluralaner, offering valuable insights for the future design of isoxazoline insecticide.
Collapse
Affiliation(s)
- Jianrong Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hong Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Bihong Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhaokai Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Song X, Wang H, Zou W, Hong H, Gao Y, Zhao C, Xu H, Yao G. New Isoxazoline Cyclopropyl-Picolinamide Derivatives as Potential Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6589-6598. [PMID: 40053680 DOI: 10.1021/acs.jafc.5c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Isoxazoline insecticides exhibit broad-spectrum insecticidal activity against insect pests. However, the high toxicity to honeybees limits their application in pest management. To explore reducing the toxicity of isoxazoline derivatives to bees, a series of new isoxazoline cyclopropyl-picolinamide derivatives were designed and synthesized. Bioassays revealed that FSA37 showed excellent insecticidal activity against Plutella xylostella, Spodoptera litura, and Spodoptera exigua, with LC50 values of 0.077, 0.104, and 0.198 mg/L, respectively. These results surpass those of fluxametamide, which displayed LC50 values of 0.605, 0.853, and 1.254 mg/L. Furthermore, FSA37 exhibited notable insecticidal activity against Solenopsis invicta. Importantly, bee toxicity studies indicated that FSA37 possesses significantly lower acute oral toxicity compared to fluralaner and fluxametamide. Quantum chemical calculations and molecular docking studies suggest that the cyclopropyl-picolinamide fragment may be crucial for both biological activity and the safety of nontarget organisms. In conclusion, FSA37 represents a promising candidate for a highly effective and environmentally friendly insecticide.
Collapse
Affiliation(s)
- Xiangmin Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haojing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - He Hong
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yongchao Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Chen Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Guangkai Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
3
|
Zhou C, Li G, Wang S, Li Z, Qian X, Cheng J. Novel Insecticidal Benzo[4,5]imidazo[1,2-b]pyrazole Derivatives Idenatified Through Ring-Closure Scaffold Hopping on Fipronil. Chem Biodivers 2025; 22:e202402148. [PMID: 39462210 DOI: 10.1002/cbdv.202402148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
A series of innovative benzo[4,5]imidazo[1,2-b]pyrazole scaffold containing compounds were rationally designed through a ring-closure scaffold hopping strategy and synthetized with an intermediate derivatization approach. Physicochemical properties analysis indicated the potential pesticide-likeness of the target compounds. The optimal target compound A14 showed relatively good insecticidal activity against P. xylostella, with an LC50 value of 37.58 mg/L, and demonstrated lower acute fish toxicity compared to fipronil. Docking binding mode analysis demonstrated that compound A14 bound to GABAR through a H-bond between the amide group and the residue of 6'Thr. The differences in binding modes between benzo[4,5]imidazo[1,2-b]pyrazole target compounds and fipronil may be a key factor for the reduced insecticidal activities. The elucidated binding mode and SAR profile lay a foundation for the further structural optimization of insecticidal benzo[4,5]imidazo[1,2-b]pyrazole derivatives.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Guanglong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Sihui Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
El-Shahat M, Tawfek N, El-Sofany WI. Design, Synthesis, Antibacterial, and Antifungal Evaluation of a New Series of Quinazoline - Thiazole and/or Quinazoline - Triazole Hybrids as Bioactive Heterocycles. Chem Biodivers 2025; 22:e202402042. [PMID: 39263847 DOI: 10.1002/cbdv.202402042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Herein, a one-pot reaction between cyclohexanone, thiourea, and 2,5-dimethoxybenzaldehyde allowed to prepare hexahydroquinazoline-2(1H)-thione4 firstly, which followed by reacting with hydrazine hydrate to produce the corresponding 2-hydrazinylhexahydroquinazoline 6. Interesting analogs of thiazolo[3,2-a]quinazoline 713 where obtained when hexahydroquinazoline-2(1H)-thione 4 reacted with 1,2-dibromoethane, chloroacetyl chloride, bromoacetic acid, bromoacetic acid/4-chlorobenzaldehyde, 2-bromopropionic acid, ethyl bromo cyanoacetate, and/or bromomalononitrile; respectively. While triazolo[4,3-a] quinazoline 14-16 were created when 