1
|
Mező G, Gomena J, Ranđelović I, Dókus EL, Kiss K, Pethő L, Schuster S, Vári B, Vári-Mező D, Lajkó E, Polgár L, Kőhidai L, Tóvári J, Szabó I. Oxime-Linked Peptide-Daunomycin Conjugates as Good Tools for Selection of Suitable Homing Devices in Targeted Tumor Therapy: An Overview. Int J Mol Sci 2024; 25:1864. [PMID: 38339141 PMCID: PMC10855781 DOI: 10.3390/ijms25031864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.
Collapse
Affiliation(s)
- Gábor Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Jacopo Gomena
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
| | - Endre Levente Dókus
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Krisztina Kiss
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Lilla Pethő
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Sabine Schuster
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Diána Vári-Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| |
Collapse
|
2
|
Pethő L, Oláh-Szabó R, Mező G. Influence of the Drug Position on Bioactivity in Angiopep-2-Daunomycin Conjugates. Int J Mol Sci 2023; 24:ijms24043106. [PMID: 36834514 PMCID: PMC9959518 DOI: 10.3390/ijms24043106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The blood-brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB via receptor-mediated transcytosis and simultaneously target glioblastomas. Angiopep-2 contains three amino groups that have previously been used to produce drug-peptide conjugates, although the role and importance of each position have not yet been investigated. Thus, we studied the number and position of drug molecules in Angiopep-2 based conjugates. Conjugates containing one, two, and three daunomycin molecules conjugated via oxime linkage in all possible variations were prepared. The in vitro cytostatic effect and cellular uptake of the conjugates were investigated on U87 human glioblastoma cells. Degradation studies in the presence of rat liver lysosomal homogenates were also performed in order for us to better understand the structure-activity relationship and to determine the smallest metabolites. Conjugates with the best cytostatic effects had a drug molecule at the N-terminus. We demonstrated that the increasing number of drug molecules does not necessarily increase the efficacy of the conjugates, and proved that modification of the different conjugation sites results in differing biological effectiveness.
Collapse
Affiliation(s)
- Lilla Pethő
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Rita Oláh-Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
3
|
Different Approaches to Cyclize a Cell-Penetrating Peptide and to Tether Bioactive Payloads. Methods Mol Biol 2021; 2371:375-389. [PMID: 34596859 DOI: 10.1007/978-1-0716-1689-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Cell-penetrating peptides (CPPs) are versatile tools to deliver various molecules into different cell types. The majority of CPPs are usually represented by linear structures, but numerous recent studies demonstrated cyclization to be an effective strategy leading to favorable biological activities. Here we describe two different methods for the side chain and backbone cyclization of CPPs . Furthermore, we highlight straightforward procedures for the covalent coupling of fluorophores or cytotoxic payloads.
Collapse
|
4
|
Kijewska M, Koch T, Waliczek M, Konieczny A, Stefanowicz P, Szewczuk Z. Selective ESI-MS detection of carbonyl containing compounds by aminooxyacetic acid immobilized on a resin. Anal Chim Acta 2021; 1176:338767. [PMID: 34399903 DOI: 10.1016/j.aca.2021.338767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
There are numerous examples of bioactive compounds containing carbonyl groups including modified proteins with oxidation of side chain of amino acid residues to aldehyde/ketone groups which are frequently considered as markers of oxidative stress. The carbonyl unit can be also distinguished as a substructure in many illegal drugs including anabolic steroids as well as cations derivatives. Based on chemoselective formation of oximes by solid phase immobilized hydroxylamine derivatives we proposed the protocol for derivatization and selective detection of carbonylated compounds in human serum albumin hydrolysate as a complex peptide mixture and of testosterone in urine samples. This allowed for the removal of the matrix and the qualitative and quantitative analysis of the derivatized analyte by LC-MS/MS (or LC-MRM). Herein we report the preparation and chemical characterization of a novel, ChemMatrix - based resin functionalized with aminooxyacetic acid (AOA). The hydroxylamine moiety in this resin is combined with a peptide linker (GRG) containing an arginine residue to enhance the ionization efficiency. Application of an isotopically labeled carbonylated peptide ((H-Leu-Val-Thr(O)-Asp-Leu-Thr-Lys [13C6,15N2]-OH and testosterone-d3 allowed us to carry out quantitative analyses of detected compounds. Our method is general and may be applied for analysis of carbonylated compounds in biological samples. Our method based on application of functionalized resin allowed to quantify the level of free testosterone in small sample (0.5 mL) of urine, while the non-derivatized testosterone from urine sample was not detected during direct LC-MRM analysis.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland.
