1
|
Guo ZL, Li MX, Li XL, Wang P, Wang WG, Du WZ, Yang ZQ, Chen SF, Wu D, Tian XY. Crocetin: A Systematic Review. Front Pharmacol 2022; 12:745683. [PMID: 35095483 PMCID: PMC8795768 DOI: 10.3389/fphar.2021.745683] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and produced in biological systems by hydrolysis of crocin as a bioactive metabolite. It is known to exist in several medicinal plants, the desiccative ripe fruit of the cape jasmine belonging to the Rubiaceae family, and stigmas of the saffron plant of the Iridaceae family. According to modern pharmacological investigations, crocetin possesses cardioprotective, hepatoprotective, neuroprotective, antidepressant, antiviral, anticancer, atherosclerotic, antidiabetic, and memory-enhancing properties. Although poor bioavailability hinders therapeutic applications, derivatization and formulation preparation technologies have broadened the application prospects for crocetin. To promote the research and development of crocetin, we summarized the distribution, preparation and production, total synthesis and derivatization technology, pharmacological activity, pharmacokinetics, drug safety, drug formulations, and preparation of crocetin.
Collapse
Affiliation(s)
- Zi-Liang Guo
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Gang Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Ze Du
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Qiang Yang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,Institute of Chemical Technology, Northwest Minzu University, Lanzhou, China
| | - Sheng-Fu Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Di Wu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Yousefi F, Arab FL, Rastin M, Tabasi NS, Nikkhah K, Mahmoudi M. Comparative assessment of immunomodulatory, proliferative, and antioxidant activities of crocin and crocetin on mesenchymal stem cells. J Cell Biochem 2020; 122:29-42. [PMID: 32951264 DOI: 10.1002/jcb.29826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Saffron (Crocus sativus L) is a well-known spice with active pharmacologic components including crocin, crocetin, safranal, and picrocrocin. Similar to crocin/crocetin, mesenchymal stem cells (MSCs) have been shown to display immunomodulatory and antioxidant properties, which could be beneficial in treatment of various diseases. In the current study, we have evaluated the effects of crocin and crocetin on the functions of MSCs. We used the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate MSCs proliferation, and flow cytometry assay to measure the percentage of apoptotic MSCs and Tregs populations. Furthermore, we used the real-time polymerase chain reaction method to quantify messenger RNA (mRNA) expression of inflammatory and anti-inflammatory cytokines. Antioxidant assay was employed to quantify antioxidant parameters including nitric oxide and malondialdehyde levels besides superoxide dismutase activity. Our findings indicated that both crocin and crocetin at low concentrations (2.5 and 5 µM) exhibited significant effects on increasing MSCs viability and on protecting them against apoptosis-induced death. Furthermore, crocin and crocetin at low concentrations (2.5 and 5 µM) displayed a better antioxidant function. Moreover, increased Treg population was observed at lower doses. In addition, crocin/crocetin at low concentrations caused an elevation in mRNA expression of anti-inflammatory cytokines (transforming growth factor-β, interleukin-10 [IL-10], and IL-4), while at higher doses (25 and 50 µM) they led to lowering inflammatory cytokines (IL-1β, IL-6, IL-17, and interferon gamma). Altogether, both crocin and crocetin at lower concentrations exhibited more efficacies on MSCs with a better effect toward crocin. It seems that crocin and crocetin may be considered as complementary treatments for the patients who undergo MSCs transplantation.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh L Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Faculty of Medicine, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh S Tabasi
- Faculty of Medicine, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X, Lu Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 2019; 33:3140-3152. [PMID: 31452288 DOI: 10.1002/ptr.6486] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Multiphase pathological processes involve in Type 2 diabetes (T2DM)-induced nonalcoholic fatty liver disease (NAFLD). However, the therapies are quite limited. In the present study, the hepatoprotective effects and underlying mechanisms of quercetin in T2DM-induced NAFLD were investigated. T2DM-induced NAFLD and quercetin treatment models were established in vivo and in vitro. The results revealed that quercetin alleviated serum transaminase levels and markedly reduced T2DM-induced histological alterations of livers. Additionally, quercetin restored superoxide dismutase, catalase, and glutathione content in livers. Not only that, quercetin markedly attenuated T2DM-induced production of interleukin 1 beta, interleukin 6, and TNF-α. Accompanied by the restoration of the increased serum total bile acid (p = .0001) and the decreased liver total bile acid (p = .0005), quercetin could reduce lipid accumulation in the liver of db/db mice. Further mechanism studies showed that farnesoid X receptor 1/Takeda G-protein-coupled receptor 5 signaling pathways was involved in quercetin regulation of lipid metabolism in T2DM-induced NAFLD. In high D-glucose and free fatty acid cocultured HepG2 cells model, quercetin eliminated lipid droplets and restored the upregulated total cholesterol and triglyceride levels. Similar to the findings in mice, quercetin could also activate farnesoid X receptor 1/Takeda G-protein-coupled receptor 5 signaling pathway. These findings suggested that quercetin might be a potentially effective drug for the treatment of T2DM-induced NAFLD.