2-hydrazinylhexahydroquinazoline 6 reacted with triethyl orthoformate, acetic anhydride, and carbon disulfide respectively. Numerous spectroscopy tests, including FT-IR, NMR (1H &13 C), and MS spectrum, proved all the newly produced analogs. Additionally, the new analogs were examined for their antibacterial and antifungal properties against Escherichia coli, Staphylococcus aureus, and Candida albicans. It was discovered that triazolo[4,3-a] quinazoline analogs 14-16 have superior bacterial and fungal activity when compared to the corresponding conventional doses of Streptomycin andGriseofulvin. Towards Candida albicans; compounds 14, 15, and 16 increase activity with 1.14 %, 1.15 %, and 1.21 %, respectively more than griseofulvin.While, for Staphylococcus aureus; compounds 14, 15, and 16 increase activity with 1.5 %, 1.5 %, and 1.7 %, respectively more than streptomycin. Morever, for Escherichia coli; compounds 14, 15, and 16 increase activity with 1.19 %, 1.21 %, and 1.22 %, respectively more than streptomycin. Finally, structure activity relationships show that quinazoline derivatives exhibit higher activity when fused to pyrazole ring 14-16 as compared when fused thiophene ring 7-13.
Collapse
Affiliation(s)
- Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Nashwa Tawfek
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Walaa I El-Sofany
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
5
|
Song X, Wang H, Gao Y, Xu K, Sun Z, Zhao C, Yao G, Xu H. Design, synthesis, and evaluation of novel isoxazoline derivatives containing 2-phenyloxazoline moieties as potential insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106109. [PMID: 39277414 DOI: 10.1016/j.pestbp.2024.106109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 μg/adult) compared to fluxametamide (LD50 = 1.083 μg/adult) and fluralaner (LD50 = 0.022 μg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.
Collapse
Affiliation(s)
- Xiangmin Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Haojing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Yongchao Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Kaijie Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zheng Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; Guangdong Institute of Tobacco Science, Shaoguan, Guangdong 512000, People's Republic of China
| | - Chen Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| | - Guangkai Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| |
Collapse
|
6
|
Dong L, Wang W, Zhou L, Yang W, Xu Z, Cheng J, Shao X, Xu X, Li Z. Design, Synthesis, and Bioactivity of Trifluoroethylthio-Substituted Phenylpyrazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11949-11957. [PMID: 38757770 DOI: 10.1021/acs.jafc.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.
Collapse
Affiliation(s)
- Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liqi Zhou
- Shanghai GreenTech Laboratory Co. Ltd, 650 Shunqing Road, Shanghai 100093, China
| | - Wulin Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Zhang L, Huang Y, Duan X, Si H, Luo H, Chen S, Liu L, He H, Wang Z, Liao S. Antifungal Activity and Mechanism of Camphor Derivatives against Rhizoctonia solani: A Promising Alternative Antifungal Agent for Rice Sheath Blight. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11415-11428. [PMID: 38727515 DOI: 10.1021/acs.jafc.4c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yizhong Huang
- College of Life Sciences, Nanchang Normal University, Nanchang 330032, China
| | | | - Hongyan Si
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai Luo
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | | | - Haohua He
- College of Agronomy, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shengliang Liao
- College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Tang D, Zhang W, Ji J, Jiang R, Wan Y, Ma W, Zhou P. Selected Electrosynthesis of 3-Aminopyrazoles from α,β-Alkynic Hydrazones and Secondary Amines. J Org Chem 2024; 89:6520-6526. [PMID: 38602497 DOI: 10.1021/acs.joc.3c02995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
An available and simple electromediated cyclization method for 3-amino-substituted pyrazoles by using α,β-alkynic hydrazone and secondary amine is described. The strategy utilizes KI as an electrolyte in an undivided cell with a constant current, generating the desired products in moderate-to-good yield. The method features selective amination at the 3-position of the pyrazole skeleton. The results indicate that α,β-alkynic hydrazones functionalized with aromatic groups and secondary amines functionalized with electron-rich groups were better tolerated in this transformation.
