1
|
Rodrigues D, Wezalis S. Clinical Assessment of Drug Transporter Inhibition Using Biomarkers: Review of the Literature (2015-2024). J Clin Pharmacol 2025. [PMID: 39828904 DOI: 10.1002/jcph.6183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
As part of a narrative review of various publications describing the clinical use of urine- and plasma-based drug transporter biomarkers, it was determined that the utilization of coproporphyrin I, a hepatic organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 biomarker, has been reported for 28 different drug-drug interaction (DDI) perpetrator drugs. Similarly, biomarkers for liver organic cation transporter 1 (isobutyryl-l-carnitine, N = 7 inhibitors), renal organic cation transporter 2 and multidrug and toxin extrusion proteins (N1-methylnicotinamide, N = 13 inhibitors), renal organic anion transporter (OAT) 1 and 3 (pyridoxic acid, N = 7 inhibitors), and breast cancer resistance protein (riboflavin, N = 3 inhibitors) have also been described. Increased use of biomarkers has also been accompanied by modeling efforts to enable DDI predictions and development of multiplexed methods to facilitate their bioanalysis. Overall, there is consensus that exploratory biomarkers such as coproporphyrin I can be integrated into decision trees encompassing in vitro transporter inhibition data, DDI risk assessments, and follow-up Phase 1 studies. Therefore, sponsors can leverage biomarkers to evaluate dose-dependent inhibition of selected transporters, use them jointly with drug probes to deconvolute DDI mechanisms, and integrate in vitro data packages to establish calibrated (biomarker informed) DDI risk assessment cutoffs. Although transporter biomarker science has progressed, reflected by its inclusion in the recently issued International Council for Harmonisation DDI guidance document (M12), some biomarkers still require further validation. There is also a need for biomarkers that can differentiate specific transporters (e.g., OATP1B3 vs OATP1B1 and OAT1 vs OAT3).
Collapse
Affiliation(s)
- David Rodrigues
- Drug Metabolism and Nonclinical Pharmacokinetics, Translational Medicine, Incyte, Wilmington, DE, USA
| | - Stephanie Wezalis
- Drug Metabolism and Nonclinical Pharmacokinetics, Translational Medicine, Incyte, Wilmington, DE, USA
| |
Collapse
|
2
|
Wang Z, Luk KHY, Cheong EJY, Tham SM, Periaswami R, Toh PC, Wang Z, Wu QH, Tsang WC, Kesavan A, Wong ASC, Wong PT, Lim F, Chiong E, Chan ECY. Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I. Drug Metab Dispos 2024; 52:1356-1362. [PMID: 39187385 DOI: 10.1124/dmd.124.001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (K i) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated K i of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT: The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Kylie Hoi Yan Luk
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Sin Mun Tham
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Revathi Periaswami
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Poh Choo Toh
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Ziting Wang
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Qing Hui Wu
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Woon Chau Tsang
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Arshvin Kesavan
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Alvin Seng Cheong Wong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Patrick Thomas Wong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Felicia Lim
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Edmund Chiong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Eric Chun Yong Chan
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| |
Collapse
|
3
|
Galetin A, Brouwer KLR, Tweedie D, Yoshida K, Sjöstedt N, Aleksunes L, Chu X, Evers R, Hafey MJ, Lai Y, Matsson P, Riselli A, Shen H, Sparreboom A, Varma MVS, Yang J, Yang X, Yee SW, Zamek-Gliszczynski MJ, Zhang L, Giacomini KM. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov 2024; 23:255-280. [PMID: 38267543 PMCID: PMC11464068 DOI: 10.1038/s41573-023-00877-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lauren Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Michael J Hafey
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc., Rahway, NJ, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Pär Matsson
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hong Shen
- Department of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, NJ, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, CT, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Courchesne M, Manrique G, Bernier L, Moussa L, Cresson J, Gutzeit A, Froehlich JM, Koh DM, Chartrand-Lefebvre C, Matoori S. Gender Differences in Pharmacokinetics: A Perspective on Contrast Agents. ACS Pharmacol Transl Sci 2024; 7:8-17. [PMID: 38230293 PMCID: PMC10789139 DOI: 10.1021/acsptsci.3c00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gender is an important risk factor for adverse drug reactions. Women report significantly more adverse drug reactions than men. There is a growing consensus that gender differences in drug PK is a main contributor to higher drug toxicity in women. These differences stem from physiological differences (body composition, plasma protein concentrations, and liver and kidney function), drug interactions, and comorbidities. Contrast agents are widely used to enhance diagnostic performance in computed tomography and magnetic resonance imaging. Despite their broad use, these contrast agents can lead to important adverse reactions including hypersensitivity reactions, nephropathy, and hyperthyroidism. Importantly, female gender is one of the main risk factors for contrast agent toxicity. As these adverse reactions may be related to gender differences in PK, this perspective aims to describe distribution and elimination pathways of commonly used contrast agents and to critically discuss gender differences in these processes.
