1
|
İpek E, Hesapçıoğlu M, Karaboğa M, Avcı H. Selenium protection from DNA damage and regulation of apoptosis signaling following cyclophosphamide induced cardiotoxicity in rats. Biotech Histochem 2023; 98:534-542. [PMID: 37695070 DOI: 10.1080/10520295.2023.2253424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
We investigated the mechanism of the cardioprotective effect of selenium (Se) against cyclophosphamide (CPA) induced cardiotoxicity in rats. We divided 24 female Wistar albino rats into four groups. The control group was injected intraperitoneally (i.p.) with normal saline. The CPA group was injected i.p. with 200 mg/kg CPA. The Se group was injected i.p. with 1 mg/kg Se. The CPA + Se group was injected i.p. with 200 mg/kg CPA and 1 mg/kg Se. Rats were euthanized 24 h after injection and heart tissues were harvested. Histopathological examination revealed reduced severity of myocardial lesions in the CPA + Se group compared to CPA induced cardiotoxicity of the CPA group; this finding was confirmed by increased immunoreactivity of cardiac troponin-I (cTn-I) in the CPA + Se group compared to decreased cTn-I immunoreactivity in the CPA group. Administration of CPA increased the immunoreactivity of phosphorylated histone-2AX (γH2AX). Se reduced the CPA induced increase in γH2AX immunoreactivity. Se administration reversed the CPA induced increase of Bax and decrease of Bcl2 gene expressions. Our findings suggest that Se is cardioprotective by reducing DNA damage and regulating the genes responsible for apoptosis caused by CPA in rats.
Collapse
Affiliation(s)
- Emrah İpek
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet Hesapçıoğlu
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet Karaboğa
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Hamdi Avcı
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
2
|
The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9536148. [PMID: 28386313 PMCID: PMC5366223 DOI: 10.1155/2017/9536148] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells.
Collapse
|
3
|
Therapeutic role of bone marrow-derived mesenchymal stem cells in cyclophosphamide-induced cardiotoxicity in adult male albino rat. ACTA ACUST UNITED AC 2016. [DOI: 10.1097/01.ehx.0000508456.99217.6e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Golomb E, Schneider A, Houminer E, Dunnick J, Kissling G, Borman JB, Nyska A, Schwalb H. Occult Cardiotoxicity: Subtoxic Dosage of Bis(2-chloroethoxy)methane Impairs Cardiac Response to Simulated Ischemic Injury. Toxicol Pathol 2016; 35:383-7. [PMID: 17455086 DOI: 10.1080/01926230701230338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of Bis(2-chloroethoxy)methane (CEM) on myocardial response to ischemia was tested in rats. CEM was dermally applied for 3 days to F344/N male rats, at 0, 100, 400, or 600 mg/kg/d. Subsequently, left ventricular sections were prepared from each rat heart. Part of the sections from each heart were exposed to 90 minutes of simulated ischemia, followed by 90 minutes of reoxygenation. The rest of the sections were continuously oxygenated. Mitochondrial activity was assessed in the sections by the MTT colorimetric assay, reflecting dehydrogenases redox activity. Myocardial toxicity occurred in response to 400 and 600 mg/kg, characterized by myofiber vacuoles, necrosis, and mononuclear infiltrates. The latter dose was lethal. In sections from rats treated with 400 mg/kg CEM, redox activity was decreased by 21% ( p < 0.01) in oxygenated conditions and by 45% ( p < 0.01) in ischemia-reoxygenation, compared to controls. Hearts of rats treated with 100 mg/kg/d CEM showed normal histology. Their mitochondrial activity did not differ from that of untreated rat hearts in oxygenated conditions. However, in ischemia-reoxygenation, their redox activity was significantly lower (by 46%, p < 0.01) than that of untreated rat hearts. These results demonstrate that subtoxic dosage of a cardiotoxic agent may cause occult cardiotoxicity, reflected by impaired response to ischemia.