Collapse
Affiliation(s)
- Dong Tang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750004, P. R. China
| | - Wei Zhang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750004, P. R. China
| | - Jingwen Ji
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750004, P. R. China
| | - Rui Jiang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750004, P. R. China
| | - Yaya Wan
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750004, P. R. China
| | - Wei Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Pengjuan Zhou
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750004, P. R. China
| |
Collapse
|
9
|
Gao YC, Song X, Jia T, Zhao C, Yao G, Xu H. Discovery of new N-Phenylamide Isoxazoline derivatives with high insecticidal activity and reduced honeybee toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105843. [PMID: 38582603 DOI: 10.1016/j.pestbp.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 04/08/2024]
Abstract
Isoxazoline is a novel structure with strong potential for controlling agricultural insect pests, but its high toxicity to honeybees limits its development in agriculture. Herein, a series of N-phenylamide isoxazoline derivatives with low honeybee toxicity were designed and synthesized using the intermediate derivatization method. Bioassay results showed that these compounds exhibited good insecticidal activity. Compounds 3b and 3f showed significant insecticidal effects against Plutella xylostella (P. xylostella) with median lethal concentrations (LC50) of 0.06 and 0.07 mg/L, respectively, comparable to that of fluralaner (LC50 = 0.02 mg/L) and exceeding that of commercial insecticide fluxametamide (LC50 = 0.52 mg/L). It is noteworthy that the acute honeybee toxicities of compounds 3b and 3f (LD50 = 1.43 and 1.63 μg/adult, respectively) were significantly reduced to 1/10 of that of fluralaner (LD50 = 0.14 μg/adult), and were adequate or lower than that of fluxametamide (LD50 = 1.14 μg/adult). Theoretical simulation using molecular docking indicates that compound 3b has similar binding modes with fluralaner and a similar optimal docking pose with fluxametamide when binding to the GABA receptor, which may contribute to its potent insecticidal activity and relatively low toxicity to honey bees. This study provides compounds 3b and 3f as potential new insecticide candidates and provides insights into the development of new isoxazoline insecticides exhibiting both high efficacy and environmental safety.
Collapse
Affiliation(s)
- Yong-Chao Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xiangmin Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Tianhao Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
10
|
Liu D, Bi Q, Zhang J, Gao Y, Luo C, Tian H, He J, Zhang L. Novel heptafluoroisopropyl N-phenylpyrazole aryl amides containing cyanoalkyl groups: Design, synthesis, insecticidal activity, docking studies and theoretical calculations. Bioorg Chem 2024; 143:107024. [PMID: 38103331 DOI: 10.1016/j.bioorg.2023.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
To discover and develop new insecticides of the phenylpyrazole class, a series of heptafluoroisopropyl N-phenylpyrazole aryl amide compounds bearing cyanoalkyl groups were synthesized based on the lead compound nicofluprole. Their structures were established by HRMS, 1H NMR and 13C NMR. Bioassay results indicated that several of these compounds exhibited remarkable acaricidal and insecticidal activities. The LC50 values for compounds A1, A2 and A5 against Tetranychus cinnabarinus (T. cinnabarinus) were 1.7-4.2 times lower than that of nicofluprole (3.124 mg/L). Compounds A1, A2, A4 and A7 against Myzus persicae (M. persicae) had LC50 values of 0.261, 1.292, 0.589 and 1.133 mg/L respectively, exceeding that of nicofluprole (LC50 = 4.200 mg/L). Some compounds also demonstrated good insecticidal activity against Plutella xylostella (P. xylostella). For example, compounds A1-A4, A6, and A7 had a mortality rate of 100 % at a low concentration of 1.25 mg/L, which was comparable to nicofluprole (93.3%). Compound A1 exhibited insecticidal activity against Chilo suppressalis (C. suppressalis) with an LC50 value of 2.271 mg/L, which was superior to both nicofluprole (6.021 mg/L) and the positive control broflanilide (6.895 mg/L). Taking compound A5 as a representative, we tested the insecticidal activity against Aphis fabae (A. fabae), Aphis gossypii Glover (A. gossypii Glover), Nilaparvata lugens (N. lugens) and Laodelphax striatellus (L. striatellus) at 10 mg/L, and our results revealed that compound A5 exhibited broad-spectrum insecticidal activity. Molecular docking studies suggested that A1 had a lower binding energy of -7.764 kcal/mol with the P. xylostella gamma-aminobutyric acid receptors (GABAR). Density functional theory calculations (DFT) provided insights into the design of new compounds. This research suggested that the novel phenylpyrazoles featuring cyanoalkyl moieties in this work hold potential as novel insecticides for further research and development.