| | - Tomasz Koch
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Andrzej Konieczny
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
5
|
Duflocq S, Zhou J, Huguenot F, Vidal M, Liu WQ. One-pot oxime ligation from peptides bearing thiazolidine and aminooxyacetyl groups. RSC Adv 2020; 10:17681-17685. [PMID: 35515616 PMCID: PMC9053634 DOI: 10.1039/d0ra03235b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022] Open
Abstract
One-pot oxime ligation under mild conditions using Pd(ii) as a shared catalyst from an aldehyde precursor (Thz) and a protected aminooxyacetyl group (Proc-Aoa) is reported. Two complementary metal-free protocols using unmasked Aoa-peptide are also described. Acetoxime-peptide can proceed to the desired oxime through an additional transoximation step. Pd(ii), acidic hydrolysis and iodine lead to one-pot oxime ligation from peptides bearing thiazolidine and aminooxyacetyl groups.![]()
Collapse
Affiliation(s)
| | - Jingjing Zhou
- Université de Paris
- CiTCoM
- 8038 CNRS
- U 1268 INSERM
- F-75006 Paris
| | | | - Michel Vidal
- Université de Paris
- CiTCoM
- 8038 CNRS
- U 1268 INSERM
- F-75006 Paris
| | - Wang-Qing Liu
- Université de Paris
- CiTCoM
- 8038 CNRS
- U 1268 INSERM
- F-75006 Paris
| |
Collapse
|
6
|
Overcharging Effect in Electrospray Ionization Mass Spectra of Daunomycin-Tuftsin Bioconjugates. Molecules 2019; 24:molecules24162981. [PMID: 31426442 PMCID: PMC6720970 DOI: 10.3390/molecules24162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide-based small molecule drug conjugates for targeted tumor therapy are currently in the focus of intensive research. Anthracyclines, like daunomycin, are commonly used anticancer drug molecules and are also often applied in peptide-drug conjugates. However, lability of the O-glycosidic bond during electrospray ionization mass spectrometric analysis hinders the analytical characterization of the constructs. “Overprotonation” can occur if daunomycin is linked to positively charged peptide carriers, like tuftsin derivatives. In these molecules, the high number of positive charges enhances the in-source fragmentation significantly, leading to complex mass spectra composed of mainly fragment ions. Therefore, we investigated different novel tuftsin-daunomycin conjugates to find an appropriate condition for mass spectrometric detection. Our results showed that shifting the charge states to lower charges helped to keep ions intact. In this way, a clear spectrum could be obtained containing intact protonated molecules only. Shifting of the protonation states to lower charges could be achieved with the use of appropriate neutral volatile buffers and with tuning the ion source parameters.
Collapse
|
7
|
Feni L, Parente S, Robert C, Gazzola S, Arosio D, Piarulli U, Neundorf I. Kiss and Run: Promoting Effective and Targeted Cellular Uptake of a Drug Delivery Vehicle Composed of an Integrin-Targeting Diketopiperazine Peptidomimetic and a Cell-Penetrating Peptide. Bioconjug Chem 2019; 30:2011-2022. [PMID: 31243977 DOI: 10.1021/acs.bioconjchem.9b00292] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-penetrating peptides (CPPs) have emerged as powerful tools in terms of drug delivery. Those short, often cationic peptides are characterized by their usually low toxicity and their ability to transport diverse cargos inside almost any kinds of cells. Still, one major drawback is their nonselective uptake making their application in targeted cancer therapies questionable. In this work, we aimed to combine the power of a CPP (sC18) with an integrin-targeting unit (c[DKP-f3-RGD]). The latter is composed of the Arg-Gly-Asp peptide sequence cyclized via a diketopiperazine scaffold and is characterized by its high selectivity toward integrin αvβ3. The two parts were linked via copper-catalyzed alkyne-azide click reaction (CuAAC), while the CPP was additionally functionalized with either a fluorescent dye or the anticancer drug daunorubicin. Both functionalities allowed a careful biological evaluation of these novel peptide-conjugates regarding their cellular uptake mechanism, as well as cytotoxicity in αvβ3 integrin receptor expressing cells versus cells that do not express αvβ3. Our results show that the uptake follows a "kiss-and-run"-like model, in which the conjugates first target and recognize the receptor, but translocate mainly by CPP mediation. Thereby, we observed significantly more pronounced toxic effects in αvβ3 expressing U87 cells compared to HT-29 and MCF-7 cells, when the cells were exposed to the substances with only very short contact times (15 min). All in all, we present new concepts for the design of cancer selective peptide-drug conjugates.