Collapse
Affiliation(s)
- Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shiyu Mao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Shi J, Sun S, Liao Y, Tang J, Xu X, Qin B, Qin C, Peng L, Luo M, Bai L, Xie F. Advanced oxidation protein products induce G1 phase arrest in intestinal epithelial cells via a RAGE/CD36-JNK-p27kip1 mediated pathway. Redox Biol 2019; 25:101196. [PMID: 31014575 PMCID: PMC6859530 DOI: 10.1016/j.redox.2019.101196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Intestinal epithelial cell (IEC) cycle arrest has recently been found to be involved in the pathogenesis of Crohn's disease (CD). However, the mechanism underlying the regulation of this form of cell cycle arrest, remains unclear. Here, we investigated the roles that advanced oxidation protein products (AOPPs) may play in regulating IEC cycle arrest. Plasma AOPPs levels and IEC cycle distributions were evaluated in 12 patients with CD. Molecular changes in various cyclins, cyclin-dependent kinases (CDKs), and other regulatory molecules were examined in cultured immortalized rat intestinal epithelial (IEC-6) cells after treatment with AOPPs. The in vivo effects exerted by AOPPs were evaluated using a normal C57BL/6 mouse model with an acute AOPPs challenge. Interestingly, plasma AOPPs levels were elevated in active CD patients and correlated with IEC G1 phase arrest. In addition, IEC treatment with AOPPs markedly reduced the expression of cyclin E and CDK2, thus sensitizing epithelial cells to cell cycle arrest both in vitro and in vivo. Importantly, we found that AOPPs induced IEC G1 phase arrest by modulating two membrane receptors, RAGE and CD36. Furthermore, phosphorylation of c-jun N-terminal kinase (JNK) and the expression of p27kip1 in AOPPs-treated cells were subsequently increased and thus affected cell cycle progression. Our findings reveal that AOPPs influence IEC cycle progression by reducing cyclin E and CDK2 expression through RAGE/CD36-depedent JNK/p27kip1 signaling. Consequently, AOPPs may represent a potential therapeutic molecule. Targeting AOPPs may offer a novel approach to managing CD.
Collapse
Affiliation(s)
- Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shibo Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yan Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Biyan Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Caolitao Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lishan Peng
- Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mengshi Luo
- Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Uhrin P, Wang D, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 2: Natural products inhibiting proliferation. Biotechnol Adv 2018; 36:1608-1621. [PMID: 29678389 DOI: 10.1016/j.biotechadv.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Many natural products have been so far tested regarding their potency to inhibit vascular smooth muscle cell proliferation, a process involved in atherosclerosis, pulmonary hypertension and restenosis. Compounds studied in vitro and in vivo as VSMC proliferation inhibitors include, for example indirubin-3'-monoxime, resveratrol, hyperoside, plumericin, pelargonidin, zerumbone and apamin. Moreover, taxol and rapamycin, the most prominent compounds applied in drug-eluting stents to counteract restenosis, are natural products. Numerous studies show that natural products have proven to yield effective inhibitors of vascular smooth muscle cell proliferation and ongoing research effort might result in the discovery of further clinically relevant compounds.
