1
|
Yavuz M, Çelikezen FÇ, Firat M, Baş Z, Türkoğlu V. The investigation of hawthorn ( Crataegus orientalis) plant's inhibition effect on angiotensin converting enzyme and in silico studies. Nat Prod Res 2025; 39:3079-3085. [PMID: 38440881 DOI: 10.1080/14786419.2024.2324467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/06/2024]
Abstract
Hawthorn plant is used among people due to its cardiovascular, anti-inflammatory, and antihistamine properties. But no scientific study has been done about Crataegus orientalis (Mill.) M.Bieb. The presented study was planned to determine the effects of ethanol and n-hexane extracts of Crataegus orientalis leaves on human plasma ACE enzyme. In the study, the effect of plant extracts on ACE was studied by the spectrophotometric method. The chemical composition of the plant extracts was determined by HPLC-DAD analyses. In addition, molecular doking and ADME prediction studies were carried out. As a result, the obtained data showed that Crataegus orientalis could have an important place in the pharmaceutical industry and drug discovery studies, as it supports the traditional use of Crataegus orientalis as hypotensive. The results of the molecular docking studies revealed that the interactions of the selected compounds with the human ACE enzyme caused inhibition.
Collapse
Affiliation(s)
- Mahmut Yavuz
- Bitlis Eren University, Department of Chemistry, Graduate Education Institute, Bitlis, Turkey
| | - Fatih Çağlar Çelikezen
- Department of Chemistry, Faculty of Science and Letter, Bitlis Eren University, Bitlis, Turkey
| | - Mehmet Firat
- Department of Biology, Faculty of Education, Van Yüzüncü Yıl University, Van, Turkey
| | - Zehra Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Van Yüzüncü Yıl University, Van, Turkey
| | - Vedat Türkoğlu
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
2
|
Alla C, Ali A, Mehiou A, Salhi Y, Bouanani N, Legssyer A, Ziyyat A. Phytochemical Composition of Ziziphus lotus (L.) Lam and Its Impact on the Metabolic Syndrome: A Review. Adv Pharmacol Pharm Sci 2025; 2025:8276090. [PMID: 40035065 PMCID: PMC11873318 DOI: 10.1155/adpp/8276090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The long-term pathological state known as metabolic syndrome is characterized by hypertension, insulin resistance diabetes, abdominal obesity, and hyperlipidemia. Seeking healthcare strategies with fewer side effects, such as herbal remedies, is preferable in terms of mitigating the negative consequences of synthetic medications. Ziziphus lotus (L.) (Rhamnaceae) or wild jujube, commonly known as "Sedra," is one of the best choices as it contains a variety of phytochemicals and biologically active compounds. Several flavonoids and stilbenes have been recognized as the primary bioactive components in wild jujube, including rutin, hyperin, isoquercitrin, and resveratrol. These polyphenols are pharmacologically active and have broad-spectrum beneficial effects for reducing the risk factors associated with metabolic syndrome. They exhibit antioxidant and anti-inflammatory properties, regulate lipid metabolism, and possess antiobesity, antihypertensive, and antidiabetic characteristics. However, there are certain limitations to their therapeutic application, such as low bioavailability. Various strategies have been proposed to enhance their pharmacokinetic profile and therapeutic potential for future use. The main goal of this review is to explore the underlying mechanisms related to the therapeutic effects of wild jujube and its active compounds in the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Chaimae Alla
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Amanat Ali
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Afaf Mehiou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Youssra Salhi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Nourelhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| |
Collapse
|
3
|
Liu T, Ma Y, Zhao H, Wang P, Niu Y, Hu Y, Shen X, Zhang M, Yan B, Yu J. Hawthorn leaves flavonoids attenuate cardiac remodeling induced by simulated microgravity. PHARMACEUTICAL BIOLOGY 2023; 61:683-695. [PMID: 37096968 PMCID: PMC10132252 DOI: 10.1080/13880209.2023.2203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Hawthorn leaves are a kind of widely used medicinal plant in China. The major ingredient, hawthorn leaves flavonoids (HLF), have cardiotonic, cardioprotective, and vascular protective effects. OBJECTIVE The study evaluated the protective role of HLF in cardiac remodelling and the underlying mechanisms under simulated microgravity by hindlimb unloading rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were divided into control, HLF, HU (hindlimb unloading) and HU + HLF groups (n = 8). After HU and daily intragastric administration at the dose of 100 mg/kg/d for 8 weeks, cardiac function and structure were evaluated by biochemical indices and histopathology. We identified the main active compounds and mechanisms involved in the cardioprotective effects of HLF via bioinformatics and molecular docking analysis, and relative signalling pathway activity was verified by Western blot. RESULTS HLF treatment could reverse the HU-induced decline in LV-EF (HU, 55.13% ± 0.98% vs. HU + HLF, 71.16% ± 5.08%), LV-FS (HU, 29.44% ± 0.67% vs. HU + HLF, 41.62% ± 4.34%) and LV mass (HU, 667.99 ± 65.69 mg vs. HU + HLF, 840.02 ± 73.00 mg). Furthermore, HLF treatment significantly increased NPRA expression by 135.39%, PKG by 51.27%, decreased PDE5A by 20.03%, NFATc1 by 41.68% and Rcan1.4 by 54.22%. CONCLUSIONS HLF plays a protective effect on HU-induced cardiac remodelling by enhancing NPRA-cGMP-PKG pathway and suppressing the calcineurin-NFAT pathway, which provides a theoretical basis for use in clinical therapies.
