1
|
Esteban JJ, Mason JR, Kaminski J, Ramachandran R, Luyt LG. A survey of stapling methods to increase affinity, activity, and stability of ghrelin analogues. RSC Med Chem 2024; 15:254-266. [PMID: 38283230 PMCID: PMC10809362 DOI: 10.1039/d3md00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor which regulates various important physiological and pathophysiological processes in the body such as energy homeostasis, growth hormone secretion and regulation of appetite. As a result, it has been postulated as a potential therapeutic target for the treatment of cancer cachexia and other metabolic disorders, as well as a potential imaging agent target for cancers and cardiovascular diseases. Ghrelin is the primary high affinity endogenous ligand for GHSR and has limited secondary structure in solution, which makes it proteolytically unstable. This inherent instability in ghrelin can be overcome by incorporating helix-inducing staples that stabilize its structure and improve affinity and activity. We present an analysis of different stapling methods at positions 12 and 16 of ghrelin(1-20) analogues with the goal of increasing proteolytic stability and to retain or improve affinity and activity towards the GHSR. Ghrelin(1-20) analogues were modified with a wide range of chemical staples, including a lactam staple, triazole staple, hydrocarbon staple, Glaser staple, and xylene-thioether staple. Once synthesized, the receptor affinity and α-helicity were measured using competitive binding assays and circular dichroism spectroscopy, respectively. Generally, an increase in alpha-helicity using a flexible staple linker led to improved affinity towards GHSR. Ghrelin(1-20) analogues with a lactam, triazole, and hydrocarbon staple resulted in helical analogues with stronger affinity towards GHSR than unstapled ghrelin(1-20), a compound that lacks helical character. Compounds were also investigated for their agonist activity through β-arrestin 1 & 2 recruitment BRET assays and for their metabolic stability through serum stability analysis.
Collapse
Affiliation(s)
- Juan J Esteban
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Julia R Mason
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Jakob Kaminski
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario 1151 Richmond Street London Ontario N6A 5C1 Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- Departments of Medical Imaging and Oncology, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- London Regional Cancer Program, Lawson Health Research Institute 800 Commissioners Road East London Ontario N6A 4L6 Canada
| |
Collapse
|
2
|
Morgan DC, McDougall L, Knuhtsen A, Jamieson AG. Development of Bifunctional, Raman Active Diyne-Girder Stapled α-Helical Peptides. Chemistry 2023; 29:e202300855. [PMID: 37130830 PMCID: PMC10946806 DOI: 10.1002/chem.202300855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
Stapled peptides are a unique class of cyclic α-helical peptides that are conformationally constrained via their amino acid side-chains. They have been transformative to the field of chemical biology and peptide drug discovery through addressing many of the physicochemical limitations of linear peptides. However, there are several issues with current chemical strategies to produce stapled peptides. For example, two distinct unnatural amino acids are required to synthesize i, i+7 alkene stapled peptides, leading to high production costs. Furthermore, low purified yields are obtained due to cis/trans isomers produced during ring-closing metathesis macrocyclisation. Here we report the development of a new i, i+7 diyne-girder stapling strategy that addresses these issues. The asymmetric synthesis of nine unnatural Fmoc-protected alkyne-amino acids facilitated a systematic study to determine the optimal (S,S)-stereochemistry and 14-carbon diyne-girder bridge length. Diyne-girder stapled T-STAR peptide 29 was demonstrated to have excellent helicity, cell permeability and stability to protease degradation. Finally, we demonstrate that the diyne-girder constraint is a Raman chromophore with potential use in Raman cell microscopy. Development of this highly effective, bifunctional diyne-girder stapling strategy leads us to believe that it can be used to produce other stapled peptide probes and therapeutics.
Collapse
Affiliation(s)
- Danielle C. Morgan
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| | - Laura McDougall
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| | - Astrid Knuhtsen
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| | - Andrew G. Jamieson
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| |
Collapse
|
3
|
Adams Z, Silvestri AP, Chiorean S, Flood DT, Balo BP, Shi Y, Holcomb M, Walsh SI, Maillie CA, Pierens GK, Forli S, Rosengren KJ, Dawson PE. Stretching Peptides to Generate Small Molecule β-Strand Mimics. ACS CENTRAL SCIENCE 2023; 9:648-656. [PMID: 37122474 PMCID: PMC10141592 DOI: 10.1021/acscentsci.2c01462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Advances in the modulation of protein-protein interactions (PPIs) enable both characterization of PPI networks that govern diseases and design of therapeutics and probes. The shallow protein surfaces that dominate PPIs are challenging to target using standard methods, and approaches for accessing extended backbone structures are limited. Here, we incorporate a rigid, linear, diyne brace between side chains at the i to i+2 positions to generate a family of low-molecular-weight, extended-backbone peptide macrocycles. NMR and density functional theory studies show that these stretched peptides adopt stable, rigid conformations in solution and can be tuned to explore extended peptide conformational space. The diyne brace is formed in excellent conversions (>95%) and amenable to high-throughput synthesis. The minimalist structure-inducing tripeptide core (<300 Da) is amenable to further synthetic elaboration. Diyne-braced inhibitors of bacterial type 1 signal peptidase demonstrate the utility of the technique.
Collapse
Affiliation(s)
- Zoë
C. Adams
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anthony P. Silvestri
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Unnatural
Products, Inc., 2161
Delaware Ave, Suite A., Santa Cruz, California 95060, United States
| | - Sorina Chiorean
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brian P. Balo
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yifan Shi
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew Holcomb
- Department
of Integrated Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shawn I. Walsh
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Colleen A. Maillie
- Department
of Integrated Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gregory K. Pierens
- Centre
for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefano Forli
- Department
of Integrated Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - K. Johan Rosengren
- Institute
for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Philip E. Dawson
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|