Collapse
Affiliation(s)
- Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria.
| | - Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Magdalenka 05552, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, Schlieren 8952, Switzerland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Victor Babeş 8, Cluj-Napoca 400012, Romania; ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, Cluj-Napoca 400372, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, Uttarakhand 263136, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna 1090, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Magdalenka 05552, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Magdalenka 05552, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Magdalenka 05552, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Magdalenka 05552, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
7
|
Zhang B, Shen C, Ge F, Ma T, Zhang Z. Epigenetically controlled Six3 expression regulates glioblastoma cell proliferation and invasion alongside modulating the activation levels of WNT pathway members. J Neurooncol 2017; 133:509-518. [PMID: 28643150 DOI: 10.1007/s11060-017-2476-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/14/2017] [Indexed: 01/08/2023]
Abstract
Glioma is the most common primary brain tumor in adults. Six3 is a human homologue of the highly conserved sine oculis gene family and essential transcription regulatory factor in process of eye and fetal forebrain development. However, little is known about the role of Six3 in human tumorigenesis. The aim of this study is to investigate the methylation/expression of Six3 and reveal its function and action mechanism in glioma. Our results showed that Six3 was down-regulated in human glioma tissues and human glioma SHG-44, U251, SF126 and U373-MG cells compared with the normal tissues. And the down-regulation of Six3 was associated with the methylation of its promoter. Glioma U251 cells lacked endogenous Six3. Treatment with demethylating agent (5-aza-2'-deoxycytidine) or exogenous expression of Six3 restored Six3 production and resulted in suppression of cell cycle G1/S transition, proliferation and invasion and down-regulation of the expression of Wnt1, p-GSK3-β, β-catenin and cyclin D1 in glioma U251 cells. However, knockdown of Six3 in SHG-44 cells, which have relative higher baseline level of Six3, resulted in an opposite action. These results demonstrate that Six3 silence or loss in glioma is induced by its promoter hypermethylation and Six3 down-regulation contributes to proliferation and invasion of glioma. And this process is involved in activation of Wnt/β-catenin pathway. Six3 play a suppressor role in the initiation and progression of human glioma and potentially serve as a target for the diagnosis and treatment of human glioma.
Collapse
Affiliation(s)
- Baoxin Zhang
- Armed Police Hospital of Hunan Province, Changsha, 410008, Hunan, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Fengyun Ge
- School of Basic Medicine, Central South University, Tongzipo Road 172, Changsha, 410013, China
| | - Tingting Ma
- School of Basic Medicine, Central South University, Tongzipo Road 172, Changsha, 410013, China
| | - Zuping Zhang
- School of Basic Medicine, Central South University, Tongzipo Road 172, Changsha, 410013, China.
| |
Collapse
|
8
|
Abstract
Saffron carotenoids, crocin and crocetin, have shown anticancer activity in various animal models of cancer and against different cancerous cell lines. The radical scavenging property and activation of antioxidant defense system are two well-known characteristics of these compounds. However, the results of the studies indicated other mechanisms could also be involved in this function. Insights into various molecular mechanisms of action for crocin and crocetin have been obtained in recent years. The results indicated that despite the structural similarity of crocin and crocetin, their anticancer effects may exert through different mechanisms. Particular interest concerns the ROS-dependent signaling pathways of crocetin. Saffron compounds are safe and may provide inexpensive therapy for treating cancer. They also have protective potential in targeting other disorders including diabetes, Alzheimer's and cardiovascular disease, cognitive deficits, ischemia-induced retinal damage, and many other diseases.