Collapse
Affiliation(s)
- Dongdong Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
| | - Qingjie Bi
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Jing Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China; Metisa Biotechnology Co., Ltd., Nanning 530000, China.
| | - Yixing Gao
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Chunfen Luo
- Metisa Biotechnology Co., Ltd., Nanning 530000, China
| | - Huan Tian
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Juan He
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China
| | - Lixin Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang 110142, China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China; Metisa Biotechnology Co., Ltd., Nanning 530000, China.
| |
Collapse
|
11
|
Li L, Zhao X, Hu K, Xu W, Wang M, Wang H. Enantioselective Toxicity and Potential Endocrine-Disruptive Effects of the Insecticides Flufiprole and Ethiprole on Danio rerio. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1509-1515. [PMID: 38190123 DOI: 10.1021/acs.jafc.3c07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Phenylpyrazole insecticides are widely used as chiral pesticides. However, the enantioselective toxicity and potential endocrine-disrupting effects of these insecticides on aquatic organisms remain unclear. Herein, the enantioselective toxicity and potential endocrine-disrupting effects of flufiprole and ethiprole were investigated by using zebrafish embryos/larvae as a model. The acute toxicity of R-flufiprole and R-ethiprole toward zebrafish embryos and larvae was 1.8-3.1-fold higher than that of the S-configuration. Additionally, R-flufiprole and R-ethiprole had a greater effect on the expression of genes related to the hypothalamus-pituitary-gonad axis in zebrafish compared with the S-configuration. Nevertheless, both S-flufiprole and S-ethiprole exhibited a greater interference effect on the expression of genes related to the hypothalamus-pituitary-thyroid axis and a greater teratogenic effect on zebrafish than the R-configuration. Thus, this study demonstrates that both flufiprole and ethiprole exhibit enantioselective acute toxicity and developmental toxicity toward zebrafish. Furthermore, those pesticides potentially possess enantioselective endocrine-disrupting effects.
