1
|
Chen M, Hu Z, Shi J, Xie Z. Human β-defensins and their synthetic analogs: Natural defenders and prospective new drugs of oral health. Life Sci 2024; 346:122591. [PMID: 38548013 DOI: 10.1016/j.lfs.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
As a family of cationic host defense peptides, human β-defensins (HBDs) are ubiquitous in the oral cavity and are mainly synthesized primarily by epithelial cells, serving as the primary barrier and aiming to prevent microbial invasion, inflammation, and disease while maintaining physiological homeostasis. In recent decades, there has been great interest in their biological functions, structure-activity relationships, mechanisms of action, and therapeutic potential in oral diseases. Meanwhile, researchers are dedicated to improving the properties of HBDs for clinical application. In this review, we first describe the classification, structural characteristics, functions, and mechanisms of HBDs. Next, we cover the role of HBDs and their synthetic analogs in oral diseases, including dental caries and pulp infections, periodontitis, peri-implantitis, fungal/viral infections and oral mucosal diseases, and oral squamous cell carcinoma. Finally, we discuss the limitations and challenges of clinical translation of HBDs and their synthetic analogs, including, but not limited to, stability, bioavailability, antimicrobial activity, resistance, and toxicity. Above all, this review summarizes the biological functions, mechanisms of action, and therapeutic potential of both natural HBDs and their synthetic analogs in oral diseases, as well as the challenges associated with clinical translation, thus providing substantial insights into the laboratory development and clinical application of HBDs in oral diseases.
Collapse
Affiliation(s)
- Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Mudgil P. Antimicrobial Tear Lipids in the Ocular Surface Defense. Front Cell Infect Microbiol 2022; 12:866900. [PMID: 35433501 PMCID: PMC9008483 DOI: 10.3389/fcimb.2022.866900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
The concept of antimicrobial lipids as effectors of innate host defense is an emerging field. There is limited knowledge on the antimicrobial role of lipids in the ocular environment. Tears act as first line of defense to protect the ocular surface from infections. Antimicrobial effects of tear lipids have been demonstrated using meibomian lipids that are the source of majority of lipids in tears. This article describes the knowledge available on the antimicrobial role of tear lipids at the ocular surface and the antimicrobial potential of various lipid classes present in tears that can contribute to antimicrobial protection of the eye. Like other mucosal secretions, tears contain many proteins and lipids with known antimicrobial effects. The antimicrobial defense of tears is far stronger than can be demonstrated by the effects of individual compounds many of which are present in low concentrations but synergistic and additive interactions between them provide substantial antimicrobial protection to the ocular surface. It is inferred that antimicrobial lipids play important role in innate defense of tears, and cooperative interactions between various antimicrobial lipids and proteins in tears provide a potent host defense mechanism that is effective against a broad spectrum of pathogens and renders self-sterilizing properties to tears for keeping the microbial load low at the ocular surface.
Collapse
|
3
|
Bugli F, Massaro F, Buonocore F, Saraceni PR, Borocci S, Ceccacci F, Bombelli C, Di Vito M, Marchitiello R, Mariotti M, Torelli R, Sanguinetti M, Porcelli F. Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates. Int J Mol Sci 2022; 23:2164. [PMID: 35216297 PMCID: PMC8875392 DOI: 10.3390/ijms23042164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/08/2023] Open
Abstract
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
Collapse
Affiliation(s)
- Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Federica Massaro
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Stefano Borocci
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
- CNR—Institute for Biological Systems, Area Della Ricerca di Roma 1, SP35d 9, 00010 Montelibretti, Italy
| | - Francesca Ceccacci
- CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; (F.C.); (C.B.)
| | - Cecilia Bombelli
- CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; (F.C.); (C.B.)
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Rosalba Marchitiello
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| |
Collapse
|
4
|
Yu W, Ning N, Xue Y, Huang Y, Guo F, Li T, Yang B, Luo D, Sun Y, Li Z, Wang J, He Z, Cheng S, Zhang X, Wang H. A Chimeric Cationic Peptide Composed of Human β-Defensin 3 and Human β-Defensin 4 Exhibits Improved Antibacterial Activity and Salt Resistance. Front Microbiol 2021; 12:663151. [PMID: 34025617 PMCID: PMC8137984 DOI: 10.3389/fmicb.2021.663151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Human beta-defensins (hBDs) play an important role in the host defense against various microbes, showing different levels of antibacterial activity and salt resistance in vitro. It is of interest to investigate whether can chimeric hBD analogs enhanced antibacterial activity and salt resistance. In this study, we designed a chimeric human defensin, named H4, by combining sequences of human beta-defensin-3 (hBD-3) and human beta-defensin-4 (hBD-4), then evaluated its antibacterial activity, salt resistance, and cytotoxic effects. The result showed that the antibacterial activity of H4 against most tested strains, including Klebsiella pneumonia, Enterococcus faecalis, Staphyloccocus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumannii was significantly improved compared to that of hBD-3 and hBD-4. Notably, H4 exhibited significantly better antibacterial activity against multidrug resistant isolate A. baumannii MDR-ZJ06 than commonly used antibiotics. Chimeric H4 still showed more than 80% antibacterial activity at high salt concentration (150 μM), which proves its good salt tolerance. The cytotoxic effect assay showed that the toxicity of H4 to Hela, Vero, A549 cells and erythrocytes at a low dose (<10 μg/ml) was similar to that of hBD-3 and hBD-4. In conclusion, given its broad spectrum of antibacterial activity and high salt resistance, chimeric H4 could serve as a promising template for new therapeutic antimicrobial agents.
