1
|
Zhang X, Du H, Qiu T, Fu H, Dai J, Lian Q, Yan F, Guo D, Lin J, Xu S, Li D, Chen Q, Huang Z. Tanshinone IIA alleviates myocarditis in Trex1-D18N lupus-like mice by inhibiting the interaction between STING and SEC24C. Int Immunopharmacol 2025; 156:114659. [PMID: 40252465 DOI: 10.1016/j.intimp.2025.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway serves as a crucial component of the innate immune defense, playing a vital role in combating pathogen invasion. However, its dysregulation or abnormal activation can trigger the development of autoimmune diseases. This study demonstrated that Tanshinone IIA, a major lipid-soluble component of Salvia miltiorrhiza Bunge, can effectively inhibit the activation of the cGAS-STING signaling pathway. Mechanistically, Tanshinone IIA inhibits the transport of STING from the ER to the Golgi apparatus by weakening the interaction between STING and SEC24C, thereby preventing the activation of the cGAS-STING signaling pathway. Furthermore, Tanshinone IIA significantly ameliorated myocardial inflammation in WT and Trex1D18N/D18N mice. Our research indicates that Tanshinone IIA shows potential therapeutic value in alleviating autoimmune diseases by effectively inhibiting the abnormal activation of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxiong Zhang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hekang Du
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China; Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Tao Qiu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Honggao Fu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Jiawei Dai
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Qiying Lian
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Fang Yan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Jinpei Lin
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Zhengrong Huang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China.
| |
Collapse
|
2
|
Zhao C, Bai X, Ding Y, Wen A, Fu Q. Combining systems pharmacology, metabolomics, and transcriptomics to reveal the mechanism of Salvia miltiorrhiza-Cortex moutan herb pair for the treatment of ischemic stroke. Front Pharmacol 2024; 15:1431692. [PMID: 39314757 PMCID: PMC11417465 DOI: 10.3389/fphar.2024.1431692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke (IS), predominantly triggered by blockages in cerebral blood flow, is increasingly recognized as a critical public health issue. The combination of Salvia miltiorrhiza (SM) and Cortex moutan (CM), traditional herbs in Eastern medicine, are frequently used for managing heart and brain vascular conditions. However, the exact mechanisms by which this herb pair (SC) combats IS remain largely unexplored. This investigation focuses on pinpointing the active constituents in SC that contribute to its protective role and deciphering the mechanisms countering cerebral ischemia, particularly in a middle cerebral artery occlusion (MCAO) rat model. We employed UPLC-Q-TOF-MS/MS alongside network pharmacology for predicting SC's target actions against IS. Key ingredients were examined for their interaction with principal targets using molecular docking. The therapeutic impact was gauged through H&E, TUNEL, and Nissl staining, complemented by transcriptomic and metabolomic integration for mechanistic insights, with vital genes confirmed via western blot. UPLC-Q-TOF-MS/MS analysis revealed that the main components of SC included benzoylpaeoniflorin, salvianolic acid B, oxypaeoniflora, salvianolic acid A, and others. Network pharmacology analysis indicated that SC's mechanism in treating IS primarily involves inflammation, angiogenesis, and cell apoptosis-related pathways, potentially through targets such as AKT1, TNF, PTGS2, MMP9, PIK3CA, and VEGFA. Molecular docking underscored strong affinities between these constituents and their targets. Our empirical studies indicated SC's significant role in enhancing neuroprotection in IS, with transcriptomics suggesting the involvement of the VEGFA/PI3K/AKT pathway and metabolomics revealing improvements in various metabolic processes, including amino acids, glycerophospholipids, sphingomyelin, and fatty acids metabolisms.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaodan Bai
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
3
|
Exploring the Antiovarian Cancer Mechanisms of Salvia Miltiorrhiza Bunge by Network Pharmacological Analysis and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7895246. [PMID: 36483919 PMCID: PMC9726254 DOI: 10.1155/2022/7895246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Background Ovarian cancer was one of the gynecological malignant tumors. Salvia miltiorrhiza Bunge (SMB) was a kind of herbal medicine with an antitumor effect. However, the inhibitory effect of SMB on ovarian cancer and its potential mechanism were still unclear. Objective The antitumor effect of SMB on ovarian cancer was studied by network pharmacology and molecular docking techniques, and its possible molecular mechanisms were analyzed. Method The active ingredients of SMB and the target data of ovarian cancer were obtained from the Traditional Chinese Medicines for Systems Pharmacology Database (TCMSP) and the GeneCards database. The relationship between active ingredients of SMB and ovarian cancer targets was analyzed by String database, David 6.8 online database, and Cytoscape 3.7.2 software, and then potential pathways were screened out. In addition, molecular docking technology was used to verify further the binding effect of antiovarian cancer pathway targets with active ingredients of SMB. Finally, survival analysis was performed for all potential targets. Results We analyzed 71 SMB-ovarian cancer common targets, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the PI3K-Akt signaling pathway might be an essential pathway for SMB to inhibit ovarian cancer. Luteolin, Tanshinone IIA, and Cryptotanshinone in SMB might play an important role. HSP90AA1, CDK2, and PIK3CG might be potential targets of SMB in inhibiting ovarian cancer. Conclusion Through network pharmacology and molecular docking analysis, we found that SMB might partially inhibit ovarian cancer by the PI3K-Akt signaling pathway. We believe that SMB might be a potential therapeutic agent for ovarian cancer patients.