Collapse
Affiliation(s)
- Lianshan Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| | - Xuejun Zhao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| | - Kunming Hu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Weiye Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
- Institute of Xiongan New Area, Hebei University, Baoding 071002, China
| |
Collapse
|
12
|
Abbass EM, Ali AK, El-Farargy AF, Abdel-Haleem DR, Shaban SS. Synthesis, toxicological and in silico evaluation of novel spiro pyrimidines against Culex pipiens L. referring to chitinase enzyme. Sci Rep 2024; 14:1516. [PMID: 38233515 PMCID: PMC10794250 DOI: 10.1038/s41598-024-51771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
The exponential development of resistance to conventional chemical insecticides adds another important motive for the creation of novel insecticidal active agents. One of the keys to meeting this challenge is the exploration of novel classes of insecticidal molecules with different modes of action. Herein, a novel series of spiro pyrimidine derivatives was prepared using some green synthetic methodologies such as microwave irradiation, and sonication under ultrasound waves. Spiro pyrimidine aminonitrile 1 is a key starting material for the synthesis of targets 2-9 by reaction with different carbon electrophiles and nitrogen nucleophiles. The structures of all the newly synthesized compounds were approved using spectral data. The toxicological efficiency and biological impacts of the synthesized spiro pyrimidine derivatives were assessed against Culex pipiens L. larvae. The toxicity of synthesized compounds showed remarkable variations against the C. pipiens larvae. Where, 3, 4 and 2 were the most efficient compounds with LC50 values of 12.43, 16.29 and 21.73 µg/mL, respectively. While 1 was the least potent compound with an LC50 value of 95.18 µg/mL. As well, other compounds were arranged according to LC50 values as follows 5 > 7 > 6 > 9 > 8. In addition, 3 and 4 exhibited significant prolongation of the developmental duration and greatly inhibited adult emergence. Moreover, many morphological deformities were observed in all developmental stages. Furthermore, cytotoxicity of the most effective compounds was assessed against the normal human cells (WI-38) as non-target organisms, where compounds 2, 4 and 3 showed weak to non-toxic effects. The study of binding affinity and correlation between chemical structure and reactivity was carried out using molecular docking study and DFT calculations to investigate their mode of action. This study shed light on promising compounds with larvicidal activity and biological impacts on the C. pipiens life cycle.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Safaa S Shaban
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
13
|
Biswas S, Shit S, Behera BK, Sahu AK, Saikia AK. Leveraging cascade alkynyl Prins cyclization towards the stereoselective synthesis of spiro-furan quinazolinone scaffolds. Chem Commun (Camb) 2023; 59:14301-14304. [PMID: 37965888 DOI: 10.1039/d3cc04464e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A TfOH-promoted, metal-free protocol has been unveiled for the synthesis of spiro-furan quinazolinones employing alkynol urea derivatives utilizing alkynyl Prins cyclization reaction. This methodology produces highly functionalized spiro-heterocycles in excellent yields with exclusive E-selectivity under ambient conditions. Furthermore, late-stage modifications incorporate bromide and acetyl functionalities into the synthesized spiro-heterocycles.
Collapse
Affiliation(s)
- Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
14
|
Yao G, Han S, Wen Y, Xiao Y, Zhao C, Xu H. Design, synthesis, insecticidal activities and translocation of amino acid-tralopyril conjugates as vectorizing agrochemicals. PEST MANAGEMENT SCIENCE 2023; 79:4018-4024. [PMID: 37278576 DOI: 10.1002/ps.7599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Conjugating amino acid moieties to active ingredients has been recognized as an effective method for improving the precise targeting of the active form to the specific site. Based on the vectorization strategy, a series of amino acid-tralopyril conjugates were designed and synthesized as novel proinsecticide candidates, with the potential capability of root uptake and translocation to the foliage of crops. RESULTS Bioassay results showed excellent insecticidal activities of some conjugates, in particular, the conjugates 6b, 6e, and 7e, against the diamondback moth (Plutella xylostella), with equivalent insecticidal activity to chlorfenapyr (CFP). Importantly, conjugate 6e exhibited significantly higher in vivo insecticidal activity against P. xylostella than CFP. Furthermore, the systemic test experiments with Brassica chinensis demonstrated that conjugates 6e and 7e could be transported to the leaves, in contrast to CFP, which remained in the root. CONCLUSION This study demonstrated the feasibility of amino acid fragment conjugation as a vectorization strategy for transporting non-systemic insecticides into the leaves of B. chinensis while maintaining in vivo insecticidal activity. The findings also provide insights for subsequent mechanism studies on the uptake and transport of amino acid-insecticide conjugates in plants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangkai Yao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shuo Han
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yingjie Wen