Collapse
Affiliation(s)
- Tian Liu
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Yuqi Ma
- Endocrinology Department, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P. R.China
| | - Hui Zhao
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Pengli Wang
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Yan Niu
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Yuehuan Hu
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Xi Shen
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Mingxia Zhang
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Bing Yan
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
| | - Jun Yu
- Clinical Experimental Center, Northwest University Affiliated Xi’an International Medical Center Hospital, Shaanxi, P.R.China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Shaanxi, P.R.China
- CONTACT Jun Yu Clinical Experimental Center, Xi’an International Medical Center Hospital, No. 777 Xitai Road Xi’an, Shaanxi710100, P. R. China
| |
Collapse
|
4
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
5
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Zheng W, Zhou M, Chai RP, Liang HZ, Zhang J, Zhao Y, Zheng XH, Jin Y, Guo BL, Ma BP. Quality analysis of hawthorn leaves (the leaves of Crataegus pinnatifida Bge. var major N.E.Br) in different harvest time. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1147-1155. [PMID: 35908761 DOI: 10.1002/pca.3166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Harvest time plays an important role on the quality of medicinal plants. The leaves of Crataegus pinnatifida Bge. var major N.E.Br (hawthorn leaves) could be harvested in summer and autumn according to the Pharmacopoeia of the People's Republic of China (Pharmacopoeia). However, little is known about the difference of the chemical constituents in hawthorn leaves with the harvest seasonal variations. OBJECTIVE The chemical constituents of hawthorn leaves in different months were comprehensively analysed to determine the best harvest time. METHODS Initially, the chemical information of the hawthorn leaves were obtained by ultra-high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Subsequently, principal component analysis (PCA) was applied to compare the chemical compositions of hawthorn leaves harvested in different months. Then, an absolute quantitation method was established using high-performance liquid chromatography-charged aerosol detector (HPLC-CAD) to determine the contents of five compounds and clarify the changes of these components with the harvest seasonal variations. Meanwhile, a semi-quantitative method by integrating HPLC-CAD with inverse gradient compensation was also established and verified. RESULTS Fifty-eight compounds were identified through UHPLC-Q-TOF-MS. PCA revealed that the harvest season of hawthorn leaves had a significant effect on the chemical compositions. The contents of five components were relatively high in autumn. Other four main components without reference standards were further analysed through the semi-quantitative method, which also showed a high content in autumn. CONCLUSIONS This work emphasised the effect of harvest time on the chemical constituents of hawthorn leaves and autumn is recommended to ensure the quality.
Collapse
Affiliation(s)
- Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ming Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ye Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiao-Hui Zheng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Jin
- Thermo Fisher Scientific (China), Shanghai, China
| | - Bao-Lin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bai-Ping Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Du W, Fan HM, Zhang YX, Jiang XH, Li Y. Effect of Flavonoids in Hawthorn and Vitamin C Prevents Hypertension in Rats Induced by Heat Exposure. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030866. [PMID: 35164138 PMCID: PMC8840451 DOI: 10.3390/molecules27030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022]
Abstract
Background: Excessive oxidative stress is associated with hypertension in professional high-temperature working conditions. Polyphenols exhibit a cardioprotective effect. Hawthorn contains high amounts of flavonoids, though its effect on hypertension protection has yet to be studied. This study aims to investigate this effect of extract of hawthorn (EH) or its combination with vitamin C (Vit. C) in rats induced by working under a hot environment. Methods: Forty-two male rats were randomly divided into a control group under normal temperature and six treatment groups exposed at 33 ± 1 °C along with 1 h of daily treadmill running. They were orally provided with water, Vit. C (14mg/kg), EH (125, 250, and 500 mg/kg), and EH500 + Vit. C, once a day for four weeks. Results: Both EH and Vit. C alone reduced the systolic and diastolic blood pressure of rats exposed to the heat environment; however, their joint supplementation completely maintained their blood pressure to the normal level throughout the experimental period. No morphological changes were found on the intima of aorta. Moreover, the co-supplementation of EH and Vit. C prevented the changes of heat exposure in inducing oxidative stress markers, such as glutathione peroxidase, catalase, total antioxidant capacity, and nitric oxide; the synergistic action was more effective than either individual treatment of EH and Vit. C. Furthermore, the administration of EH had more potent effects on increasing superoxide dismutase, IL-2, the 70 kilodalton heat shock proteins and high sensitivity C reactive protein, and decreasing serum malondialdehyde and lipofuscin in vascular tissue than those in Vit. C group. Conclusions: A strong synergistic effect of EH and Vit. C on the prevention of hypertension under heat exposure was established, as they inhibited the oxidative stress state. This study also sets up a novel intervention strategy in animal models for investigation on the early phases of hypertension induced by heat exposure.
Collapse
Affiliation(s)
- Wei Du
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (W.D.); (H.-M.F.)
- Nutrition and Cardiovascular Diseases Basic Research Group, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Hong-Min Fan
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (W.D.); (H.-M.F.)
| | - Yu-Xin Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (Y.-X.Z.); (X.-H.J.)
- Key Laboratory for Chronic Diseases, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Xiao-Hua Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (Y.-X.Z.); (X.-H.J.)
- Key Laboratory for Chronic Diseases, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Yun Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China; (W.D.); (H.-M.F.)
- Nutrition and Cardiovascular Diseases Basic Research Group, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
- Correspondence: ; Tel.: +86-0315-8805-586
| |
Collapse
|
8
|
Martinelli F, Perrone A, Yousefi S, Papini A, Castiglione S, Guarino F, Cicatelli A, Aelaei M, Arad N, Gholami M, Salami SA. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn ( Crataegusmonogyna Jacq.), Rosaceae. Molecules 2021; 26:molecules26237266. [PMID: 34885847 PMCID: PMC8659235 DOI: 10.3390/molecules26237266] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus monogyna Jacq.) is a wild edible fruit tree of the genus Crataegus, one of the most interesting genera of the Rosaceae family. This review is the first to consider, all together, the pharmaceutical, phytochemical, functional and therapeutic properties of C. monogyna based on numerous valuable secondary metabolites, including flavonoids, vitamin C, glycoside, anthocyanin, saponin, tannin and antioxidants. Previous reviews dealt with the properties of all species of the entire genera. We highlight the multi-therapeutic role that C. monogyna extracts could have in the treatment of different chronic and degenerative diseases, mainly focusing on flavonoids. In the first part of this comprehensive review, we describe the main botanical characteristics and summarize the studies which have been performed on the morphological and genetic characterization of the C. monogyna germplasm. In the second part, the key metabolites and their nutritional and pharmaceutical properties are described. This work could be an essential resource for promoting future therapeutic formulations based on this natural and potent bioactive plant extract.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Anna Perrone
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
- Correspondence: (A.P.); (S.A.S.)