Collapse
Affiliation(s)
- Myriam Courchesne
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Gabriela Manrique
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Laurie Bernier
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Leen Moussa
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Jeanne Cresson
- Clinical
Research Group, Klus Apotheke Zurich, 8032 Zurich, Switzerland
| | - Andreas Gutzeit
- Department
of Health Sciences and Medicine, University
of Lucerne, Frohburgstaße 3, 6002 Luzern, Switzerland
- Institute
of Radiology and Nuclear Medicine and Breast Center St. Anna, Hirslanden Klinik St. Anna, 6006 Lucerne, Switzerland
- Department
of Radiology, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Dow-Mu Koh
- Cancer Research
UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Carl Chartrand-Lefebvre
- Radiology
Department, Centre Hospitalier de l’Université
de Montréal (CHUM), Montreal, Quebec H2X 3E4, Canada
- Centre
de Recherche du Centre Hospitalier de l’Université de
Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Simon Matoori
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
5
|
Kinzi J, Hussner J, Schäfer AM, Treyer A, Seibert I, Tillmann A, Mueller V, Gherardi C, Vonwyl C, Hamburger M, Meyer Zu Schwabedissen HE. Influence of Slco2b1-knockout and SLCO2B1-humanization on coproporphyrin I and III levels in rats. Br J Pharmacol 2024; 181:36-53. [PMID: 37533302 DOI: 10.1111/bph.16205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Coproporphyrin (CP) I and III are byproducts of haem synthesis currently investigated as biomarkers for drug-drug interactions involving hepatic organic anion transporting polypeptide (OATP) 1B transporters. Another hepatically expressed OATP-member is OATP2B1. The aim of this study was to test the impact of OATP2B1, which specifically transports CPIII, on CP serum levels, applying novel rat models. EXPERIMENTAL APPROACH CPIII transport kinetics and the interplay between OATP2B1 and multidrug resistance-associated proteins (MRPs) were determined in vitro using the vTF7 expression system. Novel rSlco2b1-/- and SLCO2B1+/+ rat models were characterized for physiological parameters and for CP serum levels. Hepatic and renal expression of transporters involved in CP disposition were determined by real-time qPCR, Western blot analysis, and immunohistochemistry. KEY RESULTS In vitro experiments revealed differences in transport kinetics comparing human and rat OATP2B1 and showed a consistent, species-specific interplay with hMRP3/rMRP3. Deletion of rOATP2B1 was associated with a trend towards lower CPI serum levels compared with wildtype rats, while CPIII remained unchanged. Comparing SLCO2B1+/+ with knockout rats revealed an effect of sex: only in females the genetic modification influenced CP serum levels. Analysis of hepatic and renal transporters revealed marginal, but in part, statistically significant differences in rMRP2 abundance, which may contribute to the observed changes in CP serum levels. CONCLUSION AND IMPLICATIONS Our findings support that factors other than OATP1B transporters are of relevance for basal CP levels. Only in female rats, humanization of SLCO2B1 affects basal CPI and CPIII serum levels, despite isomer selectivity of OATP2B1.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annika Tillmann
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Mueller
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Clarisse Gherardi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Celina Vonwyl
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
6
|
Tan SPF, Willemin ME, Snoeys J, Shen H, Rostami-Hodjegan A, Scotcher D, Galetin A. Development of 4-Pyridoxic Acid PBPK Model to Support Biomarker-Informed Evaluation of OAT1/3 Inhibition and Effect of Chronic Kidney Disease. Clin Pharmacol Ther 2023; 114:1243-1253. [PMID: 37620246 DOI: 10.1002/cpt.3029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Monitoring endogenous biomarkers is increasingly used to evaluate transporter-mediated drug-drug interactions (DDIs) in early drug development and may be applied to elucidate changes in transporter activity in disease. 4-pyridoxic acid (PDA) has been identified as the most sensitive plasma endogenous biomarker of renal organic anion transporters (OAT1/3). Increase in PDA baseline concentrations was observed after administration of probenecid, a strong clinical inhibitor of OAT1/3 and also in patients with chronic kidney disease (CKD). The aim of this study was to develop and verify a physiologically-based pharmacokinetic (PBPK) model of PDA, to predict the magnitude of probenecid DDI and predict the CKD-related changes in PDA baseline. The PBPK model for PDA was first developed in healthy population, building on from previous population pharmacokinetic modeling, and incorporating a mechanistic kidney model to consider OAT1/3-mediated renal secretion. Probenecid PBPK model was adapted from the Simcyp database and re-verified to capture its dose-dependent pharmacokinetics (n = 9 studies). The PBPK model successfully predicted the PDA plasma concentrations, area under the curve, and renal clearance in healthy subjects at baseline and after single/multiple probenecid doses. Prospective simulations in severe CKD predicted successfully the increase in PDA plasma concentration relative to healthy (within 2-fold of observed data) after accounting for 60% increase in fraction unbound in plasma and additional 50% decline in OAT1/3 activity beyond the decrease in glomerular filtration rate. The verified PDA PBPK model supports future robust evaluation of OAT1/3 DDI in drug development and increases our confidence in predicting exposure and renal secretion in patients with CKD.