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuyan Xiao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education; College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Jiang X, Xiao L, Chen Y, Huang C, Wang J, Tang X, Wan K, Xu H. Degradation of the Novel Heterocyclic Insecticide Pyraquinil in Water: Kinetics, Degradation Pathways, Transformation Products Identification, and Toxicity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37378629 DOI: 10.1021/acs.jafc.3c01971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
As new pesticides are continuously introduced into agricultural systems, it is essential to investigate their environmental behavior and toxicity effects to better evaluate their potential risks. In this study, the degradation kinetics, pathways, and aquatic toxicity of the new fused heterocyclic insecticide pyraquinil in water under different conditions were investigated for the first time. Pyraquinil was classified as an easily degradable pesticide in natural water, and hydrolyzes faster in alkaline conditions and at higher temperatures. The formation trends of the main transformation products (TPs) of pyraquinil were also quantified. Fifteen TPs were identified in water using ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap-HRMS) and Compound Discoverer software, which adopted suspect and nontarget screening strategies. Among them, twelve TPs were reported for the first time and 11 TPs were confirmed by synthesis of their standards. The proposed degradation pathways have demonstrated that the 4,5-dihydropyrazolo[1,5-a]quinazoline skeleton of pyraquinil is stable enough to retain in its TPs. ECOSAR prediction and laboratory tests showed that pyraquinil was "very toxic" or "toxic" to aquatic organisms, while the toxicities of all of the TPs are substantially lower than that of pyraquinil except for TP484, which was predicted to pose a higher toxicity. The results are important for elucidating the fate and assessing the environmental risks of pyraquinil, and provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jiale Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
16
|
Li B, Yan Y, Yao G, Zhang L, Lin F, Xu H. Mode of Action of Novel Pyrazoloquinazoline on Diamondback Moth ( Plutella xylostella) Ligand-Gated Chloride Channels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7250-7257. [PMID: 37134096 DOI: 10.1021/acs.jafc.3c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In our previous study, a series of novel pyrazoloquinazolines were synthesized. Pyrazoloquinazoline 5a showed high insecticidal activity against the diamondback moth (Plutella xylostella) and no cross-resistance to fipronil. Patch clamp electrophysiology performed on P. xylostella pupae brains and two-electrode voltage clamp electrophysiology performed on Xenopus Laevis oocytes indicated that 5a might act on the ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) and glutamate-gated chloride channel (GluCl). Moreover, 5a's potency on PxGluCl was about 15-fold higher than on fipronil, which may explain why there was no cross-resistance between 5a and fipronil. Downregulation of the PxGluCl transcription level significantly enhanced the insecticidal activity of 5a on P. xylostella. These findings shed light on the mode of action of 5a and provide important insights into the development of new insecticides for agricultural applications.
Collapse
Affiliation(s)
- Benjie Li
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Ying Yan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Jia T, Pan N, Song X, Gao Y, Zhang Z, Xu H, Zhao C. Preparation and Characterization of Insecticide/Calix[4]arene Complexes and Their Enhanced Insecticidal Activities against Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5576-5584. [PMID: 37014048 DOI: 10.1021/acs.jafc.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Applications of supramolecular materials in plant protection have attracted significant interest in recent years. To develop a feasible method to improve the efficacy and reduce the usage of chemical pesticides, the effect of calix[4]arene (C4A) inclusion on enhancing the insecticidal activity of commercial insecticides was investigated. Results showed that all three tested insecticides (chlorfenapyr, indoxacarb, and abamectin) with distinct molecular sizes and modes of action were able to form stable 1:1 host-guest complexes with C4A through simple preparation steps. The insecticidal activities of the complexes against Plutella xylostella were effectively enhanced compared to the guest molecule, with the synergism ratio being up to 3.05 (for indoxacarb). An obvious correlation was found between the enhanced insecticidal activity and the high binding affinity between insecticide and C4A, while the improvement in water solubility may not be a determining factor. The work would provide hints for the further development of functional supramolecular hosts as synergists in pesticide formulations.
Collapse
Affiliation(s)
- Tianhao Jia
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Nianyou Pan
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmin Song
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yongchao Gao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Shang J, Zhang Y, Yang N, Xiong L, Bian Q, Wang B. Synthesis and biological evaluation of novel pyridylpyrazole amides containing benzothiazole/thiourea/urea motif as pesticidal agents. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2192935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Junfeng Shang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Yan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Lixia Xiong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|