Collapse
Affiliation(s)
- Eliahu Golomb
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yazdian-Robati R, Ramezani M, Jalalian SH, Abnous K, Taghdisi SM. Targeted Delivery of Epirubicin to Cancer Cells by Polyvalent Aptamer System in vitro and in vivo. Pharm Res 2016; 33:2289-97. [PMID: 27283831 DOI: 10.1007/s11095-016-1967-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The clinical use of Epirubicin (Epi), as an anthracycline drug, is limited because of its cardiotoxicity. Here, an Epirubicin (Epi)-modified polyvalent aptamer system (MPAS) conjugate was developed for the treatment of both murine colon carcinoma cells (C26) and breast cancer cells (MCF-7). METHODS Epi-MPAS conjugate formation was evaluated by fluorometric analysis. Release profiles of Epi from the developed conjugate were analyzed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) C26 and MCF-7 (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, MPAS and Epi-MPAS conjugate. Internalization was assessed by fluorescence imaging and flow cytometry analysis. The designed conjugate was used for prohibition of tumor growth in vivo. RESULTS Release of Epi from the Epi-MPAS conjugated was pH-dependent (more release at pH 5.5). Flow cytometry analysis and MTT assay showed that Epi-MPAS conjugate could significantly enhance the cellular uptake of Epi and increase its cytotoxicity in target cells as compared with non-targeted cell (CHO). Additionally, this complex could efficiently prohibit the tumor growth in vivo. CONCLUSION In conclusion, the developed drug delivery system had the characteristics of efficient Epi loading, pH-dependent drug release and tumor targeting in vitro and in vivo.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Jalalian
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Seo KH, Park MJ, Ra JE, Han SI, Nam MH, Kim JH, Lee JH, Seo WD. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells. Food Funct 2015; 5:3005-13. [PMID: 25238253 DOI: 10.1039/c4fo00612g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Saponarin (SA), a natural flavonoid, is known for its antioxidant and hepatoprotective activities. SA is the predominant compound (1142.7 ± 0.9 mg per 100 g) in barley sprouts, constituting 72% of the total polyphenol content. We investigated, for the first time, the effects of SA from barley sprouts on cellular anti-inflammatory responses. In lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, SA suppressed the activation of NF-κB, as evidenced by the inhibition of NF-κB DNA binding, nuclear translocation, IκBα phosphorylation, and reporter gene expression, and it downregulated the expression of the pro-inflammatory mediator IL-6. Furthermore, SA reduced the transcription of NF-κB target molecules COX2 and FLIP inhibited the phosphorylation of mitogen-activated protein kinases ERK and p38. These results suggest that SA isolated from barley sprouts exerts anti-inflammatory effects in LPS-induced RAW 264.7 macrophages via inhibition of NF-κB, ERK and p38 signaling. Thus, SA may be a promising natural anti-inflammatory agent.
Collapse
Affiliation(s)
- Kyung Hye Seo
- Department of Functional Crops, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Miryang 627-803, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Czepas J, Gwoździński K. The flavonoid quercetin: possible solution for anthracycline-induced cardiotoxicity and multidrug resistance. Biomed Pharmacother 2014; 68:1149-59. [PMID: 25458790 DOI: 10.1016/j.biopha.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Anthracycline chemotherapy is often used in the treatment of various malignancies. Its application, however, encounters several limitations due to development of serious side effects, mainly cardiotoxicity and may be ineffective due to multidrug resistance (MDR). Many different compounds have been evaluated as poorly effective in the protection against anthracycline side effects and in the prevention from MDR. Thus, continuous investigational efforts are necessary to find valuable protectants and the flavonoid quercetin (Q) seems to be a promising candidate. It is present in relatively high amounts in a human diet and the lack of its toxicity, including genotoxicity has been confirmed. The structure of Q favours its high antioxidant activity, the potential to inhibit the activity of oxidative enzymes and to interact with membrane transporter proteins responsible for development of MDR, e.g. P-glycoprotein. Furthermore, Q can influence cellular signalling and gene expression, and thus, alter response to exogenous genotoxicants and oxidative stress in normal cells. It accounts for its chemopreventive and anticancer properties. Overall, these properties might indicate the possibility of application of Q as cardioprotectant during anthracycline chemotherapy. Moreover, numerous biological properties displayed by Q might possibly result in the reversal of MDR in tumour cells and improve the efficacy of chemotherapy. However, these beneficial effects towards anthracycline-induced complications of chemotherapy have to be further explored and confirmed both in animal and clinical studies. Concurrently, investigations aimed at improvement of the bioavailability of Q and further elucidation of its metabolism after application in combination with anthracyclines are needed.