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Alessio Papini
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Francesco Guarino
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Mitra Aelaei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (A.P.); (S.A.S.)
| |
Collapse
|
9
|
Kumar G, Dey SK, Kundu S. Herbs and their bioactive ingredients in cardio-protection: Underlying molecular mechanisms and evidences from clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153753. [PMID: 34610528 DOI: 10.1016/j.phymed.2021.153753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicinal plants or herbs produce a bounty of bioactive phytochemicals. These phytochemicals can influence a variety of physiological events related to cardiovascular health through multiple underlying mechanisms, such as their role as antioxidative, anti-ischemic, anti-proliferative, hypotensive, anti-thrombotic, and anti-hypercholesterolemic agents. PURPOSE The purpose of this review is to summarize and connect evidences supporting the use of phytotherapy in the management of some of the most common cardiovascular impairments, molecular mechanisms underlying cardio-protection mediated by herbs, and clinical studies which are positively linked with the use of herbs in cardiovascular biology. Additionally, we also describe several adverse effects associated with some of the herbal plants and their products to provide a balanced set of studies in favor or against phytotherapy in cardiovascular health that may help global discourses on this matter. METHODS Studies relating to the use of medicinal plants were mined by strategically searching scientific databases including Google Scholar, PubMed and Science Direct. Investigations involving approximately 175 articles including reviews, research articles, meta-analyses, and cross-sectional and observational studies were retrieved and analyzed in line with the stated purpose of this study. RESULTS A positive correlation between the use of medicinal plants and cardiovascular health was observed. While maintaining cardiovascular physiology, medicinal plants and their derivatives seem to govern a variety of cellular mechanisms involved in vasoconstriction and vasorelaxation, which in turn, are important aspects of cardiovascular homeostasis. Furthermore, a variety of studies including clinical trials, cross-sectional studies, and meta-analyses have also supported the anti-hypertensive and thus, cardio-protective effects, of medicinal plants. Apart from this, evidence is also available for the potential drawbacks of several herbs and their products indicating that the unsupervised use of many herbs may lead to severe health issues. CONCLUSIONS The cardio-protective outcomes of medicinal plants and their derivatives are supported by ever-increasing studies, while evidences exist for the potential drawbacks of some of the herbs. A balanced view about the use of medicinal plants and their derivative in cardiovascular biology thus needs to be outlined by researchers and the medical community. The novelty and exhaustiveness of the present manuscript is reflected by the detailed outline of the molecular basis of "herbal cardio-protection", active involvement of several herbs in ameliorating the cardiovascular status, adverse effects of medicinal plants, and the clinical studies considering the use of phytotherapy, all on a single platform.
Collapse
Affiliation(s)
- Gaurav Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
10
|
Verma T, Sinha M, Bansal N, Yadav SR, Shah K, Chauhan NS. Plants Used as Antihypertensive. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:155-184. [PMID: 33174095 PMCID: PMC7981375 DOI: 10.1007/s13659-020-00281-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/31/2020] [Indexed: 05/03/2023]
Abstract
Hypertension is a critical health problem and worse other cardiovascular diseases. It is mainly of two types: Primary or essential hypertension and Secondary hypertension. Hypertension is the primary possibility feature for coronary heart disease, stroke and renal vascular disease. Herbal medicines have been used for millions of years for the management and treatment of hypertension with minimum side effects. Over aim to write this review is to collect information on the anti-hypertensive effects of natural herbs in animal studies and human involvement as well as to recapitulate the underlying mechanisms, from the bottom of cell culture and ex-vivo tissue data. According to WHO, natural herbs/shrubs are widely used in increasing order to treat almost all the ailments of the human body. Plants are the regular industrial units for the invention of chemical constituents, they used as immunity booster to enhance the natural capacity of the body to fight against different health problems as well as herbal medicines and food products also. Eighty percent population of the world (around 5.6 billion people) consume medicines from natural plants for major health concerns. This review provides a bird's eye analysis primarily on the traditional utilization, phytochemical constituents and pharmacological values of medicinal herbs used to normalize hypertension i.e. Hibiscus sabdariffa, Allium sativum, Andrographis paniculata, Apium graveolens, Bidenspilosa, Camellia sinensis, Coptis chinensis, Coriandrum sativum, Crataegus spp., Crocus sativus, Cymbopogon citrates, Nigella sativa, Panax ginseng,Salviaemiltiorrhizae, Zingiber officinale, Tribulus terrestris, Rauwolfiaserpentina, Terminalia arjuna etc.
Collapse
Affiliation(s)
- Tarawanti Verma
- I.K. Gujral Punjab Technical University (IKGPTU), Jalandhar, Punjab India
| | - Manish Sinha
- Laureate Institute of Pharmacy, Kathog, Jwalamukhi, Kangra, Himachal Pradesh India
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, BELA, Ropar, Punjab India
| | - Shyam Raj Yadav
- Department of Chemistry, S.P. Jain College (Veer Kunwar Singh University, Ara), Sasaram, Bihar India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, NH#2, Mathura, Uttar Pradesh 281406 India
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra, 1st Floor Govt. Ayurvedic Hospital Building, Govt. Ayurvedic College Campus G.E. Road, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
11
|
Abstract
Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.