Collapse
|
4
|
Selective and oxidative stress-mediated cell death of MCF-7 cell line induced by terpinolene. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Wang GK, Yang JS, Huang YF, Liu JS, Tsai CW, Bau DAT, Chang WS. Culture Separation, Identification and Unique Anti-pathogenic Fungi Capacity of Endophytic Fungi from Gucheng Salvia Miltiorrhiza. In Vivo 2021; 35:325-332. [PMID: 33402481 DOI: 10.21873/invivo.12263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Salvia miltiorrhiza is a medical herb for human disorders including cardiovascular diseases and cancer. However, the interactions between Salvia miltiorrhiza and its endophytes are largely unknown. The current study aimed at identifying its endophytic fungi and examining their inhibitory effects on anti-pathogenic fungus. MATERIALS AND METHODS Distinct species of endophytic fungi were isolated from the roots of Salvia miltiorrhiza, cultured, sequenced, aiming to predict their taxonomical structures. Meanwhile, extracts from each endophytic fungus fermentations were isolated, compared and evaluated on the inhibitory efficacies on five pathological fungi, Cercospora nicotianae, Phoma arachnidicola, Staphylococcus, Phytophthora eggplant, and Rhizoctonia cerealis. RESULTS A total of 34 strains of endophytic fungi were obtained from Salvia miltiorrhiza. Among them, SX19 and C. Gloeosporioids exhibited the most effective inhibitions on five pathogenic fungi. CONCLUSION The anti-fungal activities of the endophytic fungus from Salvia miltiorrhiza were confirmed for the first time, and this may benefit crop quality and production in the future.
Collapse
Affiliation(s)
- Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, P.R. China
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Yu-Fei Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P.R. China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, P.R. China
| | - Chia-Wen Tsai
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.; .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.;
| |
Collapse
|
6
|
Overview of Salvia miltiorrhiza as a Potential Therapeutic Agent for Various Diseases: An Update on Efficacy and Mechanisms of Action. Antioxidants (Basel) 2020; 9:antiox9090857. [PMID: 32933217 PMCID: PMC7555792 DOI: 10.3390/antiox9090857] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a medicinal herb that has been used for the treatment for various diseases such as cardiovascular and cerebrovascular diseases in East Asia including Korea. Considering its extensive usage as a therapeutic agent for multiple diseases, there is a need to review previous research regarding its therapeutic benefits and their mechanisms. Therefore, we searched PubMed and PubMed Central for articles reporting its therapeutic effects on certain disease groups including cancers, cardiovascular, liver, and nervous system diseases. This review provides an overview of therapeutic benefits and targets of S. miltiorrhiza, including inflammation, fibrosis, oxidative stress, and apoptosis. The findings on multi-functional properties of S. miltiorrhiza discussed in this article support the efficacy of S. miltiorrhiza extract on various diseases, but also call for further research on the multiple mechanisms that mediate its therapeutic effects.