Collapse
Affiliation(s)
- Wenjing Yu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Xue
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Ludong University, Yantai, China
| | - Yanyu Huang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Feng Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Boning Yang
- Department of Orthopedics, Henan University People's Hospital, Zhengzhou, China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yakun Sun
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiwei Cheng
- College of Life Science, Ludong University, Yantai, China
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
5
|
Tan P, Lai Z, Jian Q, Shao C, Zhu Y, Li G, Shan A. Design of Heptad Repeat Amphiphiles Based on Database Filtering and Structure-Function Relationships to Combat Drug-Resistant Fungi and Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2129-2144. [PMID: 31887002 DOI: 10.1021/acsami.9b19927] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the emergence of reports of multidrug-resistant fungi, infections caused by multidrug-resistant fungi and biofilms are considered to be a global threat to human health due to the lack of effective broad-spectrum drugs. Here, we developed a series heptad repeat sequences based on an antimicrobial peptide database (APD) and structure-function relationships. Among the developed peptides, the target peptide ACR3 exhibited good activity against all fungi and bacteria tested, including fluconazole-resistant Candida albicans (C. albicans) and methicillin-resistant Staphylococcu saureus (S. aureus), while demonstrating relatively low toxicity and good salt tolerance. The peptide ACR3 inhibits the formation of C. albicans biofilms and has a therapeutic effect on mature biofilms in vitro and in vivo. Moreover, we did not observe any resistance of C. albicans and E. coli against the peptide ACR3. A series of assays and microscopy were used to analyze the antimicrobial mechanism. These results showed that the antimicrobial activity of the peptide ACR3 utilizes a multimodal mechanism that degrades the cell wall barrier, alters the cytoplasmic membrane electrical potential, and induces intracellular reactive oxygen species (ROS) production. In general, the peptide ACR3 is a potent antibacterial agent that shows great potential for use in biomedical coatings and healthcare formulas to combat the growing threat of fungal and bacterial infection.
Collapse
Affiliation(s)
- Peng Tan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Zhenheng Lai
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Qiao Jian
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Changxuan Shao
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Yongjie Zhu
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Guoyu Li
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| |
Collapse
|
6
|
Lei R, Hou J, Chen Q, Yuan W, Cheng B, Sun Y, Jin Y, Ge L, Ben-Sasson SA, Chen J, Wang H, Lu W, Fang X. Self-Assembling Myristoylated Human α-Defensin 5 as a Next-Generation Nanobiotics Potentiates Therapeutic Efficacy in Bacterial Infection. ACS NANO 2018; 12:5284-5296. [PMID: 29856606 DOI: 10.1021/acsnano.7b09109] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increasing prevalence of antibacterial resistance globally underscores the urgent need to the update of antibiotics. Here, we describe a strategy for inducing the self-assembly of a host-defense antimicrobial peptide (AMP) into nanoparticle antibiotics (termed nanobiotics) with significantly improved pharmacological properties. Our strategy involves the myristoylation of human α-defensin 5 (HD5) as a therapeutic target and subsequent self-assembly in aqueous media in the absence of exogenous excipients. Compared with its parent HD5, the C-terminally myristoylated HD5 (HD5-myr)-assembled nanobiotic exhibited significantly enhanced broad-spectrum bactericidal activity in vitro. Mechanistically, it selectively killed Escherichia coli ( E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) through disruption of the cell wall and/or membrane structure. The in vivo results further demonstrated that the HD5-myr nanobiotic protected against skin infection by MRSA and rescued mice from E. coli-induced sepsis by lowering the systemic bacterial burden and alleviating organ damage. The self-assembled HD5-myr nanobiotic also showed negligible hemolytic activity and substantially low toxicity in animals. Our findings validate this design rationale as a simple yet versatile strategy for generating AMP-derived nanobiotics with excellent in vivo tolerability. This advancement will likely have a broad impact on antibiotic discovery and development efforts aimed at combating antibacterial resistance.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Jinchao Hou
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Qixing Chen
- The Children's Hospital, School of Medicine , Zhejiang University , Hangzhou 310052 , China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Lujie Ge
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Shmuel A Ben-Sasson
- Department of Developmental Biology, Institute for Medical Research Israel-Canada , The Hebrew University-Hadassah Medical School , Jerusalem 91120 , Israel
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology , Ningbo University , Ningbo 315211 , China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| |
Collapse
|
7
|