Collapse
|
12
|
Gomes APO, Ferreira MA, Camargo JM, Araújo MDO, Mortoza AS, Mota JF, Coelho ASG, Capitani CD, Coltro WKT, Botelho PB. Organic beet leaves and stalk juice attenuates HDL-C reduction induced by high-fat meal in dyslipidemic patients: A pilot randomized controlled trial. Nutrition 2019; 65:68-73. [DOI: 10.1016/j.nut.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/09/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
13
|
Danışman Kalındemirtaş F, Birman H, Candöken E, Bilgiş Gazioğlu S, Melikoğlu G, Kuruca S. Cytotoxic Effects of Some Flavonoids and Imatinib on the K562 Chronic Myeloid Leukemia Cell Line: Data Analysis Using the Combination Index Method. Balkan Med J 2018; 36:96-105. [PMID: 30396879 PMCID: PMC6409953 DOI: 10.4274/balkanmedj.galenos.2018.2017.1244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Flavonoids are natural compounds with antioxidant, anticarcinogenic, and anti-inflammatory effects. Aims: To determine the cytotoxic effects of flavonoids and drug resistance related to P-gp on K562 human chronic myeloid leukemia cells. We also aimed to evaluate the therapeutic potential of imatinib and flavonoid combinations. Study Design: Cell culture study. Methods: In this study, K562 cells were treated with apigenin, luteolin, 5-desmethyl sinensetin and the anticancer drug imatinib mesylate. The effect of flavonoids on K562 cell proliferation was detected using the 3-(4,5-dimethylthiazolyl)2,5‑diphenyl‑tetrazolium bromide assay. Concentrations of apigenin, luteolin, and 5-desmethyl sinensetin ranging from 25 to 200 μM and of imatinib from 5 to 50 μM administered for 72 h were studied. Apoptosis/necrosis and P-gp activity were measured using flow cytometry. The combined effects of different concentrations of flavonoids with imatinib were evaluated according to combination index values calculated using CompuSyn software. Results: In our study, the IC50 values for apigenin, luteolin, and 5-desmethyl sinensetin were found to be 140 μM, 100 μM, and >200 μM, respectively. Luteolin (100 μM) had the highest cytotoxic activity of these flavonoids. These results were statistically significant (p<0.05). Among the flavonoids studied, the combination of luteolin and imatinib was the most effective and is therefore recommended for its cytotoxic activity in the K562 cell line. After 72 h of incubation at their respective IC50 concentrations, all flavonoids were associated with an apoptosis rate of approximately 50%. P-glycoprotein activity was increased in all groups. Combination treatment may provide better outcomes in terms of cytotoxicity and thus reduce the dosages of imatinib used. Conclusion: The combination of some flavonoids and imatinib mesylate may increase the cytotoxic effect; However, the antagonistic effect should be considered in combined use on k562 cells.
Collapse
Affiliation(s)
| | - Hüsniye Birman
- Department of Physiology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Eda Candöken
- Department of Biochemistry, İstanbul University İstanbul School of Pharmacy, İstanbul, Turkey
| | - Sema Bilgiş Gazioğlu
- Department of Immunology, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| | - Gülay Melikoğlu
- Department of Pharmacognosy, İstanbul University İstanbul School of Pharmacy, İstanbul, Turkey
| | - Serap Kuruca
- Department of Physiology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
14
|
Haydari MR, Panjeshahin MR, Mashghoolozekr E, Nekooeian AA. Antihypertensive Effects of Hydroalcoholic Extract of Crataegus Azarolus Subspecies Aronia Fruit in Rats with Renovascular Hypertension: An Experimental Mechanistic Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:266-274. [PMID: 28533575 PMCID: PMC5429495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/11/2016] [Accepted: 06/12/2016] [Indexed: 10/27/2022]
Abstract
BACKGROUND Hawthorn species decreases blood pressure and relaxes precontracted vessels. This study aimed at examining the antihypertensive effect and related mechanisms of hydroalcoholic extract of Crataegus azarolus subspecies aronia fruit in rats with renovascular hypertension. METHODS Six groups of male Sprague-Dawley rats, each containing 6 to 8 rats, were studied. The groups comprised of one sham group and 5 renal artery-clipped groups. The sham group received vehicle (distilled water 0.5 ml/day) and the renal artery-clipped groups received vehicle or the extract at 5, 10, 20 or 30 mg/kg/day. Oral vehicle or extract was administered daily for 4 weeks following sham-operation or induction of hypertension. Systolic blood pressure and heart rate were measured weekly. Isolated aorta study was performed by last week and serum superoxide dismutase and glutathione reductase were measured. The findings were analyzed using one-way analysis of variance and Duncan's multiple range tests at P≤0.05 using SigmaStat software. RESULTS The data obtained after 4 weeks of treatment showed that the renal artery-clipped group receiving vehicle had significantly higher systolic blood pressure (P=0.002) and phenylephrine maximal response (P=0.01); and lower acetylcholine maximal response (P=0.01), serum superoxide dismutase (P=0.006) and serum glutathione reductase (P=0.006) than those of the sham group. The renal artery-clipped group receiving extract had significantly lower systolic blood pressure (P=0.03) and phenylephrine maximal response (P=0.01); and significantly higher acetylcholine maximal response (P=0.01), serum superoxide dismutase (P=0.015), and serum glutathione reductase (P=0.015) than those of the renal artery-clipped group receiving vehicle. CONCLUSION Our findings show that the hydroalcoholic extract of Crataegus azarolus subspecies aronia fruit has antihypertensive effects, which may be partly due to antioxidant and nitric oxide releasing effects.
Collapse
Affiliation(s)
- Mohammad Reza Haydari
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Panjeshahin
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mashghoolozekr
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Nekooeian
- Cardiovascular Pharmacology Research Lab, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Uzun M, Kaya A. Ethnobotanical research of medicinal plants in Mihalgazi (Eskişehir, Turkey). PHARMACEUTICAL BIOLOGY 2016; 54:2922-2932. [PMID: 27291089 DOI: 10.1080/13880209.2016.1194863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 05/25/2023]
Abstract
CONTEXT Human beings have long utilized plants for medicinal purposes. Investigation of these plants has led to the discovery of several modern drugs. OBJECTIVE This paper documents and evaluates traditional knowledge on medicinal plants used by the local people of Mihalgazi district of Eskişehir, Turkey. MATERIALS AND METHODS Six villages of the study area were visited between February 2014 and April 2015 to collect the data. One hundred and eighty-nine informants were interviewed by the survey method and face to face semi-structured interviews. Taxonomic identification, the most commonly used plant parts, preparation and administration methods were evaluated. Ethnomedicinal data were analyzed quantitatively with relative importance (RI) and the informant consensus factor (FIC). RESULTS This paper reported a total of 52 medicinal plants (37 wild, 15 cultivated) belonging to 34 families. Some uses of 22 plants were not found in the literature and are reported for the first time in this study. Furthermore, one of the plants, Calamagrostis arundinacea (L.) Roth (Poaceae), was reported for the first time as being used within the scope of traditional therapies. DISCUSSION AND CONCLUSION This study recorded traditional knowledge on medicinal plants used in Mihalgazi, Turkey. This paper provides a basis for further investigations to discover efficient pharmaceuticals.