Collapse
Affiliation(s)
- Jan Czepas
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Krzysztof Gwoździński
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
8
|
Jalalian SH, Taghdisi SM, Shahidi Hamedani N, Kalat SAM, Lavaee P, Zandkarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM, Ramezani M, Abnous K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 2013; 50:191-7. [PMID: 23835028 DOI: 10.1016/j.ejps.2013.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Every year a large number of new cases of colorectal cancer are diagnosed in the world. Application of Epirubicin (Epi) in treatment of cancer has been limited due to its cardiotoxicity. Specific delivery of chemotherapy drugs is an important factor in reducing the side effects of drugs used in chemotherapy. Enhanced permeability, retention effect and magnetic resonance (MR) traceability of super paramagnetic iron oxide nanoparticles (SPION) make them a great candidate in cancer therapy and imaging. In this study, Epirubicin-5TR1 aptamer-SPION tertiary complex was evaluated for the imaging and treatment of murine colon carcinoma cells (C26 cells, target). For cytotoxic studies (MTT assay), C26 and CHO-K1 (Chinese hamster ovary cells, nontarget) cells were treated with either Epi or Epi-Apt-SPION tertiary complex. Internalization was evaluated by flow cytometry. Finally, Apt-SPION bioconjugate was used for imaging of cancer in vivo. Flow cytometric analysis showed that the tertiary complex was internalized effectively to C26 cells, but not to CHO-K1 cells. Cytotoxicity of Epi-Apt-SPION tertiary complex also confirmed internalization data. The complex was less cytotoxic in CHO-K1 cells when compared to Epi alone. No significant change in viability between Epi- and complex-treated C26 cells was observed. Magnetic resonance imaging (MRI) indicated a high level of accumulation of the nano-magnets within the tumor site. In conclusion Epi-Apt-SPION tertiary complex is introduced as an effective system for targeted delivery of Epi to C26 cells. Moreover this complex could efficiently detect tumors when analyzed by MRI and inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Academic Center For Education, Culture and Research-ACECR-Mashhad Branch, Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Qi L, Pan H, Li D, Fang F, Chen D, Sun H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur J Pharmacol 2011; 668:201-7. [PMID: 21723277 DOI: 10.1016/j.ejphar.2011.06.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 01/17/2023]
Abstract
Luteolin occurs in a variety of plants and possesses antioxidant and anti-inflammatory properties. However, its role in protection against ischemia-reperfusion injury in Sprague-Dawley rats has not been elucidated. In the present study, we tested the contractile function of left ventricular cardiomyocytes with different concentrations of luteolin: 0.5, 1.5, 2.5 and 5.0 μg/ml after simulated. We investigated the direct effect of luteolin against necrosis and apoptosis following ischemia-reperfusion in cardiomyocytes. We further observed the function of isolated hearts subjected to ischemia-reperfusion with or without 10.0 μg/ml luteolin pretreatment. Following 24h incubation with or without luteolin, adult rat cardiomyocytes were subjected to 3h of ischemia followed by 2h of reperfusion for contractile function and necrosis (trypan blue exclusion and lactate dehydrogenase release) or 18 h of reperfusion for apoptosis studies. The cardiomyocyte shortening amplitude depended on different concentrations of luteolin, increasing significantly at 2.5 μg/ml luteolin (P<0.01). Necrosis and apoptosis were reduced by luteolin at 2.5 μg/ml. In addition, the expression of Bcl-2 was upregulated by luteolin and the ratio of Bax to Bcl-2 was decreased. Luteolin inhibited the activation of Caspase3 after ischemia-reperfusion in cardiomyocytes. Furthermore, luteolin at 10.0 μg/ml improved ischemia-reperfusion induced myocardial function, by improving heart rate, +dp/dt(max) and -dp/dt(max), and also limiting the decline of left ventricular systolic pressure (LVSP) and elevation of left ventricular end-diastolic pressure (LVEDP) to some extent. Our results demonstrated that luteolin prevents ischemia-reperfusion injury by reducing necrosis and apoptosis in rat cardiomyocytes.