Collapse
|
7
|
Ceccherini E, Cecchettini A, Morales MA, Rocchiccioli S. The Potentiality of Herbal Remedies in Primary Sclerosing Cholangitis: From In Vitro to Clinical Studies. Front Pharmacol 2020; 11:813. [PMID: 32587513 PMCID: PMC7298067 DOI: 10.3389/fphar.2020.00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis is a complex pathological condition, characterized by chronic inflammation and fibrosis of the biliary epithelium. Without proper clinical management, progressive bile ducts and liver damage lead to cirrhosis and, ultimately, to liver failure. The known limited role of current drugs for treating this cholangiopathy has driven researchers to assess alternative therapeutic options. Some herbal remedies and their phytochemicals have shown anti-fibrotic properties in different experimental models of hepatic diseases and, occasionally, in clinical trials in primary sclerosing cholangitis patients; however their mechanism of action is not completely understood. This review briefly examines relevant studies focusing on the potential anti-fibrotic properties of Silybum marianum, Curcuma longa, Salvia miltiorrhiza, and quercetin. Each natural product is individually reviewed and the possible mechanisms of action discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
8
|
Kumar VB, Lin SH, Mahalakshmi B, Lo YS, Lin CC, Chuang YC, Hsieh MJ, Chen MK. Sodium Danshensu Inhibits Oral Cancer Cell Migration and Invasion by Modulating p38 Signaling Pathway. Front Endocrinol (Lausanne) 2020; 11:568436. [PMID: 33101201 PMCID: PMC7554528 DOI: 10.3389/fendo.2020.568436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) that comprises about 90% of all oral cancer cases is associated with poor prognosis due to its highly metastatic nature. The majority of OSCC treatment options are related detrimental side-effects. Hypothesis/Purpose: The present study aimed at deciphering the effects of a bioactive phytochemical, sodium danshensu, on human oral cancer cell metastasis. Methods and Results: The treatment of FaDu and Ca9-22 cells with different doses of sodium danshensu (25, 50, and 100 μM) caused a significant reduction in cellular motility, migration, and invasion, as compared to the untreated cells. This effect was associated with a reduced expression of MMP-2, vimentin and N-cadherin, together with an enhanced expression of E-cadherin and ZO-1. Further investigation on the molecular mechanism revealed that treatment with sodium danshensu caused significant reduction in p38 phosphorylation; however, phosphorylation of ERK1/2 significantly decreased only in FaDu cells, whereas p-JNK1/2 did not show any alteration. A combination of p38 and JNK1/2 inhibitors with sodium danshensu also reduced the migration in the FaDu and Ca9-22 cell lines. Conclusion: Collectively, the present study findings reveal that sodium danshensu execute anti-metastatic effect by suppressing p38 phosphorylation in human oral cancer. The study identifies sodium danshensu as a potential natural anticancer agent that can be used therapeutically to manage highly metastatic OSCC.
Collapse
Affiliation(s)
- V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - B. Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Holistic Wellness, Mingdao University, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- *Correspondence: Ming-Ju Hsieh
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Mu-Kuan Chen
| |
Collapse
|
9
|
Wang S, Lin H, Cong W. Chinese Medicines Improve Perimenopausal Symptoms Induced by Surgery, Chemoradiotherapy, or Endocrine Treatment for Breast Cancer. Front Pharmacol 2019; 10:174. [PMID: 30930771 PMCID: PMC6428993 DOI: 10.3389/fphar.2019.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
The application of surgery, chemoradiotherapy, and endocrine treatment successfully increases survival rates of breast cancer patients. However, perimenopausal symptoms, the main side effects of these treatments, often afflict patients and reduce their quality of life. Perimenopausal symptoms include vasomotor symptoms, sleep problems, arthromuscular symptoms, and osteoporosis. Currently, there are no satisfactory treatments for perimenopausal symptoms that result from these treatments. Therefore, alternative and complementary therapies including herbal medicines represented by Chinese medicines (CMs), acupuncture, massage, and psychotherapy are increasingly being expected and explored. In this paper, we review the effects and potentials of several CM formulae, along with some active ingredients or fractions from CMs, Chinese herbal extracts, and other herbal medicines, which have drawn attention for improving perimenopausal symptoms in breast cancer patients. We also elaborate their possible mechanisms. Moreover, further studies for evaluation of standardized clinical efficacy should be scientifically well-designed and continuously performed to investigate the efficacy and mechanisms of CMs for perimenopausal symptoms due to breast cancer therapy. The safety and value of estrogen-containing CMs for breast cancer should also be clarified.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hongsheng Lin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Zu Y, Wang J, Ping W, Sun W. Tan IIA inhibits H1299 cell viability through the MDM4‑IAP3 signaling pathway. Mol Med Rep 2018; 17:2384-2392. [PMID: 29207086 PMCID: PMC5783490 DOI: 10.3892/mmr.2017.8152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Tanshinone IIA (Tan IIA), as a bioactive compound extracted from the dried roots of Salvia miltiorrhiza (also known as Danshen), is known to inhibit cancer cell proliferation and induce apoptosis. However, the mechanisms underlying the function of Tan IIA in cancer cell apoptosis remain to be elucidated The aim of the present study was to identify the molecular mechanisms underlying the anti‑cancer effects of Tan IIA in p53‑deficient H1299 cells. Tan IIA was demonstrated to suppress murine double minute 4 (MDM4) expression in a time‑ and dose‑dependent manner through the inhibition of MDM4 mRNA synthesis. Tan IIA‑induced downregulation of MDM4 resulted in an increase of P73α and a decrease of inhibitor of apoptosis 3 (IAP3). However, P73α was not activated as two P73α target genes, BCL2 binding component 3 and phorbol‑12‑myristate‑13‑acetate‑induced protein 1, were not significantly induced. Tan IIA‑induced inhibition of IAP3 expression may be involved in Tan IIA‑induced apoptosis and inhibition of H1299 cell viability. Notably, a combination of Tan IIA and doxorubicin (DOX) exposure resulted in further MDM4 overexpression in H1299 cells, indicating that Tan IIA sensitized p53‑deficient and MDM4‑overexpressing H1299 cells to DOX‑induced apoptosis.