Collapse
Affiliation(s)
- Lucia Feni
- University of Cologne , Department of Chemistry, Biochemistry , Zülpicher Strasse 47a , D-50674 Cologne , Germany
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Clémence Robert
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), National Research Council (CNR) , Via G.Golgi 19 , 20133 , Milan , Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Ines Neundorf
- University of Cologne , Department of Chemistry, Biochemistry , Zülpicher Strasse 47a , D-50674 Cologne , Germany
| |
Collapse
|
8
|
Conibear AC, Thewes K, Groysbeck N, Becker CFW. Multifunctional Scaffolds for Assembling Cancer-Targeting Immune Stimulators Using Chemoselective Ligations. Front Chem 2019; 7:113. [PMID: 30895175 PMCID: PMC6414710 DOI: 10.3389/fchem.2019.00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Chemoselective ligations allow chemical biologists to functionalise proteins and peptides for biomedical applications and to probe biological processes. Coupled with solid phase peptide synthesis, chemoselective ligations enable not only the design of homogeneous proteins and peptides with desired natural and unnatural modifications in site-specific locations but also the design of new peptide and protein topologies. Although several well-established ligations are available, each method has its own advantages and disadvantages and they are seldom used in combination. Here we have applied copper-catalyzed azide-alkyne “click,” oxime, maleimide, and native chemical ligations to develop a modular synthesis of branched peptide and polymer constructs that act as cancer-targeting immune system engagers (ISErs) and functionalised them for detection in biological systems. We also note some potential advantages and pitfalls of these chemoselective ligations to consider when designing orthogonal ligation strategies. The modular synthesis and functionalization of ISErs facilitates optimisation of their activity and mechanism of action as potential cancer immunotherapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Karine Thewes
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Nadja Groysbeck
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Schuster S, Biri-Kovács B, Szeder B, Buday L, Gardi J, Szabó Z, Halmos G, Mező G. Enhanced In Vitro Antitumor Activity of GnRH-III-Daunorubicin Bioconjugates Influenced by Sequence Modification. Pharmaceutics 2018; 10:E223. [PMID: 30423956 PMCID: PMC6320914 DOI: 10.3390/pharmaceutics10040223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Receptors for gonadotropin releasing hormone (GnRH) are highly expressed in various human cancers including breast, ovarian, endometrial, prostate and colorectal cancer. Ligands like human GnRH-I or the sea lamprey analogue GnRH-III represent a promising approach for the development of efficient drug delivery systems for targeted tumor therapy. Here, we report on the synthesis and cytostatic effect of 14 oxime bond-linked daunorubicin GnRH-III conjugates containing a variety of unnatural amino acids within the peptide sequence. All compounds demonstrated a reduced cell viability in vitro on estrogen receptor α (ERα) positive and ERα negative cancer cells. The best candidate revealed an increased cancer cell growth inhibitory effect compared to our lead-compound GnRH-III-[⁴Lys(Bu),⁸Lys(Dau=Aoa)]. Flow cytometry and fluorescence microscopy studies showed that the cellular uptake of the novel conjugate is substantially improved leading to an accelerated delivery of the drug to its site of action. However, the release of the active drug-metabolite by lysosomal enzymes was not negatively affected by amino acid substitution, while the compound provided a high stability in human blood plasma. Receptor binding studies were carried out to ensure a high binding affinity of the new compound for the GnRH-receptor. It was demonstrated that GnRH-III-[²ΔHis,³d-Tic,⁴Lys(Bu),⁸Lys(Dau=Aoa)] is a highly potent and promising anticancer drug delivery system for targeted tumor therapy.