Collapse
Affiliation(s)
- Lingling Qi
- Institute of Cardiovascular Disease Research, Xuzhou Medical College Affiliated Hospital, China
| | | | | | | | | | | |
Collapse
|
10
|
Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 2010; 77:200-6. [PMID: 21168488 DOI: 10.1016/j.ejpb.2010.12.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 12/20/2022]
Abstract
AIM Single-walled carbon nanotubes (SWNTs) have been already used as drug carriers. In this study, we introduced sgc8c aptamer (this aptamer targets leukemia biomarker protein tyrosine kinase-7) to complex between Dau (daunorubicin) and SWNT to enhance targeted delivery of Dau to acute lymphoblastic leukemia T-cells (Molt-4). MATERIAL AND METHODS Dau-aptamer-SWNTs tertiary complex formation was analyzed by visible spectroscopy and spectrofluorophotometric analysis. Dau release profiles from the complex were investigated in pH 7.4 and 5.5. For cytotoxic studies (MTT assay), Molt-4 (target) and U266 (B lymphocyte human myeloma, non-target) cells were treated with Dau, Dau-aptamer-SWNTs tertiary complex. Internalization was analyzed by flow cytometry. Targeted delivery of Dau was antagonized using antisense of aptamer. RESULTS Dau was efficiently loaded onto SWNTs (efficiency ∼ 157%). Dau was released from Dau-aptamer-SWNTs tertiary complex in a pH-dependent manner (higher release rate at pH 5.5). Flow cytometric analysis showed that the tertiary complex was internalized effectively to Molt-4 cells, but not to U266 cells. Cytotoxicity of Dau-aptamer-SWNTs tertiary complex also confirmed internalization data. Dau-aptamer-SWNTs tertiary complex was less cytotoxic in U266 cells when compared to Dau alone. No significant change in viability between Dau- and complex-treated Molt-4 cells was observed. Cytotoxicity of Dau-aptamer-SWNTs complex was efficiently and quickly reversed using antisense in Molt-4 cells. CONCLUSION Dau-aptamer-SWNTs complex is able to selectively target Molt-4 cells. The other advantages of this system are reversibility and pH-dependent release of Dau from its complex.
Collapse
|
11
|
Barteková M, Carnická S, Pancza D, Ondrejcáková M, Breier A, Ravingerová T. Acute treatment with polyphenol quercetin improves postischemic recovery of isolated perfused rat hearts after global ischemia. Can J Physiol Pharmacol 2010; 88:465-71. [PMID: 20555415 DOI: 10.1139/y10-025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quercetin is a plant-derived bioflavonoid with potentially beneficial effects on the cardiovascular system. Studies focused on the efficiency of flavonoids against ischemia-reperfusion (I/R) injury have demonstrated that quercetin exerts robust protective effects in renal, cerebral, and hepatic I/R models. However, there is only limited evidence about the effect of quercetin on myocardial I/R injury. Therefore, the aim of the current study was to examine the effect of quercetin on isolated rat heart during ischemia and reperfusion. Rat hearts perfused according to Langendorff at 37 degrees C were examined during 25 min global ischemia followed by 120 min reperfusion. Quercetin (15 micromol/L) was administered either 15 min before ischemia (group Q1), or during the entire reperfusion period (group Q2). Changes in functional parameters of the hearts were measured during the initial 40 min of reperfusion. At the end of the experiment, the hearts were stained with tetrazolium to estimate the size of infarction (IS). Our study showed that quercetin improved postischemic recovery of functional parameters of isolated hearts in both treated groups. This improvement was manifested by significantly higher values of left ventricular developed pressure (LVDP) and the