Krishnakumari V, Guru A, Adicherla H, Nagaraj R. Effects of increasing hydrophobicity by N‐terminal myristoylation on the antibacterial and hemolytic activities of the C‐terminal cationic segments of human‐β‐defensins 1–3. Chem Biol Drug Des 2018; 92:1504-1513. [DOI: 10.1111/cbdd.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ankeeta Guru
- CSIR‐ Center for Cellular and Molecular Biology Hyderabad India
| | | | | |
Collapse
|
8
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36:415-429. [PMID: 29330093 DOI: 10.1016/j.biotechadv.2018.01.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/13/2017] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Axel Hollmann
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
10
|
Mathew B, Olli S, Guru A, Nagaraj R. Chimeric analogs of human β-defensin 1 and θ-defensin disrupt pre-established bacterial biofilms. Bioorg Med Chem Lett 2017. [PMID: 28642103 DOI: 10.1016/j.bmcl.2017.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antibiofilm activity of several human defensin analogs that have the ability to kill planktonic bacteria, against pre-established biofilms of Escherichia coli MG1655 and Staphylococcus aureus NCTC 8530 were examined. Linear and linear fatty acylated analogs did not show any activity while disulfide constrained analogs disrupted pre-established S. aureus biofilms. Chimeric analogs of human β-defensin 1 and θ-defensin, hBTD-1 and [d]hBTD-1 were highly active against S. aureus biofilms. Among the analogs tested, only the d-enantiomer [d]hBTD-1 showed activity against E. coli biofilm. Our study provides insights into the structural requirements for the eradication of pre-established biofilms in defensin analogs.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| | - Sudar Olli
- Virupaksha Life Sciences Pvt Ltd, CRTDH, CSIR-Centre for Cellular and Molecular Biology Annexe-II, Hyderabad 500 007, India
| | - Ankeeta Guru
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishanan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
11
|
Mathew B, Nagaraj R. Variations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing. PLoS One 2017; 12:e0175858. [PMID: 28423004 PMCID: PMC5397029 DOI: 10.1371/journal.pone.0175858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Human α and β-defensins are cationic antimicrobial peptides characterized by three disulfide bonds with a triple stranded β-sheet motif. It is presumed that interaction with the bacterial cell surface and membrane permeabilization by defensins is an important step in the killing process. In this study, we have compared interactions of three human α-defensins HNP3, HNP4, HD5 and human β-defensins HBD1-4 that are active against Escherichia coli, with its cell surface and inner membrane as well as negatively charged model membranes. We have also included the inactive α-defensin HD6 in the study. Among the α-defensins, HNP4, HD5 and HD6 were more effective in increasing the zeta potential as compared to HNP3. Among the β-defensins, HBD1 was the least effective in increasing the zeta potential. The zeta potential modulation data indicate variations in the surface charge neutralizing ability of α- and β-defensins. Comparison of E. coli inner membrane and model membrane permeabilizing abilities indicated that HD5, HD6 and HBD1 do not permeabilize membranes. Although HBD4 does not permeabilize model membranes, considerable damage to the inner membrane of E. coli is observed. Our data indicate that mammalian defensins do not kill E. coli by a simple mechanism involving membrane permeabilization though their antibacterial potencies are very similar.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
12
|
Abstract
In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.
Collapse
|
13
|
Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 6 analogs: insights into the physico-chemical reasons behind weak bactericidal activity of HD6 in vitro. J Pept Sci 2015; 21:811-8. [PMID: 26400692 DOI: 10.1002/psc.2821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Human α-defensin 6 (HD6), unlike other mammalian defensins, does not exhibit bactericidal activity, particularly against aerobic bacteria. Monomeric HD6 has a tertiary structure similar to other α-defensins in the crystalline state. However, the physico-chemical reasons behind the lack of antibacterial activity of HD6 are yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD6 analogs. A linear analog of HD6, in which the distribution of arginine residues was similar to active α-defensins, shows broad-spectrum antimicrobial activity, indicating that atypical distribution of arginine residues contributes to the inactivity of HD6. Peptides spanning the N-terminal cationic segment were active against a wide range of organisms. Antimicrobial potency of these shorter analogs was further enhanced when myristic acid was conjugated at the N-terminus. Cytoplasmic localization of the analogs without fatty acylation was observed to be necessary for bacterial killing, while they exhibited fungicidal activity by permeabilizing Candida albicans membranes. Myristoylated analogs and the linear full-length arginine analog exhibited activity by permeabilizing bacterial and fungal membranes. Our study provides insights into the lack of bactericidal activity of HD6 against aerobic bacteria.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500 007, India
| | | |
Collapse
|
14
|
Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides 2015. [PMID: 26206286 DOI: 10.1016/j.peptides.2015.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|