Collapse
Affiliation(s)
- Merve Uzun
- a Department of Pharmaceutical Botany, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Ayla Kaya
- a Department of Pharmaceutical Botany, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| |
Collapse
|
16
|
Patten GS, Abeywardena MY, Bennett LE. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit Rev Food Sci Nutr 2016; 56:181-214. [PMID: 24915402 DOI: 10.1080/10408398.2011.651176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertension is a major risk factor for coronary heart disease, kidney disease, and stroke. Interest in medicinal or nutraceutical plant bioactives to reduce hypertension has increased dramatically. The main biological regulation of mammalian blood pressure is via the renin-angiotensin-aldosterone system. The key enzyme is angiotensin converting enzyme (ACE) that converts angiotensin I into the powerful vasoconstrictor, angiotensin II. Angiotensin II binds to its receptors (AT1) on smooth muscle cells of the arteriole vasculature causing vasoconstriction and elevation of blood pressure. This review focuses on the in vitro and in vivo reports of plant-derived extracts that inhibit ACE activity, block angiotensin II receptor binding and demonstrate hypotensive activity in animal or human studies. We describe 74 families of plants that exhibited significant ACE inhibitory activity and 16 plant families with potential AT1 receptor blocking activity, according to in vitro studies. From 43 plant families including some of those with in vitro bioactivity, the extracts from 73 plant species lowered blood pressure in various normotensive or hypertensive in vivo models by the oral route. Of these, 19 species from 15 families lowered human BP when administered orally. Some of the active plant extracts, isolated bioactives and BP-lowering mechanisms are discussed.
Collapse
Affiliation(s)
- Glen S Patten
- a CSIRO Preventative Health National Research Flagship, Animal, Food and Health Sciences , Adelaide , South Australia , Australia
| | - Mahinda Y Abeywardena
- a CSIRO Preventative Health National Research Flagship, Animal, Food and Health Sciences , Adelaide , South Australia , Australia
| | - Louise E Bennett
- b CSIRO Preventative Health National Research Flagship, Animal, Food and Health Sciences, Werribee , Victoria , British Columbia , Australia
| |
Collapse
|
17
|
Park JY, Han X, Piao MJ, Oh MC, Fernando PMDJ, Kang KA, Ryu YS, Jung U, Kim IG, Hyun JW. Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress. J Cancer Prev 2016; 21:41-7. [PMID: 27051648 PMCID: PMC4819665 DOI: 10.15430/jcp.2016.21.1.41] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction. Methods: The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay. Results: Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide. Conclusions: Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Xia Han
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Mei Jing Piao
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Min Chang Oh
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | | | - Kyoung Ah Kang
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Yea Seong Ryu
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Korea University of Science and Technology, Daejeon, Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Korea University of Science and Technology, Daejeon, Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon, Korea
| | - Jin Won Hyun
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
18
|
Hügel HM, Jackson N, May B, Zhang AL, Xue CC. Polyphenol protection and treatment of hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:220-231. [PMID: 26926184 DOI: 10.1016/j.phymed.2015.12.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION High blood pressure is the major risk factor for cardiovascular diseases and the rising prevalence of human hypertension precedes the trend toward a global epidemic of unhealthy ageing. A focus on lifestyle and dietary interventions minimizes dependency on pharmacological antihypertensive therapies. REVIEW Observational studies indicate that the intake of dietary flavonoids is associated with a decreased risk of cardiovascular disease (CVD). The evidence suggests that the dietary intakes of polyphenol-rich foods, herbs and beverages including flavonols, anthocyanidins, proanthocyanidins, flavones, flavanones, isoflavones and flavan-3-ols, improves vascular health, thereby significantly reducing the risk of hypertension and CVD. Consumption is associated with an improvement in endothelial function via vascular eNOS and Akt activation. Increased NO bioavailability improves vasodilation and blood circulation, effects protein kinases, ion channels and phosphodiesterases, counteracting vascular inflammation and LDL oxidative stress. Importantly, some polyphenols also inhibit the activity of matrix metalloproteinases, inhibit angiotensin converting enzyme activity and thereby improving SBP and DSB. We review the improvement of polyphenol intake on blood pressure and endothelial function for the treatment of hypertension, including not only observational but also RCTs and pre-clinical studies. CONCLUSION The antihypertensive phytotherapy of polyphenol-rich foods for protection and improving endothelial function with vascular relaxation occurs via the NO-cGMP pathway and ACE inhibition. OPCs stimulate endothelium-dependent vasodilation, suppress vasoconstrictor ET-1 synthesis, activate a laminar shear stress response in endothelial cells and also inhibit the activity of metalloproteinases including ACE lowering blood pressure.