Collapse
Affiliation(s)
- Sabine Schuster
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Beáta Biri-Kovács
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - János Gardi
- First Department of Internal Medicine, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary.
| | - Gábor Mező
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 1117 Budapest, Hungary.
| |
Collapse
|
10
|
Schuster S, Biri-Kovács B, Szeder B, Farkas V, Buday L, Szabó Z, Halmos G, Mező G. Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin-GnRH-III conjugates developed for targeted drug delivery. Beilstein J Org Chem 2018; 14:756-771. [PMID: 29719573 PMCID: PMC5905287 DOI: 10.3762/bjoc.14.64] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates.
Collapse
Affiliation(s)
- Sabine Schuster
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary.,Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary.,Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Viktor Farkas
- MTA-ELTE Protein Modelling Research Group, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117 Budapest, Hungary.,Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| |
Collapse
|
11
|
Conibear AC, Pötgens AJG, Thewes K, Altdorf C, Hilzendeger C, Becker CFW. Synthetic Cancer-Targeting Innate Immune Stimulators Give Insights into Avidity Effects. Chembiochem 2018; 19:459-469. [PMID: 29230922 DOI: 10.1002/cbic.201700522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 11/08/2022]
Abstract
Multispecific and multivalent antibodies are seen as promising cancer therapeutics, and numerous antibody fragments and derivatives have been developed to exploit avidity effects that result in increased selectivity. Most of these multispecific and multivalent antibody strategies make use of recombinant expression of antigen-binding modules. In contrast, chemical synthesis and chemoselective ligations can be used to generate a variety of molecules with different numbers and combinations of binding moieties in a modular and homogeneous fashion. In this study we synthesized a series of targeted immune system engagers (ISErs) by using solid-phase peptide synthesis and chemoselective ligations. To explore avidity effects, we constructed molecules bearing different numbers and combinations of two "binder" peptides that target ephrin A2 and integrin α3 receptors and an "effector" peptide that binds to formyl peptide receptors and stimulates an immune response. We investigated various strategies for generating multivalent and multispecific targeted innate immune stimulators and studied their activities in terms of binding to cancer cells and stimulation of immune cells. This study gives insights into the influence that multivalency and receptor density have on avidity effects and is useful for the design of potential anticancer therapeutics.
Collapse
Affiliation(s)
- Anne C Conibear
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| | - André J G Pötgens
- Syntab Therapeutics GmbH, ZBMT, Pauwelstrasse 17, 52074, Aachen, Germany
| | - Karine Thewes
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| | - Claudia Altdorf
- Syntab Therapeutics GmbH, ZBMT, Pauwelstrasse 17, 52074, Aachen, Germany
| | | | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
12
|
Convenient Preparation of 18F-Labeled Peptide Probes for Potential Claudin-4 PET Imaging. Pharmaceuticals (Basel) 2017; 10:ph10040099. [PMID: 29258264 PMCID: PMC5748654 DOI: 10.3390/ph10040099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
Since pancreatic cancer is often diagnosed in a late state of cancer development, diagnostic opportunities allowing early disease detection are highly sought after. As such, cancer expression of claudin proteins is markedly dysregulated, making it an attractive target for molecular imaging like positron emission tomography (PET). Claudins are a family of transmembrane proteins that have a pivotal role as members of the tight junctions. In particular, claudin-3 and claudin-4 are frequently overexpressed in pancreatic cancer. 18F-Labeled claudin selective peptides would provide access to a novel kind of imaging tools for pancreatic cancer. In this work we describe the synthesis of the first 18F-labeled probes potentially suitable for PET imaging of claudin-4 expression. These probes were prepared using oxime ligation of 5-[18F]fluoro-5-deoxyribose (5-[18F]FDR) to claudin selective peptides. As a proof-of-principle, one of them, 5-[18F]FDR-Clone 27, was isolated in >98% radiochemical purity and in 15% radiochemical yield (EOB) within 98 min, and with a molar activity of 4.0 GBq/μmol (for 30 MBq of tracer). Moreover, we present first biological data for the prepared 5-FDR-conjugates. These tracers could pave the way for an early diagnosis of pancreatic tumor, and thus improve the outcome of anticancer therapy.