Collapse
Affiliation(s)
- Shawn Pei Feng Tan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Marie-Emilie Willemin
- Janssen Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Beerse, Belgium
| | - Jan Snoeys
- Janssen Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Beerse, Belgium
| | - Hong Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Kikuchi R, Chothe PP, Chu X, Huth F, Ishida K, Ishiguro N, Jiang R, Shen H, Stahl SH, Varma MVS, Willemin ME, Morse BL. Utilization of OATP1B Biomarker Coproporphyrin-I to Guide Drug-Drug Interaction Risk Assessment: Evaluation by the Pharmaceutical Industry. Clin Pharmacol Ther 2023; 114:1170-1183. [PMID: 37750401 DOI: 10.1002/cpt.3062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial, however, challenges remain for predicting interaction risk. Emerging evidence suggests that endogenous biomarkers, particularly coproporphyrin-I (CP-I), can be used to assess in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at assessing CP-I as a biomarker for informing OATP1B DDI risk. Literature and unpublished CP-I data along with pertinent in vitro and clinical DDI information were collected to identify DDIs primarily involving OATP1B inhibition and assess the relationship between OATP1B substrate drug and CP-I exposure changes. Static models to predict changes in exposure of CP-I, as a selective OATP1B substrate, were also evaluated. Significant correlations were observed between CP-I area under the curve ratio (AUCR) or maximum concentration ratio (Cmax R) and AUCR of substrate drugs. In general, the CP-I Cmax R was equal to or greater than the CP-I AUCR. CP-I Cmax R < 1.25 was associated with absence of OATP1B-mediated DDIs (AUCR < 1.25) with no false negative predictions. CP-I Cmax R < 2 was associated with weak OATP1B-mediated DDIs (AUCR < 2). A correlation was identified between CP-I exposure changes and OATP1B1 static DDI predictions. Recommendations for collecting and interpreting CP-I data are discussed, including a decision tree for guiding DDI risk assessment. In conclusion, measurement of CP-I is recommended to inform OATP1B inhibition potential. The current analysis identified changes in CP-I exposure that may be used to prioritize, delay, or replace clinical DDI studies.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Felix Huth
- PK Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Kazuya Ishida
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Rongrong Jiang
- Drug Metabolism and Pharmacokinetics, Eisai Inc., Cambridge, Massachusetts, USA
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Marie-Emilie Willemin
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bridget L Morse
- Department of Drug Disposition, Eli Lilly, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Mochizuki T, Kusuhara H. Progress in the Quantitative Assessment of Transporter-Mediated Drug-Drug Interactions Using Endogenous Substrates in Clinical Studies. Drug Metab Dispos 2023; 51:1105-1113. [PMID: 37169512 DOI: 10.1124/dmd.123.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Variations in drug transporter activities, caused by genetic polymorphism and drug-drug interactions (DDIs), alter the systemic exposure of substrate drugs, leading to differences in drug responses. Recently, some endogenous substrates of drug transporters, particularly the solute carrier family transporters such as OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K, have been identified to investigate variations in drug transporters in humans. Clinical data obtained support their performance as surrogate probes in terms of specificity and reproducibility. Pharmacokinetic parameters of the endogenous biomarkers depend on the genotypes of drug transporters and the systemic exposure to perpetrator drugs. Furthermore, the development of physiologically based pharmacokinetic models for the endogenous biomarkers has enabled a top-down approach to obtain insights into the effect of perpetrators on drug transporters and to more precisely simulate the DDI with victim drugs, including probe drugs. The endogenous biomarkers can address the uncertainty in the DDI prediction in the preclinical and early phases of clinical development and have the potential to fulfill regulatory requirements. Therefore, the endogenous biomarkers should be able to predict disease effects on the variations in drug transporter activities observed in patients. This mini-review focuses on recent progress in the identification and use of the endogenous drug transporter substrate biomarkers and their application in drug development. SIGNIFICANCE STATEMENT: Advances in analytical methods have enabled the identification of endogenous substrates of drug transporters. Changes in the pharmacokinetic parameters (Cmax, AUC, or CLR) of these endogenous biomarkers relative to baseline values can serve as a quantitative index to assess variations in drug transporter activities during clinical studies and thereby provide more precise DDI predictions.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan (T.M.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (H.K.)