Collapse
Affiliation(s)
- Helmut M Hügel
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia .
| | - Neale Jackson
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Brian May
- School of Health Sciences and China-Australia International Research Centre for Chinese Medicine, Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001 Australia
| | - Anthony L Zhang
- School of Health Sciences and China-Australia International Research Centre for Chinese Medicine, Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001 Australia
| | - Charlie C Xue
- School of Health Sciences and China-Australia International Research Centre for Chinese Medicine, Health Innovations Research Institute, RMIT University, Melbourne, VIC 3001 Australia
| |
Collapse
|
19
|
Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive Herbs and their Mechanisms of Action: Part I. Front Pharmacol 2016; 6:323. [PMID: 26834637 PMCID: PMC4717468 DOI: 10.3389/fphar.2015.00323] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 12/27/2022] Open
Abstract
The use of herbal therapies for treatment and management of cardiovascular diseases (CVDs) is increasing. Plants contain a bounty of phytochemicals that have proven to be protective by reducing the risk of various ailments and diseases. Indeed, accumulating literature provides the scientific evidence and hence reason d'etre for the application of herbal therapy in relation to CVDs. Slowly, but absolutely, herbal remedies are being entrenched into evidence-based medical practice. This is partly due to the supporting clinical trials and epidemiological studies. The rationale for this expanding interest and use of plant based treatments being that a significant proportion of hypertensive patients do not respond to Modern therapeutic medication. Other elements to this equation are the cost of medication, side-effects, accessibility, and availability of drugs. Therefore, we believe it is pertinent to review the literature on the beneficial effects of herbs and their isolated compounds as medication for treatment of hypertension, a prevalent risk factor for CVDs. Our search utilized the PubMed and ScienceDirect databases, and the criterion for inclusion was based on the following keywords and phrases: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine (CAM), nitric oxide, vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B, oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with herb in question, and where possible with its constituent molecule(s). In this first of a two-part review, we provide a brief introduction of hypertension, followed by a discussion of the molecular and cellular mechanisms. We then present and discuss the plants that are most commonly used in the treatment and management of hypertension.
Collapse
Affiliation(s)
- Sara S. Al Disi
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - M. Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
20
|
Li L, Zhou X, Li N, Sun M, Lv J, Xu Z. Herbal drugs against cardiovascular disease: traditional medicine and modern development. Drug Discov Today 2015; 20:1074-86. [PMID: 25956424 DOI: 10.1016/j.drudis.2015.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
Herbal products have been used as conventional medicines for thousands of years, particularly in Eastern countries. Thousands of clinical and experimental investigations have focused on the effects and mechanisms-of-action of herbal medicine in the treatment of cardiovascular diseases (CVDs). Considering the history of clinical practice and the great potentials of herb medicine and/or its ingredients, a review on this topic would be helpful. This article discusses possible effects of herbal remedies in the prevention and treatment of CVDs. Crucially, we also summarize some underlying pharmacological mechanisms for herb products in cardiovascular regulations, which might provide interesting information for further understanding the effects of herbal medicines, and boost the prospect of new herbal products against CVDs.
Collapse
Affiliation(s)
- Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Division of Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
21
|
Alp H, Soner BC, Baysal T, Şahin AS. Protective effects of Hawthorn (Crataegus oxyacantha) extract against digoxin-induced arrhythmias in rats. Anatol J Cardiol 2014; 15:970-5. [PMID: 25880053 PMCID: PMC5368468 DOI: 10.5152/akd.2014.5869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Digitalis preparations are commonly used by children and adults with heart diseases worldwide, although excessive doses may cause cardiac effects. The aim of the study is to evaluate the antiarrhythmic effect of Crataegus oxyacantha extract on digoxin-induced arrhythmias in anesthetized Wistar rats. METHODS Control and experimental groups were evaluated for arrhythmias induced by digoxin. Fifteen rats (7 as controls and 8 as the experimental group) were included in the study. The dry fruits of 100 mg Crataegus oxyacantha were extracted by percolation method. Digoxin, at a dose of 40 µg/kg/min, was infused to form the arrhythmias in all rats. Simultaneously, the extract was infused into the experimental group, while 0.9% NaCl was infused into control group. Electrocardiographic QRS prolongation and arterial blood pressure changes were analyzed. RESULTS The experimental group lived longer (62.13±2.20 min) than the controls (p=0.002). On the other hand, the time to beginning of QRS prolongation did not differ between the two groups (p=0.812). Bradycardia was significant in the control group (288.01±10.54 beat/min and p=0.01). The maximum QRS duration was observed in the control group during the digoxin and 0.9% NaCl infusion period (53.29±3.99 ms and p=0.001). Also, the durations of atrial and ventricular arrhythmias were shorter in the experimental group. However, arterial blood pressure dipping was significant in the experimental group (23.67±10.89 mm Hg and p<0.001). CONCLUSION Crataegus oxyacantha alcoholic extract produced an antiarrhythmic effect that was induced by digoxin in Wistar rats. However, in the clinical use of this extract, the hypotensive effect should be considered. Also, the alcoholic extract of Crataegus oxyacantha may be an alternative treatment medication for arrhythmias induced by digoxin toxicity in humans.
Collapse
Affiliation(s)
- Hayrullah Alp
- Department of Pediatric Cardiology, Malatya State Hospital, Malatya-Turkey.
| | | | | | | |
Collapse
|
22
|
Houston M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol 2014; 6:38-66. [PMID: 24575172 PMCID: PMC3935060 DOI: 10.4330/wjc.v6.i2.38] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/22/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications.
Collapse
Affiliation(s)
- Mark Houston
- Mark Houston, Hypertension Institute, Saint Thomas Medical Plaza, Nashville, TN 37205, United States
| |
Collapse
|
23
|
Wei W, Ying X, Zhang W, Chen Y, Leng A, Jiang C, Liu J. Effects of vitexin-2"-O-rhamnoside and vitexin-4"-O-glucoside on growth and oxidative stress-induced cell apoptosis of human adipose-derived stem cells. J Pharm Pharmacol 2014; 66:988-97. [PMID: 24533889 DOI: 10.1111/jphp.12225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/01/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Vitexin-2"-O-rhamnoside (VOR) and vitexin-4"-O-glucoside (VOG) are the two main flavonoid glycosides of the leaves of Cratagus pinnatifida Bge. var. major N. E. Br. that has been widely used for the treatment of cardiovascular system diseases. In this study, we simultaneously investigated the influence of VOR and VOG on human adipose-derived stem cells (hADSCs) injury induced by hydrogen peroxide (H2 O2 ) to further characterize their anti-oxidative and anti-apoptotic activity. METHODS hADSCs were isolated, cultured in vitro and pretreated with 62.5 μm VOR or 120 μm VOG for 24 h and then exposed to 500 μm H2 O2 for an additional 4 h. KEY FINDINGS Pretreatment of hADSCs with VOR and VOG was demonstrated to significantly ameliorate the toxicity and apoptosis effects, such as morphological distortion, nuclear condensation, decreased intracellular caspase-3 activity and percentage of cells in apoptosis/necrosis by using morphological assay, immunocytochemistry and flow cytometric evaluation. In addition, VOR and VOG caused no cytotoxic effect on hADSCs at concentrations up to 250 and 480 μm, respectively. CONCLUSIONS Our results indicated that both VOR and VOG contribute to the protection against H2 O2 -mediated oxidative stress damage and could be safely used for a wide range of concentrations.