Collapse
|
13
|
Biotin-transfer from a trifunctional crosslinker for identification of cell surface receptors of soluble protein ligands. Sci Rep 2017; 7:46574. [PMID: 28422167 PMCID: PMC5396193 DOI: 10.1038/srep46574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Here we describe a novel crosslinker and its application as a biotin-transfer reagent to identify cell surface receptors of soluble protein ligands on live cells. This crosslinker contains three functional groups: an aldehyde-reactive aminooxy group, a sulfhydryl, and a biotin (ASB). It is readily synthesized via a 3-step addition reaction using standard solid-phase peptide synthesis methods and commercially available intermediates, allowing access to laboratories without specialized synthetic chemistry capabilities. For the biotin-transfer method, ASB is linked to a protein ligand through the sulfhydryl group in a two-step process that allows the introduction of a disulfide bond between the ligand and the crosslinker. Incubation of the labelled ligand with oxidized live cells leads to the formation of crosslinks with aldehyde-containing glycans on the cell surface receptor. Subsequent reduction of the disulfide bond results in biotin transfer from the ligand to the cell surface receptor. Protein biotinylation that is mediated by ligand binding to its receptor is differentiated from background biotinylation events by comparison with a similarly labelled control protein using comparative proteomic mass spectrometry to quantify streptavidin-bound proteins. Using this method, we successfully identified the cell surface receptors of a peptide hormone, a monoclonal antibody, and a single-domain antibody-Fc fusion construct.
Collapse
|
14
|
Chelushkin PS, Leko MV, Dorosh MY, Burov SV. Oxime ligation in acetic acid: efficient synthesis of aminooxy-peptide conjugates. J Pept Sci 2016; 23:13-15. [PMID: 27699914 DOI: 10.1002/psc.2931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 11/09/2022]
Abstract
Oxime ligation is a powerful tool in various bioconjugation strategies. Nevertheless, high reaction rates and quantitative yields are typically reported for aldehyde-derived compounds. In contrary, keto groups react much slower, with quantitative yields achieved at 5 h for low-molecular weight compounds and more than 15 h for polymers or dendrimers. In this communication, we report that oxime ligation proceeds rapidly with quantitative (>95%) conversion within 1.5-2 h in pure acetic acid. The practical utility of suggested technique is illustrated by the synthesis of peptide-steroid and peptide-polymer conjugates of model aminooxy-peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Macromolecular Compounds, RAS, Bolshoy prospekt 31, Saint Petersburg, 199004, Russia
| | - Maria V Leko
- Institute of Macromolecular Compounds, RAS, Bolshoy prospekt 31, Saint Petersburg, 199004, Russia
| | - Marina Yu Dorosh
- Institute of Macromolecular Compounds, RAS, Bolshoy prospekt 31, Saint Petersburg, 199004, Russia
| | - Sergey V Burov
- Institute of Macromolecular Compounds, RAS, Bolshoy prospekt 31, Saint Petersburg, 199004, Russia
| |
Collapse
|
15
|
Herbst E, Shabat D. FRET-based cyanine probes for monitoring ligation reactions and their applications to mechanistic studies and catalyst screening. Org Biomol Chem 2016; 14:3715-28. [PMID: 26909686 DOI: 10.1039/c5ob02127h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an ever-increasing need to design better methods to selectively connect two molecules under mild aqueous conditions on a small scale. The process of finding such methods significantly relies on the employment of an appropriate assay. We report here a modular FRET-based assay to monitor such reactions and illustrate how the assay is used to monitor two particular reactions: native chemical ligation (NCL) and oxime ligation. For both reactions we show that by employing appropriately designed probes FRET measurements could be used to monitor the reaction's progress. We additionally demonstrate the usefulness of the developed probe system to study the mechanisms of the ligation reactions, for example, in monitoring the formation of a trimeric intermediate in the NCL reaction. Finally, we demonstrate that FRET measurements conducted in our system allow the quantification of the reaction yield and we show the application of our FRET-based assay to catalyst screening for the oxime ligation.