| | - Hiroyuki Kusuhara
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan (T.M.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (H.K.)
| |
Collapse
|
9
|
Chan GH, Houle R, Zhang J, Katwaru R, Li Y, Chu X. Evaluation of the Selectivity of Several Organic Anion Transporting Polypeptide 1B Biomarkers Using Relative Activity Factor Method. Drug Metab Dispos 2023; 51:1089-1104. [PMID: 37137718 DOI: 10.1124/dmd.122.000972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-β-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.
Collapse
Affiliation(s)
- Grace Hoyee Chan
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Houle
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Jinghui Zhang
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Ravi Katwaru
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Yang Li
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Xiaoyan Chu
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
10
|
Venkatakrishnan K, Gupta N, Smith PF, Lin T, Lineberry N, Ishida T, Wang L, Rogge M. Asia-Inclusive Clinical Research and Development Enabled by Translational Science and Quantitative Clinical Pharmacology: Toward a Culture That Challenges the Status Quo. Clin Pharmacol Ther 2023; 113:298-309. [PMID: 35342942 PMCID: PMC10083990 DOI: 10.1002/cpt.2591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Access lag to innovative therapies in Asian populations continues to present a challenge to global health. Recent progressive changes in the global regulatory landscape, including newer guidelines, are enabling simultaneous global drug development and near-simultaneous global drug registration. The International Conference on Harmonization (ICH) E17 guideline outlines general principles for the design and analysis of multiregional clinical trials (MRCTs). We posit that translational research and quantitative clinical pharmacology tools are core enablers for Asia-inclusive global drug development aligned with ICH E17 principles. Assessment of ethnic sensitivity should be initiated early in the development lifecycle to inform the need for, and extent of, Asian phase I ethno-bridging data. Relevant ethno-bridging data may be generated as standalone Asian phase I trials, as part of Western First-In-Human trials, or under accelerated development settings as a lead-in phase in an MRCT. Quantitative understanding of human clearance mechanisms and pharmacogenetic factors is vital to forecasting ethnic sensitivity in drug exposure using physiologically-based pharmacokinetic models. Stratification factors to control heterogeneity in MRCTs can be identified by reverse translational research incorporating pharmacometric disease models and model-based meta-analyses. Because epidemiological variations can extend to the molecular level, quantitative systems pharmacology models may be useful in forecasting how molecular variation in therapeutic targets or pathway proteins across populations might impact treatment outcomes. Through prospective evaluation of conservation in drug- and disease-related intrinsic and extrinsic factors, a pooled East Asian region can be implemented in Asia-inclusive MRCTs to maximize efficiency in substantiating evidence of benefit-risk for the region at-large with a Totality of Evidence approach.
Collapse
Affiliation(s)
- Karthik Venkatakrishnan
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA.,EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | | | - Neil Lineberry
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Tatiana Ishida
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Lin Wang
- Takeda Development Center Asia, Shanghai, China
| | - Mark Rogge
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA.,Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida, USA
| |
Collapse
|
11
|
Lin J, Kimoto E, Yamazaki S, Vourvahis M, Bergman A, Rodrigues AD, Costales C, Li R, Varma MVS. Effect of Hepatic Impairment on OATP1B Activity: Quantitative Pharmacokinetic Analysis of Endogenous Biomarker and Substrate Drugs. Clin Pharmacol Ther 2022; 113:1058-1069. [PMID: 36524426 DOI: 10.1002/cpt.2829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Hepatic impairment (HI) is known to modulate drug disposition and may lead to elevated plasma exposure. The aim of this study was to quantitate the in vivo OATP1B-mediated hepatic uptake activity in populations with varying degrees of HI. First, we measured baseline levels of plasma coproporphyrin-I, an endogenous OATP1B biomarker, in an open-label, parallel cohort study in adult subjects with normal liver function and mild, moderate, and severe HI (n = 24, 6/cohort). The geometric mean plasma concentrations of coproporphyrin-I were 1.66-fold, 2.81-fold (P < 0.05), and 7.78-fold (P < 0.0001) higher in mild, moderate, and severe impairment than those healthy controls. Second, we developed a dataset of 21 OATP1B substrate drugs with HI data extracted from literature. Median disease-to-healthy plasma area under the curve (AUC) ratios for substrate drugs were ~ 1.4, 3.0, and 6.4 for mild, moderate, and severe HI, respectively. Additionally, significant linear relationship was noted between AUC ratios of substrate drugs without and with co-administration of rifampin, a prototypic OATP1B inhibitor, and AUC ratios in moderate (P < 0.01) and severe (P < 0.001) HI. Third, a physiologically-based pharmacokinetic model analysis was conducted with 10 substrate drugs following estimation of relative OATP1B functional activity in virtual disease population models using coproporphyrin-I data and verification of substrate models with rifampin drug-drug interaction data. This approach adequately predicted plasma AUC change particularly in moderate (9 of 10 within 2-fold) and severe (5 of 5 within 2-fold) HI. Collective findings indicate progressive reduction, by as much as 90-92%, in OATP1B activity in the HI population.