Collapse
Affiliation(s)
- Wenjuan Wei
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Effect of crataegus usage in cardiovascular disease prevention: an evidence-based approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:149363. [PMID: 24459528 PMCID: PMC3891531 DOI: 10.1155/2013/149363] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Hawthorn (Crataegus oxyacantha) is a widely used Chinese herb for treatment of gastrointestinal ailments and heart problems and consumed as food. In North America, the role of treatment for heart problems dates back to 1800. Currently, evidence is accumulating from various in vivo and in vitro studies that hawthorn extracts exert a wide range of cardiovascular pharmacological properties, including antioxidant activity, positive inotropic effect, anti-inflammatory effect, anticardiac remodeling effect, antiplatelet aggregation effect, vasodilating effect, endothelial protective effect, reduction of smooth muscle cell migration and proliferation, protective effect against ischemia/reperfusion injury, antiarrhythmic effect, lipid-lowering effect and decrease of arterial blood pressure effect. On the other hand, reviews of placebo-controlled trials have reported both subjective and objective improvement in patients with mild forms of heart failure (NYHA I-III), hypertension, and hyperlipidemia. This paper discussed the underlying pharmacology mechanisms in potential cardioprotective effects and elucidated the clinical applications of Crataegus and its various extracts.
Collapse
|
25
|
Nutraceutical value of black cherry Prunus serotina Ehrh. fruits: antioxidant and antihypertensive properties. Molecules 2013; 18:14597-612. [PMID: 24287993 PMCID: PMC6270007 DOI: 10.3390/molecules181214597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 02/05/2023] Open
Abstract
In Mexico black cherry (Prunus serotina Ehrh.) fruits are consumed fresh, dried or prepared in jam. Considering the evidence that has linked intake of fruits and vegetables rich in polyphenols to cardiovascular risk reduction, the aim of this study was to characterize the phenolic profile of black cherry fruits and to determine their antioxidant, vasorelaxant and antihypertensive effects. The proximate composition and mineral contents of these fruits were also assessed. Black cherry fruits possess a high content of phenolic compounds and display a significant antioxidant capacity. High-performance liquid chromatography/mass spectrometric analysis indicated that hyperoside, anthocyanins and chlorogenic acid were the main phenolic compounds found in these fruits. The black cherry aqueous extract elicited a concentration-dependent relaxation of aortic rings and induced a significant reduction on systolic blood pressure in L-NAME induced hypertensive rats after four weeks of treatment. Proximate analysis showed that black cherry fruits have high sugar, protein, and potassium contents. The results derived from this study indicate that black cherry fruits contain phenolic compounds which elicit significant antioxidant and antihypertensive effects. These findings suggest that these fruits might be considered as functional foods useful for the prevention and treatment of cardiovascular diseases.
Collapse
|
26
|
Dood KP, Frey AD, Geisbuhler TP. The Effect of Hawthorn Extract on Coronary Flow. J Evid Based Complementary Altern Med 2013. [DOI: 10.1177/2156587213491428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hawthorn extract has been used for heart failure and may decrease cardiac cell injury and improve cardiac function. One proposed mechanism for hawthorn action is vasodilation. We hypothesized that hawthorn extract would increase coronary blood flow in isolated perfused rat hearts. Coronary flow was measured in nonworking perfused rat hearts (Langendorff, constant pressure) using a flow probe; data were collected electronically in real time. Hawthorn extract showed an early (30-120 seconds) vasodilation, followed by a later (3-5 minutes) decrease in coronary flow. Maximum vasodilation occurred with 240 μg/mL hawthorn extract. Hawthorn’s pattern of activity was unlike that of several known vasoactive drugs. Both nitric oxide synthase inhibitors and indomethacin abolished early vasodilation, but they had no effect on the late phase decrease in flow. We suggest that a hawthorn-induced increase in nitric oxide generation leads to an increase in prostacyclin production, thus causing early phase vasodilation.
Collapse
Affiliation(s)
- Kenneth P. Dood
- A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Aaron D. Frey
- A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Timothy P. Geisbuhler
- A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| |
Collapse
|
27
|
Mali VR, Mohan V, Bodhankar SL. Antihypertensive and cardioprotective effects of the Lagenaria siceraria fruit in NG-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats. PHARMACEUTICAL BIOLOGY 2012; 50:1428-1435. [PMID: 22994444 DOI: 10.3109/13880209.2012.684064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Lagenaria siceraria (Molina) Standl. (Cucurbitacae) (LS) has been reported to possess cardioprotective, antihyperlipidemic, and diuretic activities. OBJECTIVE To evaluate antihypertensive and cardioprotective effects of the Lagenaria siceraria fruit powder in N(G)-nitro-L-arginine methyl ester (L-NAME) induced hypertension in rats. MATERIALS AND METHODS Male Wistar rats were divided in four groups. Control 2% gum acacia p.o., L-NAME (40 mg/kg p.o.), LS (500 mg/kg p.o.) + L-NAME (40 mg/kg p.o.), L-arginine (100 mg/kg p.o.) + L-NAME (40 mg/kg p.o.). Treatment period was 4 weeks. On day 29 serum marker enzymes, cholesterol and heamodynamic parameters were measured. Histology of heart was performed. LS powder was characterized by HPLC. RESULT Systolic blood pressures were increased by L-NAME (p < 0.001). In both drug treated groups systolic and diastolic blood pressures were reduced significantly (p < 0.001) compared to L-NAME. In L-NAME group significantly (p < 0.01) elevated cholesterol which was reduced (p < 0.05) by LS treatment. In L-NAME group inflammation and necrosis (0-35%) was present in heart whereas there was no change in myocardium of LS and L-arginine treated rats. Vitexin, orientin and isoorientin were detected in methanol extract of LS powder. DISCUSSION AND CONCLUSION L-NAME induced hypertension in rats was reduced by treatment with LS. The absence of necrosis, inflammation in the heart and significant reduction in serum cholesterol in LS and L-arginine treated rats indicated cardioprotective activity. Antioxidant activity of orientin and isoorientin appears to reduce the L-NAME induced damage. It is concluded that LS fruit possess antihypertensive and cardioprotective activity.