Collapse
Affiliation(s)
- E Herbst
- School of Chemistry, Department of Organic Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978 Israel
| | - D Shabat
- School of Chemistry, Department of Organic Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
16
|
Hegedüs R, Pauschert A, Orbán E, Szabó I, Andreu D, Marquardt A, Mező G, Manea M. Modification of daunorubicin-GnRH-III bioconjugates with oligoethylene glycol derivatives to improve solubility and bioavailability for targeted cancer chemotherapy. Biopolymers 2016; 104:167-77. [PMID: 25753049 DOI: 10.1002/bip.22629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
Daunorubicin-GnRH-III bioconjugates have recently been developed as drug delivery systems with potential applications in targeted cancer chemotherapy. In order to improve their biochemical properties, several strategies have been pursued: (1) incorporation of an enzymatic cleavable spacer between the anticancer drug and the peptide-based targeting moiety, (2) peptide modification by short chain fatty acids, or (3) attachment of two anticancer drugs to the same GnRH-III derivative. Although these modifications led to more potent bioconjugates, a decrease in their solubility was observed. Here we report on the design, synthesis and biochemical characterization of daunorubicin-GnRH-III bioconjugates with increased solubility, which could be achieved by incorporating oligoethylene glycol-based spacers in their structure. First, we have evaluated the effect of an oligoethylene glycol-based spacer on the solubility, enzymatic stability/degradation, cellular uptake, and in vitro cytostatic effect of a bioconjugate containing only one daunorubicin attached through a GFLG tetrapeptide spacer to the GnRH-III targeting moiety. Thereafter, more complex compounds containing two copies of daunorubicin, GFLG spacers as well as Lys(nBu) in position 4 of GnRH-III were synthesized and biochemically characterized. Our results indicated that all synthesized oligoethylene glycol-containing bioconjugates had higher solubility in cell culture medium than the unmodified analogs. They were degraded in the presence of rat liver lysosomal homogenate leading to the formation of small drug containing metabolites. In the case of bioconjugates containing two copies of daunorubicin, the incorporation of oligoethylene glycol-based spacers led to increased in vitro cytostatic effect on MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Rózsa Hegedüs
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Aline Pauschert
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Erika Orbán
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Andreas Marquardt
- Proteomics Facility, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Marilena Manea
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
17
|
Beezer DB, Harth E. Post-polymerization modification of branched polyglycidol withN-Hydroxy phthalimide to give ratio-controlled amino-oxy functionalized species. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dain B. Beezer
- Department of Chemistry; Vanderbilt University, 7665 Stevenson Center; Nashville Tennessee 37235
| | - Eva Harth
- Department of Chemistry; Vanderbilt University, 7665 Stevenson Center; Nashville Tennessee 37235
| |
Collapse
|
18
|
Tang W, Becker ML. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 2014; 43:7013-39. [DOI: 10.1039/c4cs00139g] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides that comprise the functional subunits of proteins have been conjugated to versatile materials (biomolecules, polymers, surfaces and nanoparticles) in an effort to modulate cell responses, specific binding affinity and/or self-assembly behavior.
Collapse
Affiliation(s)
- Wen Tang
- Department of Polymer Science
- The University of Akron
- Akron, USA
| | - Matthew L. Becker
- Department of Polymer Science
- The University of Akron
- Akron, USA
- Department of Biomedical Engineering
- The University of Akron
| |
Collapse
|
19
|
Decostaire IE, Lelièvre D, Aucagne V, Delmas AF. Solid phase oxime ligations for the iterative synthesis of polypeptide conjugates. Org Biomol Chem 2014; 12:5536-43. [DOI: 10.1039/c4ob00760c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All on-resin! An efficient C-to-N iterative strategy for solid phase chemical ligations (SPCL).
