1
|
De novo assembly and characterization of transcriptome in the medicinal plant Euphorbia jolkini. Genes Genomics 2020; 42:1011-1021. [PMID: 32715384 DOI: 10.1007/s13258-020-00957-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Euphorbia jolkini, a medicinal herb that grows on the warm beaches in Japan and South Korea, is known to be used for traditional medicines to treat a variety of ailments, including bruises, stiffness, indigestion, toothache, and diabetes. OBJECTIVE It is to analyze the whole transcriptome and identify the genes related to the phenylpropanoid biosynthesis in the medicinally important herb E jolkini. METHODS Paired-end Illumina HiSeq™ 2500 sequencing technology was employed for cDNA library construction and Illumina sequencing. Public databases like TAIR (The Arabidopsis Information Resource), Swissprot and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for annotations of unigenes obtained. RESULTS The transcriptome of E. jolkini generated 139,215 assembled transcripts with an average length of 868 bp and an N50 value of 1460 bp that were further clustered using CD-HIT into 93,801 unigenes with an average length of 847 bp (N50-1410 bp). Sixty-three percent of the coding sequences (CDS) were annotated from the longest open reading frame (ORF). A remarkable percentage of unigenes were annotated against various databases. The differentially expressed gene analysis revealed that the expression of genes related to the terpenoid backbone biosynthesis pathway was higher in the flowers, whereas that of genes related to the phenylpropanoid biosynthesis pathway was both up- and downregulated in flowers and leaves. A search of against the transcription factor domain found 1023 transcription factors (TFs) that were from 54 TF families. CONCLUSION Assembled sequences of the E. jolkini transcriptome are made available for the first time in this study E. jolkini and lay a foundation for the investigation of secondary metabolite biosynthesis.
Collapse
|
2
|
Jayesh K, Karishma R, Vysakh A, Gopika P, Latha MS. Terminalia bellirica (Gaertn.) Roxb fruit exerts anti-inflammatory effect via regulating arachidonic acid pathway and pro-inflammatory cytokines in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammopharmacology 2018; 28:10.1007/s10787-018-0513-x. [PMID: 30003465 DOI: 10.1007/s10787-018-0513-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Terminalia bellirica (Gaertn.) Roxb. (Family: Combretaceae), known as Bhibhitaki in Sanskrit and locally known as Behera in India, has been used for centuries in Ayurveda, a universal system of medicine in India. The dried fruit of T. bellirica is used for the treatment of several disorders. The present study aims to explore the anti-inflammatory effects of aqueous acetone extracts isolated from T. bellirica (AATB) in RAW 264.7 cell lines. The AATB was prepared from the fruits of T. bellirica. Different concentrations of AATB (6.25-100 μg/ml) were used for MTT assay. The anti-inflammatory effect of AATB was evaluated by using different assays such as total cyclooxygenase (COX), 5-lipoxygenase (5-LOX) activity, nitrate and reactive oxygen species (ROS) production. The mRNA level expression of COX-2, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were studied in LPS stimulated RAW 264.7 cells. AATB treatment significantly diminished the elevated levels of inflammatory markers. Moreover, AATB downregulated the mRNA level expression of TNF-α, IL-6 and COX-2 genes. The result of our study suggest the use of AATB and is able to reduce inflammatory conditions associated with various diseases.
Collapse
Affiliation(s)
- Kuriakose Jayesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Raj Karishma
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Prasad Gopika
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India.
| |
Collapse
|
3
|
Kim MJ, Kim YY, Choi YA, Baek MC, Lee B, Park PH, Shin TY, Kwon TK, Khang D, Kim SH. Elaeocarpusin Inhibits Mast Cell-Mediated Allergic Inflammation. Front Pharmacol 2018; 9:591. [PMID: 29930511 PMCID: PMC5999758 DOI: 10.3389/fphar.2018.00591] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Mast cells are major effector cells for allergic responses that act by releasing inflammatory mediators, such as histamine and pro-inflammatory cytokines. Accordingly, different strategies have been pursued to develop anti-allergic and anti-inflammatory candidates by regulating the function of mast cells. The purpose of this study was to determine the effectiveness of elaeocarpusin (EL) on mast cell-mediated allergic inflammation. We isolated EL from Elaeocarpus sylvestris L. (Elaeocarpaceae), which is known to possess anti-inflammatory properties. For this study, various sources of mast cells and mouse anaphylaxis models were used. EL suppressed the induction of markers for mast cell degranulation, such as histamine and β-hexosaminidase, by reducing intracellular calcium levels. Expression of pro-inflammatory cytokines, such as tumor necrosis factor-α and IL-4, was significantly decreased in activated mast cells by EL. This inhibitory effect was related to inhibition of the phosphorylation of Fyn, Lyn, Syk, and Akt, and the nuclear translocation of nuclear factor-κB. To confirm the effect of EL in vivo, immunoglobulin E-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models were induced. EL reduced the PCA reaction in a dose dependent manner. In addition, EL attenuated ASA reactions such as hypothemia, histamine release, and IgE production. Our results suggest that EL is a potential therapeutic candidate for allergic inflammatory diseases that acts via the inhibition of mast cell degranulation and expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Min-Jong Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yeon-Yong Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Seongnam, South Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Kim ME, Na JY, Lee JS. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol Immunotoxicol 2018; 40:219-224. [DOI: 10.1080/08923973.2018.1424902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mi Eun Kim
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Ju Yong Na
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Jun Sik Lee
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Ekambaram SP, Perumal SS, Balakrishnan A. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent. Phytother Res 2016; 30:1035-45. [PMID: 27062587 DOI: 10.1002/ptr.5616] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/12/2022]
Abstract
Hydrolysable tannins (HTs) are secondary metabolites from plants, which are roughly classified into gallotannins and ellagitannins having gallic acid and ellagic acid residues respectively attached to the hydroxyl group of glucose by ester linkage. The presence of hexahydroxydiphenoyl and nonahydroxyterphenoyl moieties is considered to render antimicrobial property to HTs. HTs also show considerable synergy with antibiotics. Nevertheless, they have low pharmacokinetic property. The present review presents the scope of HTs as future antimicrobial agent. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, Anna University BIT Campus, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, Anna University BIT Campus, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Ajay Balakrishnan
- Department of Pharmaceutical Technology, Anna University BIT Campus, Tiruchirappalli, 620 024, Tamilnadu, India
| |
Collapse
|
6
|
Jia HY, Liao ZX, Liu FY, Wu L, Xu C, Zuo B. A new phenylpropanoid from the roots ofEuphorbia nematocypha. Nat Prod Res 2014; 29:650-5. [DOI: 10.1080/14786419.2014.980256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Jung YC, Kim ME, Yoon JH, Park PR, Youn HY, Lee HW, Lee JS. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation. Immunopharmacol Immunotoxicol 2014; 36:426-32. [DOI: 10.3109/08923973.2014.968257] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Kim ME, Jung YC, Jung I, Lee HW, Youn HY, Lee JS. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-κB pathway regulation. Immunol Invest 2014; 44:137-46. [PMID: 25140761 DOI: 10.3109/08820139.2014.942459] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University , Dong-gu, Gwangju , Republic of Korea
| | | | | | | | | | | |
Collapse
|