Collapse
Affiliation(s)
- Jian Lin
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Shinji Yamazaki
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc., San Diego, California, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc., New York, New York, USA
| | - Arthur Bergman
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
12
|
Yoshikado T, Aoki Y, Mochizuki T, Rodrigues AD, Chiba K, Kusuhara H, Sugiyama Y. Cluster Gauss-Newton method analyses of PBPK model parameter combinations of coproporphyrin-I based on OATP1B-mediated rifampicin interaction studies. CPT Pharmacometrics Syst Pharmacol 2022; 11:1341-1357. [PMID: 35945914 PMCID: PMC9574750 DOI: 10.1002/psp4.12849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Coproporphyrin I (CP-I) is an endogenous biomarker supporting the prediction of drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptide 1B (OATP1B). We previously constructed a physiologically-based pharmacokinetic (PBPK) model for CP-I using clinical DDI data with an OATP1B inhibitor, rifampicin (RIF). In this study, PBPK model parameters for CP-I were estimated using the cluster Gauss-Newton method (CGNM), an algorithm used to find multiple approximate solutions for nonlinear least-squares problems. Eight unknown parameters including the hepatic overall intrinsic clearance (CLint,all ), the rate of biosynthesis (vsyn ), and the OATP1B inhibition constant of RIF(Ki,u,OATP ) were estimated by fitting to the observed CP-I blood concentrations in two different clinical studies involving changing the RIF dose. Multiple parameter combinations were obtained by CGNM that could well capture the clinical data. Among those, CLint,all , Ki,u,OATP , and vsyn were sensitive parameters. The obtained Ki,u,OATP for CP-I was 5.0- and 2.8-fold lower than that obtained for statins, confirming our previous findings describing substrate-dependent Ki,u,OATP values. In conclusion, CGNM analyses of PBPK model parameter combinations enables estimation of the three essential parameters for CP-I to capture the DDI profiles, even if the other parameters remain unidentified. The CGNM also clarified the importance of appropriate combinations of other unidentified parameters to enable capture of the CP-I concentration time course under the influence of RIF. The described CGNM approach may also support the construction of robust PBPK models for additional transporter biomarkers beyond CP-I.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Laboratory of Clinical PharmacologyYokohama University of PharmacyYokohamaKanagawaJapan
| | - Yasunori Aoki
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of PharmacyJosai International UniversityTokyoJapan,Present address:
AstraZenecaMölndalSweden
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciencesthe University of TokyoTokyoJapan
| | - A. David Rodrigues
- Transporter Sciences Group, ADME Sciences, Medicine Design, PfizerGrotonConnecticutUSA
| | - Koji Chiba
- Laboratory of Clinical PharmacologyYokohama University of PharmacyYokohamaKanagawaJapan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciencesthe University of TokyoTokyoJapan
| | - Yuichi Sugiyama
- Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, School of PharmacyJosai International UniversityTokyoJapan
| |
Collapse
|
13
|
Anabtawi N, Drabison T, Hu S, Sparreboom A, Talebi Z. The role of OATP1B1 and OATP1B3 transporter polymorphisms in drug disposition and response to anticancer drugs: a review of the recent literature. Expert Opin Drug Metab Toxicol 2022; 18:459-468. [PMID: 35983889 DOI: 10.1080/17425255.2022.2113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Members of the solute carrier family of organic anion transporting polypeptides are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. In particular, the polymorphic transporters OATP1B1 and OATP1B3 are highly expressed in the liver and have been identified as critical regulators of hepatic eliminaton. As these transporters are also expressed in cancer cells, the function alteration of these proteins have important consequences for an individual's susceptibility to certain drug-induced side effects, drug-drug interactions, and treatment efficacy. AREAS COVERED In this mini-review, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of genetic variants in OATP1B1 and OATP1B3 to the transport of anticancer drugs, the role of these carriers in regulation of their disposition and toxicity profiles, and recent advances in attempts to integrate information on transport function in patients to derive individualized treatment strategies. EXPERT OPINION Based on currently available data, it appears imperative that different aspects of disease, physiology, and drugs of relevance should be evaluated along with an individual's genetic signature, and that tools such as biomarker levels can be implemented to achieve the most reliable prediction of clinically relevant pharmacodynamic endpoints.