Collapse
Affiliation(s)
- Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianning Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
11
|
Xu X, Lv H, Li X, Su H, Zhang X, Yang J. Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways. Exp Anim 2017; 67:127-137. [PMID: 29093428 PMCID: PMC5955744 DOI: 10.1538/expanim.17-0062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Articular cartilage degradation is a main feature of osteoarthritis (OA). The effects of Danshen, a traditional Chinese herb, in mitigating cartilage damage have been reported before. This study was conducted to investigate the effects of Danshen on cartilage injuries in OA. Rabbit OA models were established by surgical destabilization of the medial meniscus and the anterior and posterior cruciate ligaments in the left knee joint. Injection of Danshen into the articular cavity attenuated OA cartilage destruction in vivo. The levels of phosphorylated Janus kinase 2 (JAK2) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were decreased in osteoarthritic cartilage, while they were rescued upon Danshen treatment. Furthermore, chondrocytes isolated from normal rabbit cartilage were exposed to 2 mM sodium nitroprusside (SNP) to establish an OA model in vitro. We found that the oxidative stress and chondrocyte apoptosis induced by SNP were suppressed by Danshen. The phosphorylation levels of JAK2 and STAT3 were decreased in response to SNP treatment, whereas they were rescued by Danshen. Additionally, AG490, a specific JAK2 inhibitor, counteracted the anti-apoptotic effect of Danshen. The phosphorylation level of protein kinase B (AKT) was also altered in response to SNP and reversed by Danshen. The anti-apoptotic effect of Danshen was counteracted by AKT pathway inhibitor LY194002. Taken together, Danshen attenuates OA cartilage destruction by regulating the JAK2/STAT3 and AKT signaling pathways.
Collapse
Affiliation(s)
- Xilin Xu
- Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Street, Nangang District, Harbin 150001, P.R. China
| | - Hang Lv
- Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Street, Nangang District, Harbin 150001, P.R. China
| | - Xiaodong Li
- Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Street, Nangang District, Harbin 150001, P.R. China
| | - Hui Su
- Third Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Street, Nangang District, Harbin 150001, P.R. China
| | - Xiaofeng Zhang
- President Office, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, P.R. China
| | - Jun Yang
- Department of Radiology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Street, Nangang District, Harbin 150001, P.R. China
| |
Collapse
|
12
|
Chinese Herbal Medicine as an Adjunctive Therapy Ameliorated the Incidence of Chronic Hepatitis in Patients with Breast Cancer: A Nationwide Population-Based Cohort Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1052976. [PMID: 29234362 PMCID: PMC5682887 DOI: 10.1155/2017/1052976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
Abstract
We conducted a National Health Insurance Research Database-based Taiwanese nationwide population-based cohort study to evaluate whether Chinese herbal medicine (CHM) treatment decreased the incidence of chronic hepatitis in breast cancer patients receiving chemotherapy and/or radiotherapy. A total of 81171 patients were diagnosed with breast cancer within the defined study period. After randomly equal matching, data from 13856 patients were analyzed. Hazard ratios of incidence rate of chronic hepatitis were used to determine the influence and therapeutic potential of CHM in patients with breast cancer. The patients with breast cancer receiving CHM treatment exhibited a significantly decreased incidence rate of chronic hepatitis even across the stratification of age, CCI score, and treatments. The cumulative incidence of chronic hepatitis for a period of seven years after initial breast cancer diagnosis was also reduced in the patients receiving CHM treatment. The ten most commonly used single herbs and formulas were effective in protecting liver function in patients with breast cancer, where Hedyotis diffusa and Jia-Wei-Xiao-Yao-San were the most commonly used herbal agents. In conclusion, our study provided information that western medicine therapy combined with CHM as an adjuvant modality may have a significant impact on liver protection in patients with breast cancer.