maximal rates of pressure development and fall (+(dP/dt)max and -(dP/dt)max) and by significantly lower increase of end-diastolic pressure. Coronary flow was not significantly changed during reperfusion in the group treated before ischemia, but was significantly increased in the group treated during reperfusion. Quercetin also significantly reduced IS in both groups, more markedly in postischemically treated group. We conclude that acute quercetin treatment exerts significant positive effects on isolated hearts during I/R injury. These results are consistent with the beneficial effects of quercetin and other flavonoids on the cardiovascular system.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Slovak Academy of Sciences, Centre of Excellence for Cardiovascular Research SAS, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
12
|
Taghdisi SM, Abnous K, Mosaffa F, Behravan J. Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target 2010; 18:277-81. [PMID: 19943768 DOI: 10.3109/10611860903434050] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Application of daunorubicin in treatment of leukemia has been limited for its side effects like cardiotoxicity. Specific delivery of chemotherapy drugs is an important factor in decreasing their side effects. In this study, sgc8, an aptamer for protein tyrosine kinase-7 (PTK7), was used for specific delivery of daunorubicin to Molt-4 cells (PTK7(+)). Flow cytometric experiments showed that aptamer-daunorubicin complex was internalized effectively to Molt-4 cells (PTK7(+)), but not to U266 cells (PTK7(-)). This fact was confirmed by less cytotoxicity of aptamer-drug complex in U266 cells in compare to daunorubicin alone. No significant change in viability between daunorubicin and aptamer-daunorubicin complex treated Molt4 cells was observed. In conclusion, sgc8-daunorubicin complex is introduced as a simple and efficient system for targeted delivery of drug to acute lymphoblastic leukemia T cells.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
13
|
Klimas J, Kmecova J, Jankyova S, Yaghi D, Priesolova E, Kyselova Z, Musil P, Ochodnicky P, Krenek P, Kyselovic J, Matyas S. Pycnogenol®
improves left ventricular function in streptozotocin-induced diabetic cardiomyopathy in rats. Phytother Res 2009; 24:969-74. [PMID: 19957251 DOI: 10.1002/ptr.3015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Du G, Lin H, Wang M, Zhang S, Wu X, Lu L, Ji L, Yu L. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother Pharmacol 2009; 65:277-87. [DOI: 10.1007/s00280-009-1032-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/05/2009] [Indexed: 11/30/2022]
|
15
|
Injac R, Strukelj B. Recent advances in protection against doxorubicin-induced toxicity. Technol Cancer Res Treat 2009; 7:497-516. [PMID: 19044329 DOI: 10.1177/153303460800700611] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anthracycline antibiotics are among the most effective and commonly used anticancer drugs. Unfortunately, their clinical use is restricted by dose-dependent toxicity. Doxorubicin is an anthracycline antibiotic and cytotoxic (antineoplastic) agent. It is commonly used against ovarian, breast, lung, uterine and cervical cancers, Hodgkin's disease, soft tissue and primary bone sarcomas, as well against in several other cancer types. It has been shown that free radicals are involved in doxorubicin-induced toxicity. Doxorubicin causes the generation of free radicals and the induction of oxidative stress, associated with cellular injury. This review illustrates recent applications of different natural products, drugs, drug delivery systems, and approaches for protection against doxorubicin-induced toxicity (2006-present).