Collapse
Affiliation(s)
- Nadeen Anabtawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, Taskar K, Varma MVS, Zhang X, Yang X, Galetin A. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther 2022; 112:501-526. [PMID: 35561140 DOI: 10.1002/cpt.2643] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
The role of membrane transporters on pharmacokinetics (PKs), drug-drug interactions (DDIs), pharmacodynamics (PDs), and toxicity of drugs has been broadly recognized. However, our knowledge of modulation of transporter expression and/or function in the diseased patient population or specific populations, such as pediatrics or pregnancy, is still emerging. This white paper highlights recent advances in studying the changes in transporter expression and activity in various diseases (i.e., renal and hepatic impairment and cancer) and some specific populations (i.e., pediatrics and pregnancy) with the focus on clinical implications. Proposed alterations in transporter abundance and/or activity in diseased and specific populations are based on (i) quantitative transporter proteomic data and relative abundance in specific populations vs. healthy adults, (ii) clinical PKs, and emerging transporter biomarker and/or pharmacogenomic data, and (iii) physiologically-based pharmacokinetic modeling and simulation. The potential for altered PK, PD, and toxicity in these populations needs to be considered for drugs and their active metabolites in which transporter-mediated uptake/efflux is a major contributor to their absorption, distribution, and elimination pathways and/or associated DDI risk. In addition to best practices, this white paper discusses current challenges and knowledge gaps to study and quantitatively predict the effects of modulation in transporter activity in these populations, together with the perspectives from the International Transporter Consortium (ITC) on future directions.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Department of ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - James Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Dwaipayan Mukherjee
- Clinical Pharmacology & Pharmacometrics, Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Xinyuan Zhang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Türk D, Müller F, Fromm MF, Selzer D, Dallmann R, Lehr T. Renal Transporter-Mediated Drug-Biomarker Interactions of the Endogenous Substrates Creatinine and N 1 -Methylnicotinamide: A PBPK Modeling Approach. Clin Pharmacol Ther 2022; 112:687-698. [PMID: 35527512 DOI: 10.1002/cpt.2636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 01/06/2023]
Abstract
Endogenous biomarkers for transporter-mediated drug-drug interaction (DDI) predictions represent a promising approach to facilitate and improve conventional DDI investigations in clinical studies. This approach requires high sensitivity and specificity of biomarkers for the targets of interest (e.g., transport proteins), as well as rigorous characterization of their kinetics, which can be accomplished utilizing physiologically-based pharmacokinetic (PBPK) modeling. Therefore, the objective of this study was to develop PBPK models of the endogenous organic cation transporter (OCT)2 and multidrug and toxin extrusion protein (MATE)1 substrates creatinine and N1 -methylnicotinamide (NMN). Additionally, this study aimed to predict kinetic changes of the biomarkers during administration of the OCT2 and MATE1 perpetrator drugs trimethoprim, pyrimethamine, and cimetidine. Whole-body PBPK models of creatinine and NMN were developed utilizing studies investigating creatinine or NMN exogenous administration and endogenous synthesis. The newly developed models accurately describe and predict observed plasma concentration-time profiles and urinary excretion of both biomarkers. Subsequently, models were coupled to the previously built and evaluated perpetrator models of trimethoprim, pyrimethamine, and cimetidine for interaction predictions. Increased creatinine plasma concentrations and decreased urinary excretion during the drug-biomarker interactions with trimethoprim, pyrimethamine, and cimetidine were well-described. An additional inhibition of NMN synthesis by trimethoprim and pyrimethamine was hypothesized, improving NMN plasma and urine interaction predictions. To summarize, whole-body PBPK models of creatinine and NMN were built and evaluated to better assess creatinine and NMN kinetics while uncovering knowledge gaps for future research. The models can support investigations of renal transporter-mediated DDIs during drug development.
Collapse
Affiliation(s)
- Denise Türk
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S, Piquette-Miller M, Saran C, Sjöstedt N, Sprowl JA, Stahl SH, Yue W. Regulation of Drug Transport Proteins-From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:461-484. [PMID: 35390174 PMCID: PMC9398928 DOI: 10.1002/cpt.2605] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post‐translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation‐mediated changes in transporter function on drug disposition and response.