Collapse
Affiliation(s)
- S Zahra Bathaie
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran; Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Chen L, Wu T, Wei TQ, Wei X, Li SF, Wang KJ, Li H. Skp2-mediated degradation of p27 regulates cell cycle progression in compressed human bladder smooth muscle cells. Kaohsiung J Med Sci 2013; 30:181-6. [PMID: 24656158 DOI: 10.1016/j.kjms.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
Bladder outlet obstruction (BOO) results in smooth muscle cell hyperplasia, decreased bladder wall compliance, and lower and upper urinary tract pathology. Mechanical stimulus on detrusor tissue is critical to BOO disease progression. Our previous studies confirm that mechanical stimulus triggers human bladder smooth muscle cell (HBSMC) proliferation. To better understand the signal transduction mechanisms for this process we detected cell cycle machinery of HBSMC (Bose ® Biodynamic, Minnetonka, MN, USA). HBSMCs cultured in scaffolds were subjected to four different pressures (0 cmH2O, 100 cmH2O, 200 cmH2O, and 300 cmH2O) for 24 hours, which were controlled by a BOSE BioDynamic bioreactor. Then we used flow cytometry to examine cell cycle distribution, polymerase chain reaction, and immunoblotting to quantify Skp2, p27, and p21 expression in each group. Additionally, Skp2 was silenced in HBSMCs using small interfering RNA to validate the role of Skp2 in mediating pressure-induced cell cycle progression. Compared with the 0 cmH2O control, HBSMCs in the 200 cmH2O and 300 cmH2O groups exhibited high-level expression of Skp2 gene and low-level expression of p27 protein. However, p21, another downstream signal of Skp2, showed no significant change between groups. In addition, Skp2 silencing abolished increases in cell proliferation induced by pressure. To the best of our knowledge, this is the first report on the functional importance of Skp2 in cyclic hydrodynamic pressure stimulated HBSMC proliferation. The signal transduction mechanism for this process involves p27 as well as p21 signaling pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tang-Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng-Fu Li
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China
| | - Kun-Jie Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Xu DQ, Luo Y, Liu Y, Wang J, Zhang B, Xu M, Wang YX, Dong HY, Dong MQ, Zhao PT, Niu W, Liu ML, Gao YQ, Li ZC. Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats. Respir Res 2010; 11:182. [PMID: 21182801 PMCID: PMC3022723 DOI: 10.1186/1465-9921-11-182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/24/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pulmonary vascular structure remodeling (PVSR) is a hallmark of pulmonary hypertension. P27(kip1), one of critical cyclin-dependent kinase inhibitors, has been shown to mediate anti-proliferation effects on various vascular cells. Beta-estradiol (β-E2) has numerous biological protective effects including attenuation of hypoxic pulmonary hypertension (HPH). In the present study, we employed β-E2 to investigate the roles of p27(kip1) and its closely-related kinase (Skp-2) in the progression of PVSR and HPH. METHODS Sprague-Dawley rats treated with or without β-E2 were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models, which resemble moderate severity of hypoxia-induced PH in humans. Subsequently, hemodynamic and pulmonary pathomorphology data were gathered. Additionally, pulmonary artery smooth muscle cells (PASMCs) were cultured to determine the anti-proliferation effect of β-E2 under hypoxia exposure. Western blotting or reverse transcriptional polymerase chain reaction (RT-PCR) were adopted to test p27(kip1), Skp-2 and Akt-P changes in rat lung tissue and cultured PASMCs. RESULTS Chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of right ventricle/left ventricle plus septum (RV/LV+S) ratio, medial width of pulmonary arterioles, accompanied with decreased expression of p27(kip1) in rats. Whereas, β-E2 treatment repressed the elevation of RVSP, RV/LV+S, attenuated the PVSR of pulmonary arterioles induced by chronic hypoxia, and stabilized the expression of p27(kip1). Study also showed that β-E2 application suppressed the proliferation of PASMCs and elevated the expression of p27(kip1) under hypoxia exposure. In addition, experiments both in vivo and in vitro consistently indicated an escalation of Skp-2 and phosphorylated Akt under hypoxia condition. Besides, all these changes were alleviated in the presence of β-E2. CONCLUSIONS Our results suggest that β-E2 can effectively attenuate PVSR and HPH. The underlying mechanism may partially be through the increased p27(kip1) by inhibiting Skp-2 through Akt signal pathway. Therefore, targeting up-regulation of p27(kip1) or down-regulation of Skp-2 might provide new strategies for treatment of HPH.
Collapse
Affiliation(s)
- Dun-Quan Xu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Ying Luo
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Yi Liu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Jing Wang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Bo Zhang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Min Xu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Yan-Xia Wang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Hai-Ying Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Ming-Qing Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Peng-Tao Zhao
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Wen Niu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Man-Ling Liu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| | - Yu-Qi Gao
- Key Laboratory of High Altitude Medicine, College of High Altitude Medicine Ministry of Education, Third Military Medical University, Chong Qing, 400038, PR China
| | - Zhi-Chao Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi`an, 710032, PR China
| |
Collapse
|