Collapse
Affiliation(s)
- R Injac
- University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| | | |
Collapse
|
16
|
HAN JJ, HAO J, KIM CH, HONG JS, AHN HY, LEE YS. Quercetin Prevents Cardiac Hypertrophy Induced by Pressure Overload in Rats. J Vet Med Sci 2009; 71:737-43. [DOI: 10.1292/jvms.71.737] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jing-Jun HAN
- Department of Thoracic and Cardio vascular Surgery, Guang Dong Medical College FuTian Hospital
| | - Jia HAO
- Department of Pharmacology, College of Medicine, Chungbuk National University
| | - Chan-Hyung KIM
- Department of Pharmacology, College of Medicine, Chungbuk National University
| | - Jang-Soo HONG
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungbuk National University
| | - Hee-Yul AHN
- Department of Pharmacology, College of Medicine, Chungbuk National University
| | - Yong-Soon LEE
- Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University
| |
Collapse
|
17
|
Mojžišová G, Šarišský M, Mirossay L, Martinka P, Mojžiš J. Effect of Flavonoids on Daunorubicin-induced Toxicity in H9c2 Cardiomyoblasts. Phytother Res 2008; 23:136-9. [DOI: 10.1002/ptr.2566] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Benedet JA, Umeda H, Shibamoto T. Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5499-504. [PMID: 17539660 DOI: 10.1021/jf070543t] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Natural plant flavonoids, saponarin/lutonarin=4.5/1, isolated from young green barley leaves were examined for their antioxidant activity using cod liver oil, omega-3 fatty acids, phospholipids, and blood plasma. The saponarin/lutonarin (S/L) mixture inhibited malonaldehyde (MA) formation from cod liver oil by 76.47+/-0.11% at a level of 1 micromol and 85.88+/-0.12% at a level of 8 micromol. The S/L mixture inhibited MA formation from the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by 45.60+/-1.08 and 69.24+/-0.24%, respectively, at a level of 8 micromol. The S/L mixture inhibited MA formation from the phospholipids lecithin I and II by 43.08+/-0.72 and 69.16+/-2.92%, respectively, at a level of 8 micromol. It also inhibited MA formation from blood plasma by 62.20+/-0.11% at a level of 8 micromol. The antioxidant activities obtained from the S/L mixture were comparable to those obtained from alpha-tocopherol and butylated hydroxy toluene (BHT) in all lipids tested.
Collapse
Affiliation(s)
- John A Benedet
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
19
|
Negash S, Gao Y, Zhou W, Liu J, Chinta S, Raj JU. Regulation of cGMP-dependent protein kinase-mediated vasodilation by hypoxia-induced reactive species in ovine fetal pulmonary veins. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1012-20. [PMID: 17616649 DOI: 10.1152/ajplung.00061.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that hypoxia attenuates cGMP-dependent protein kinase (PKG)-mediated relaxation in pulmonary vessels (Am J Physiol Lung Cell Mol Physiol 279: L611-L618, 2003). To determine whether hypoxia-induced reactive oxygen and nitrogen species (ROS and RNS, respectively) may be involved in the downregulation of PKG-mediated relaxation, ovine fetal intrapulmonary veins were exposed to 4 h of normoxia or hypoxia, with or without scavengers of ROS [N-acetylcysteine (NAC)] or peroxynitrite (quercetin and Trolox) and preconstricted with endothelin-1. Hypoxia decreased the relaxation response to 8-bromo-cGMP, PKG protein expression, and kinase activity and increased tyrosine nitration in PKG. However, ROS and RNS scavengers prevented these changes. To determine whether increased PKG nitration diminishes PKG activity, pulmonary vein smooth muscle cells (PVSMC) were exposed to shorter-term (30 min) hypoxia, which increased PKG nitration and decreased PKG activity but did not alter PKG protein expression. Increased dihydro-2,7-dichlorofluorescein diacetate (DCFH(2)-DA) fluorescence in PVSMC after 4 h or 30 min of hypoxia was not observed in the presence of NAC, quercetin, or Trolox, suggesting increased ROS and RNS production. Increased PKG nitration and the associated decrease in PKG activity in PVSMC after 30 min of hypoxia were also reversed on reoxygenation. The consequences of PKG nitration were assessed by exposure of purified PKG-Ialpha to peroxynitrite, which caused increased 3-nitrotyrosine immunoreactivity and inhibition of kinase activity. Our data suggest that, after 30 min of hypoxia, reversible covalent modification of PKG by hypoxia-induced reactive species may be an important mechanism by which the relaxation response to cGMP is regulated. However, after 4 h of hypoxia, PKG nitration and decreased PKG expression are involved.
Collapse
Affiliation(s)
- Sewite Negash
- Division of Neonatology, Harbor-UCLA Medical Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles Biomedical Research Institute, Torrance, California 90502, USA.
| | | | | | | | | | | |
Collapse
|