Collapse
Affiliation(s)
- Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | - Elizabeth Hayden
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shuiying Hu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | | - Chitra Saran
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Wei Yue
- College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Tess DA, Kimoto E, King-Ahmad A, Vourvahis M, Rodrigues AD, Bergman A, Qui R, Somayaji V, Weng Y, Fonseca KR, Litchfield J, Varma MVS. Effect of a Ketohexokinase Inhibitor (PF-06835919) on In Vivo OATP1B Activity: Integrative Risk Assessment Using Endogenous Biomarker and a Probe Drug. Clin Pharmacol Ther 2022; 112:605-614. [PMID: 35355249 DOI: 10.1002/cpt.2593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
PF-06835919 is a first-in-class ketohexokinase inhibitor (KHKi), recently under development for the treatment of metabolic and fatty liver diseases, which inhibited organic anion transporting polypeptide (OATP)1B1 in vitro and presented drug-drug interaction (DDI) risk. This study aims to investigate the dose-dependent effect of KHKi on OATP1B in vivo activity. We performed an open-label study comparing pharmacokinetics of atorvastatin (OATP1B probe) dosed alone (20 mg single dose) and coadministered with two dose strengths of KHKi (50 and 280 mg once daily) in 12 healthy participants. Additionally, changes in exposure of coproporphyrin-I (CP-I), an endogenous biomarker for OATP1B, were assessed in the atorvastatin study (1.12-fold and 1.49-fold increase in area under the plasma concentration-time profile (AUC) with once-daily 50 and 280 mg, respectively), and a separate single oral dose study of KHKi alone (100-600 mg, n = 6 healthy participants; up to a 1.80-fold increase in AUC). Geometric mean ratios (90% confidence interval) of atorvastatin (area under the plasma concentration - time profile from time 0 extrapolated to infinite time) AUCinf following 50 and 280 mg KHKi were 1.14 (1.00-1.30) and 1.54 (1.37-1.74), respectively. Physiologically-based pharmacokinetic modeling of CP-I plasma exposure following a single dose of KHKi predicted in vivo OATP1B inhibition from about 13% to 70% over the 100 to 600 mg dose range, while using the in vitro inhibition potency (1.9 µM). Model-based analysis correctly predicted "no-effect" (AUC ratio < 1.25) at the low dose range and "weak" effect (AUC ratio < 2) on atorvastatin pharmacokinetics at the high dose range of KHKi. This study exemplified the utility of biomarker-informed model-based approach in discerning even small effects on OATP1B activity in vivo, and to project DDI risk at the clinically relevant doses.
Collapse
Affiliation(s)
- David A Tess
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| | - Amanda King-Ahmad
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc., New York, New York, USA
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| | - Arthur Bergman
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Ruolun Qui
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Veena Somayaji
- Clinical Biostatistics, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Yan Weng
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Kari R Fonseca
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - John Litchfield
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA
| |
Collapse
|
19
|
Medwid S, Price HR, Taylor DP, Mailloux J, Schwarz UI, Kim RB, Tirona RG. Organic Anion Transporting Polypeptide 2B1 (OATP2B1) Genetic Variants: In Vitro Functional Characterization and Association With Circulating Concentrations of Endogenous Substrates. Front Pharmacol 2021; 12:713567. [PMID: 34594217 PMCID: PMC8476882 DOI: 10.3389/fphar.2021.713567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1, gene SLCO2B1) is an uptake transporter that is thought to determine drug disposition and in particular, the oral absorption of medications. At present, the clinical relevance of SLCO2B1 genetic variation on pharmacokinetics is poorly understood. We sought to determine the functional activity of 5 of the most common missense OATP2B1 variants (c.76_84del, c.601G>A, c.917G>A, c.935G>A, and c.1457C>T) and a predicted dysfunctional variant (c.332G>A) in vitro. Furthermore, we measured the basal plasma concentrations of endogenous OATP2B1 substrates, namely estrone sulfate, dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate, coproporphyrin I (CPI), and CPIII, and assessed their relationships with SLCO2B1 genotypes in 93 healthy participants. Compared to reference OATP2B1, the transport activities of the c.332G>A, c.601G>A and c.1457C>T variants were reduced among the substrates examined (estrone sulfate, DHEAS, CPI, CPIII and rosuvastatin), although there were substrate-dependent effects. Lower transport function of OATP2B1 variants could be explained by diminished cell surface expression. Other OATP2B1 variants (c.76-84del, c.917G>A and c.935G>A) had similar activity to the reference transporter. In the clinical cohort, the SLCO2B1 c.935G>A allele was associated with both higher plasma CPI (42%) and CPIII (31%) concentrations, while SLCO2B1 c.917G>A was linked to lower plasma CPIII by 28% after accounting for the effects of age, sex, and SLCO1B1 genotypes. No association was observed between SLCO2B1 variant alleles and estrone sulfate or DHEAS plasma concentrations, however 45% higher plasma pregnenolone sulfate level was associated with SLCO2B1 c.1457C>T. Taken together, we found that the impacts of OATP2B1 variants on transport activities in vitro were not fully aligned with their associations to plasma concentrations of endogenous substrates in vivo. Additional studies are required to determine whether circulating endogenous substrates reflect OATP2B1 activity.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Hayley R Price