Collapse
|
13
|
Kim JM, Noh EM, Song HK, Lee M, Lee SH, Park SH, Ahn CK, Lee GS, Byun EB, Jang BS, Kwon KB, Lee YR. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells. Oncol Lett 2017; 14:3594-3600. [PMID: 28927117 PMCID: PMC5588011 DOI: 10.3892/ol.2017.6638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/09/2017] [Indexed: 02/01/2023] Open
Abstract
Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Eun-Mi Noh
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Hyun-Kyung Song
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Minok Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Soo Ho Lee
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Sueng Hyuk Park
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Chan-Keun Ahn
- Department of Otolaryngology and Dermatology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Guem-San Lee
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, North Jeolla 580-185, Republic of Korea
| | - Beom-Su Jang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, North Jeolla 580-185, Republic of Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Korean Medicine, Iksan, North Jeolla 570-749, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, North Jeolla 570-749, Republic of Korea
- Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, North Jeolla 570-749, Republic of Korea
- Integrated Omics Institute, Wonkwang University, Iksan, North Jeolla 570-749, Republic of Korea
| |
Collapse
|
14
|
Phytotherapy and Nutritional Supplements on Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7207983. [PMID: 28845434 PMCID: PMC5563402 DOI: 10.1155/2017/7207983] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent type of nonskin malignancy among women worldwide. In general, conventional cancer treatment options (i.e., surgery, radiotherapy, chemotherapy, biological therapy, and hormone therapy) are not completely effective. Recurrence and other pathologic situations are still an issue in breast cancer patients due to side effects, toxicity of drugs in normal cells, and aggressive behaviour of the tumours. From this point of view, breast cancer therapy and adjuvant methods represent a promising and challenging field for researchers. In the last few years, the use of some types of complementary medicines by women with a history of breast cancer has significantly increased such as phytotherapeutic products and nutritional supplements. Despite this, the use of such approaches in oncologic processes may be problematic and patient's health risks can arise such as interference with the efficacy of standard cancer treatment. The present review gives an overview of the most usual phytotherapeutic products and nutritional supplements with application in breast cancer patients as adjuvant approach. Regardless of the contradictory results of scientific evidence, we demonstrated the need to perform additional investigation, mainly well-designed clinical trials in order to establish correlations and allow for further validated outcomes concerning the efficacy, safety, and clinical evidence-based recommendation of these products.
Collapse
|
15
|
Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5364010. [PMID: 28246540 PMCID: PMC5303586 DOI: 10.1155/2017/5364010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
Abstract
Researchers have reported significant effects from Danshen (Salvia miltiorrhiza) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug.
Collapse
|
16
|
Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:965486. [PMID: 24987437 PMCID: PMC4058453 DOI: 10.1155/2014/965486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/23/2022]
Abstract
Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.
Collapse
|
17
|
Liao GS, Apaya MK, Shyur LF. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:437948. [PMID: 23840256 PMCID: PMC3694462 DOI: 10.1155/2013/437948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
Breast cancer is a life-threatening disease among women worldwide with annual rates of reported incidence and death increasing alarmingly. Chemotherapy is a recommended and effective treatment option for breast cancer; however, the narrow therapeutic indices and varied side effects of currently approved drugs present major hurdles in increasing its effectiveness. An increasing number of literature evidence indicate that complementary and alternative medicine (CAM) used in treatment-related symptom control and alleviation of side effects plays an important role in increasing survival rate and quality of life in breast cancer patients. This review focuses on the use of herbal medicines and acupuncture in palliative care and as adjuvants in the treatment of breast cancer. Herbal medicinal treatments, the correlation of clinical use with demonstrated in vitro and in vivo mechanisms of action, and the use of certain acupoints in acupuncture are summarized. The aim of this review is to facilitate an understanding of the current practice and usefulness of herbal medicine and acupuncture as adjuvants in breast cancer therapy.
Collapse
Affiliation(s)
- Guo-Shiou Liao
- Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Maria Karmella Apaya
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|