Collapse
Affiliation(s)
- Vishal R Mali
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra, India
| | | | | |
Collapse
|
28
|
Yang B, Liu P. Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:1578-90. [PMID: 22488722 DOI: 10.1002/jsfa.5671] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/29/2011] [Accepted: 02/23/2012] [Indexed: 05/03/2023]
Abstract
Epicatechin, aglycons and glycosides of B-type oligomeric procyanidins and flavonols, phenolic acids and C-glycosyl flavones are the major groups of phenolic compounds in hawthorn (Crataegus spp). The total content of phenolic compounds is higher in the leaves and flowers than in the fruits. Procyanidins dominate in the fruits, whereas flavonol glycosides and C-glycosyl flavones are most abundant in the leaves. Genotype and developmental/ripening stage have strong impacts. Procyanidin glycosides and C-glycosyl flavones may be chemotaxonomic markers differentiating species and varieties of hawthorn. Future research shall improve the separation, identification and quantification of procyanidins with degree of polymerisation (DP) ≥ 6, procyanidin glycosides, C-glycosyl flavones and some flavonol glycosides. In vitro and animal studies have shown cardioprotective, hypolipidaemic, hypotensive, antioxidant, radical-scavenging and anti-inflammatory potentials of hawthorn extracts, suggesting different phenolic compounds as the major bioactive components. However, the varying and insufficiently defined composition of the extracts investigated, as a result of different raw materials and extraction methods, makes comparison of the studies very difficult. Clinical evidence indicates that some hawthorn extracts may increase the exercise tolerance of patients with congestive heart failure. More clinical studies are needed to establish the effects of hawthorn, especially in healthy humans.
Collapse
Affiliation(s)
- Baoru Yang
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | |
Collapse
|
29
|
Clinical efficacy of Stragol™ herbal heart drop in ischemic heart failure of stable chest angina. Eur J Integr Med 2011. [DOI: 10.1016/j.eujim.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ding XP, Wang XT, Chen LL, Qi J, Xu T, Yu BY. Quality and antioxidant activity detection of Crataegus leaves using on-line high-performance liquid chromatography with diode array detector coupled to chemiluminescence detection. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Díaz-Juárez JA, Tenorio-López FA, Zarco-Olvera G, Valle-Mondragón LD, Torres-Narváez JC, Pastelín-Hernández G. Effect ofCitrus paradisiextract and juice on arterial pressure bothin vitroandin vivo. Phytother Res 2009; 23:948-54. [DOI: 10.1002/ptr.2680] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Chen ZY, Peng C, Jiao R, Wong YM, Yang N, Huang Y. Anti-hypertensive nutraceuticals and functional foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4485-4499. [PMID: 19422223 DOI: 10.1021/jf900803r] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Epidemiological studies have demonstrated that elevated blood pressure is one of the major risk factors for stroke and coronary heart disease (CHD). A close association between blood pressure and the incidence of cardiovascular diseases is well established if systolic/diastolic blood pressure is above 140/90 mmHg. In recent years, nutraceuticals and functional foods have attracted considerable interest as potential alternative therapies for treatment of hypertension, especially for prehypertensive patients, whose blood pressure is marginally or mildly high but not high enough to warrant the prescription of blood pressure-lowering medications. This review summarizes the findings of recent studies on the chemistry, production, application, efficacy, and mechanisms of popular blood pressure-lowering nutraceuticals and functional foods including the Dietary Approaches to Stop Hypertension (DASH) diet plan, L-arginine, chlorogenic acid, fermented milk, garlic, onion, tea, soybean, ginger, hawthorn, and fish oil.
Collapse
Affiliation(s)
- Zhen-Yu Chen
- Department of Biochemistry, Food and Nutritional Sciences Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
33
|
Rodriguez ME, Poindexter BJ, Bick RJ, Dasgupta A. A Comparison of the Effects of Commercially Available Hawthorn Preparations on Calcium Transients of Isolated Cardiomyocytes. J Med Food 2008; 11:680-6. [DOI: 10.1089/jmf.2008.0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle E. Rodriguez
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| | - Brian J. Poindexter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| | - Roger J. Bick
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| | - Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
34
|
Salehi S, Long SR, Proteau PJ, Filtz TM. Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay. J Nat Med 2008; 63:1-8. [PMID: 18696181 DOI: 10.1007/s11418-008-0278-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/26/2008] [Indexed: 11/30/2022]
Abstract
Hawthorn (Crataegus spp.) plant extract is used as a herbal alternative medicine for the prevention and treatment of various cardiovascular diseases. Recently, it was shown that hawthorn extract preparations caused negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay, independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. To test the hypothesis that hawthorn is acting via muscarinic receptors, the effect of hawthorn extract on atrial versus ventricular cardiomyocytes in culture was evaluated. As would be expected for activation of muscarinic receptors, hawthorn extract had a greater effect in atrial cells. Atrial and/or ventricular cardiomyocytes were then treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-(3)H] ([(3)H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [(3)H]-QNB binding to mouse heart membranes. Taken together, these findings suggest that decreased contraction frequency by hawthorn extracts in neonatal murine cardiomyocytes may be mediated via muscarinic receptor activation.
Collapse
Affiliation(s)
- Satin Salehi
- Department of Pharmaceutical Sciences, Oregon State University College of Pharmacy, 203 Pharmacy Bldg., Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|