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Daniel P Taylor
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jaymie Mailloux
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Richard B Kim
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Rommel G Tirona
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Ono H, Tanaka R, Suzuki Y, Oda A, Ozaki T, Tatsuta R, Maeshima K, Ishii K, Ohno K, Shibata H, Itoh H. Factors Influencing Plasma Coproporphyrin-I Concentration as Biomarker of OATP1B Activity in Patients With Rheumatoid Arthritis. Clin Pharmacol Ther 2021; 110:1096-1105. [PMID: 34319605 DOI: 10.1002/cpt.2375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023]
Abstract
Organic anion transporting polypeptides (OATPs) 1B are drug transporters mainly expressed in the sinusoidal membrane. In previous reports, genetic factor, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), which is one of the uremic toxins, inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) decreased OATP1B1 activity in vitro, but in vivo effects of these factors have not been elucidated. Plasma coproporphyrin-I (CP-I) is spotlighted as a highly accurate endogenous substrate of OATP1B. This study focused on patients with rheumatoid arthritis (RA) and evaluated the influence of several factors comprising gene polymorphisms, uremic toxins, and inflammatory cytokines on OATP1B activity using plasma CP-I concentration. Thirty-seven outpatients with RA who satisfied the selection criteria were analyzed at the time of recruitment (baseline) and at the next visit. OATP1B1*15 carriers tended to have higher CP-I concentration compared with noncarriers. Plasma CP-I correlated positively with CMPF concentration, but did not correlate with IL-6 or TNF-α concentration. Multiple logistic regression analysis by stepwise selection identified plasma CMPF concentration and OATP1B1*15 allele as significant factors independently affecting plasma CP-I concentration at baseline and at the next visit, respectively. In conclusion, the present results suggest that inflammatory cytokines do not have clinically significant effects on OATP1B activity, whereas the effects of genetic polymorphisms and uremic toxins should be considered.
Collapse
Affiliation(s)
- Hiroyuki Ono
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Ayako Oda
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Ozaki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Keisuke Maeshima
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Koji Ishii
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| |
Collapse
|
21
|
Ahmad A, Ogungbenro K, Kunze A, Jacobs F, Snoeys J, Rostami-Hodjegan A, Galetin A. Population pharmacokinetic modeling and simulation to support qualification of pyridoxic acid as endogenous biomarker of OAT1/3 renal transporters. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:467-477. [PMID: 33704919 PMCID: PMC8129719 DOI: 10.1002/psp4.12610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Renal clearance of many drugs is mediated by renal organic anion transporters OAT1/3 and inhibition of these transporters may lead to drug‐drug interactions (DDIs). Pyridoxic acid (PDA) and homovanillic acid (HVA) were indicated as potential biomarkers of OAT1/3. The objective of this study was to develop a population pharmacokinetic model for PDA and HVA to support biomarker qualification. Simultaneous fitting of biomarker plasma and urine data in the presence and absence of potent OAT1/3 inhibitor (probenecid, 500 mg every 6 h) was performed. The impact of study design (multiple vs. single dose of OAT1/3 inhibitor) and ability to detect interactions in the presence of weak/moderate OAT1/3 inhibitors was investigated, together with corresponding power calculations. The population models developed successfully described biomarker baseline and PDA/HVA OAT1/3‐mediated interaction data. No prominent effect of circadian rhythm on PDA and HVA individual baseline levels was evident. Renal elimination contributed greater than 80% to total clearance of both endogenous biomarkers investigated. Estimated probenecid unbound in vivo OAT inhibitory constant was up to 6.4‐fold lower than in vitro values obtained with PDA as a probe. The PDA model was successfully verified against independent literature reported datasets. No significant difference in power of DDI detection was found between multiple and single dose study design when using the same total daily dose of 2000 mg probenecid. Model‐based simulations and power calculations confirmed sensitivity and robustness of plasma PDA data to identify weak, moderate, and strong OAT1/3 inhibitors in an adequately powered clinical study to support optimal design of prospective clinical OAT1/3 interaction studies.
Collapse
Affiliation(s)
- Amais Ahmad
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Annett Kunze
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frank Jacobs
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jan Snoeys
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.,Simcyp Limited (A Certara Company), Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|