Collapse
Affiliation(s)
| | - Dominique Lelièvre
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans cedex 2, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans cedex 2, France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans cedex 2, France
| |
Collapse
|
20
|
Chittasupho C, Sestak J, Shannon L, Siahaan TJ, Vines CM, Berkland C. Hyaluronic acid graft polymers displaying peptide antigen modulate dendritic cell response in vitro. Mol Pharm 2013; 11:367-73. [PMID: 24283935 DOI: 10.1021/mp4003909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel oxime grafting scheme was utilized to conjugate an ICAM-1 ligand (LABL), a cellular antigen ovalbumin (OVA), or both peptides simultaneously to hyaluronic acid (HA). Samples of HA only and the various peptide grafted HA were found to bind to dendritic cells (DCs). HA with grafted LABL and OVA showed the greatest binding to DCs. Dendritic cells treated with HA, HA with grafted LABL, or HA with grafted LABL and OVA significantly suppressed T cell and DC conjugate formation and T cell proliferation and reduced proinflammatory cytokine production compared to untreated cells. These results suggest that HA serves as an effective backbone for multivalent ligand presentation for inhibiting T cell response to antigen presentation. In addition, multivalent display of both antigen and an ICAM-1 inhibitor (LABL) may enhance binding to DCs and could potentially disrupt cellular signaling leading to autoimmunity.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University , 63 Mu 7 Rangsit-Nakhonnayok Road, Ongkharak, Nakhonnayok 26120, Thailand
| | | | | | | | | | | |
Collapse
|
21
|
Crisalli P, Hernández AR, Kool ET. Fluorescence quenchers for hydrazone and oxime orthogonal bioconjugation. Bioconjug Chem 2012; 23:1969-80. [PMID: 22913527 PMCID: PMC3447104 DOI: 10.1021/bc300344b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the synthesis and properties of new fluorescence quenchers containing aldehyde, hydrazine, and aminooxy groups, allowing convenient bioconjugation as oximes or hydrazones. Conjugation to oligonucleotides proceeded in high yield with aniline as catalyst. Kinetics studies of conjugation show that, under optimal conditions, a hydrazine or aminooxy quencher can react with aldehyde-modified DNA to form a stable hydrazone or oxime adduct in as little as five minutes. The resulting quencher-containing DNAs were assessed for their ability to quench the emission of fluorescein in labeled complements and compared to the commercially available dabcyl and Black Hole Quencher 2 (BHQ2), which were conjugated as phosphoramidites. Results show that the new quenchers possess slightly different absorbance properties compared to dabcyl and are as efficient as the commercial quenchers in quenching fluorescein emission. Hydrazone-based quenchers were further successfully incorporated into molecular beacons and shown to give high signal to background ratios in single nucleotide polymorphism detection in vitro. Finally, aminooxy and hydrazine quenchers were applied to quenching of an aldehyde-containing fluorophore associated with living cells, demonstrating cellular quenching within one hour.
Collapse
Affiliation(s)
- Pete Crisalli
- Department of Chemistry, Stanford University Stanford, California 94305-5080, USA
| | - Armando R. Hernández
- Department of Chemistry, Stanford University Stanford, California 94305-5080, USA
| | - Eric T. Kool
- Department of Chemistry, Stanford University Stanford, California 94305-5080, USA
| |
Collapse
|
22
|
Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur J Med Chem 2012; 56:155-65. [PMID: 22967796 DOI: 10.1016/j.ejmech.2012.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/13/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors.
Collapse
|
23
|
Schlage P, Mező G, Orbán E, Bősze S, Manea M. Anthracycline-GnRH derivative bioconjugates with different linkages: Synthesis, in vitro drug release and cytostatic effect. J Control Release 2011; 156:170-8. [DOI: 10.1016/j.jconrel.2011.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/30/2011] [Accepted: 08/05/2011] [Indexed: 01/13/2023]
|
24
|
Buré C, Marceau P, Meudal H, Delmas AF. Synthesis and analytical investigation of C-terminally modified peptide aldehydes and ketone: application to oxime ligation. J Pept Sci 2011; 18:147-54. [DOI: 10.1002/psc.1429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 10/11/2011] [Accepted: 10/14/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Corinne Buré
- Centre de Biophysique Moléculaire CNRS UPR4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron 45071 Orléans cedex 2 France
- Present address: Chimie et Biologie des Membranes et des Nanoobjets (CBMN) - UMR 5248 Centre de Génomique Fonctionnelle BP 68; Université Bordeaux 2 Victor Segalen; 146, rue Léo Saignat 33076 Bordeaux Cedex France
| | - Philippe Marceau
- Centre de Biophysique Moléculaire CNRS UPR4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron 45071 Orléans cedex 2 France
| | - Hervé Meudal
- Centre de Biophysique Moléculaire CNRS UPR4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron 45071 Orléans cedex 2 France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire CNRS UPR4301; affiliated to the University of Orléans and INSERM; rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
25
|
Hardouin J, Cremer AG, Delmas AF. Investigation of in-source decay of oxime-linked peptide by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2106-2112. [PMID: 21698695 DOI: 10.1002/rcm.5071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
26
|
In vitro degradation and antitumor activity of oxime bond-linked daunorubicin-GnRH-III bioconjugates and DNA-binding properties of daunorubicin-amino acid metabolites. Amino Acids 2010; 41:469-83. [PMID: 20953647 DOI: 10.1007/s00726-010-0766-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.
Collapse
|