1
|
Zhang F, Liu W, Huang J, Chen QL, Wang DD, Zou LW, Zhao YF, Zhang WD, Xu JG, Chen HZ, Ge GB. Inhibition of drug-metabolizing enzymes by Jingyin granules: implications of herb-drug interactions in antiviral therapy. Acta Pharmacol Sin 2022; 43:1072-1081. [PMID: 34183756 PMCID: PMC8237038 DOI: 10.1038/s41401-021-00697-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.
Collapse
Affiliation(s)
- Feng Zhang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Wei Liu
- grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jian Huang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, 201203 China
| | - Qi-long Chen
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Dan-dan Wang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd, Shanghai, 201703 China
| | - Li-wei Zou
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yong-fang Zhao
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,grid.412540.60000 0001 2372 7462Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Wei-dong Zhang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jian-guang Xu
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Hong-zhuan Chen
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Guang-bo Ge
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
2
|
Bordes C, Leguelinel-Blache G, Lavigne JP, Mauboussin JM, Laureillard D, Faure H, Rouanet I, Sotto A, Loubet P. Interactions between antiretroviral therapy and complementary and alternative medicine: a narrative review. Clin Microbiol Infect 2020; 26:1161-1170. [PMID: 32360208 DOI: 10.1016/j.cmi.2020.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The use of complementary and alternative medicine including herbal medicine (phytotherapy), vitamins, minerals and food supplements is frequent among people living with HIV/AIDS (PLWHAs) who take antiretroviral (ARV) drugs, but is often not known by their prescribing physicians. Some drug-supplement combinations may result in clinically meaningful interactions. AIMS In this literature review, we aimed to investigate the evidence for complementary and alternative medicine interactions with ARVs. SOURCES A bibliographic search of all in vitro, human studies and case reports of the PubMed database was performed to assess the risk of interactions between complementary and alternative self-medication products and ARVs. The 'HIV drug interaction' (https://www.hiv-druginteractions.org) and 'Natural medicines comprehensive database' (https://naturalmedicines.therapeuticresearch.com) interaction checkers were also analysed. CONTENT St John's wort, some forms of garlic, grapefruit and red rice yeast are known to have significant interaction and thus should not be co-administered, or should be used with caution with certain ARV classes. Data on other plant-based supplements come from in vitro studies or very small size in vivo studies and are thus insufficient to conclude the real in vivo impact in case of concomitant administration with ARVs. Some polyvalent minerals such as calcium, magnesium, and iron salts can reduce the absorption of integrase inhibitors by chelation. Potential interactions with vitamin C and quercetin with some ARVs should be noted and efficacy and tolerance of the treatment should be monitored. IMPLICATIONS This review shows the importance of screening all PLWHAs for complementary and alternative medicine use to prevent treatment failure or adverse effects related to an interaction with ARVs. Further human studies are warranted to describe the clinical significance of in vitro interactions between numerous complementary and alternative medicine and ARVs.
Collapse
Affiliation(s)
- C Bordes
- Pharmacy Department, University of Montpellier, CHU Nimes, France
| | - G Leguelinel-Blache
- Pharmacy Department, University of Montpellier, CHU Nimes, France; UPRES EA2415, Laboratory of Biostatistics, Epidemiology, Clinical Research and Health Economics, Clinical Research University Institute, University of Montpellier, Montpellier, France
| | - J-P Lavigne
- VBMI, INSERM U1047, University of Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - J-M Mauboussin
- Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - D Laureillard
- Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France; Pathogenesis and Control of Chronic Infections, Inserm, Etablissement Français Du Sang, University of Montpellier, Montpellier, France
| | - H Faure
- Pharmacy Department, CH de Royan, Royan, France
| | - I Rouanet
- Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - A Sotto
- VBMI, INSERM U1047, University of Montpellier, Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - P Loubet
- VBMI, INSERM U1047, University of Montpellier, Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France.
| |
Collapse
|
3
|
Kuruva CS, Gandavaram SP, Shaik TB, Chintha V, Chamarthi NR, Ghosh SK, Wudayagiri R. Synthesis, Spectral Characterization, Docking Studies and Antiviral Activity of Phosphorylated Derivatives of Lopinavir Intermediate. ChemistrySelect 2019. [DOI: 10.1002/slct.201900945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chandra S. Kuruva
- Department of ChemistrySri Venkateswara University Tirupati 517 502 India
| | - Syam P. Gandavaram
- Department of ChemistrySri Venkateswara University Tirupati 517 502 India
| | - Thaslim B. Shaik
- Department of ChemistrySri Venkateswara University Tirupati 517 502 India
| | - Venkataramaiah Chintha
- Division of Molecular BiologyDepartment of ZoologySri Venkateswara University Tirupati 517 502 India
| | - Naga R. Chamarthi
- Department of ChemistrySri Venkateswara University Tirupati 517 502 India
| | - Sunil K. Ghosh
- Bioorganic DivisionBhabha Atomic Research Centre Mumbai 400 085 India
| | - Rajendra Wudayagiri
- Division of Molecular BiologyDepartment of ZoologySri Venkateswara University Tirupati 517 502 India
| |
Collapse
|
4
|
Kala S, Watson B, Zhang JG, Papp E, Guzman Lenis M, Dennehy M, Cameron DW, Harrigan PR, Serghides L. Improving the clinical relevance of a mouse pregnancy model of antiretroviral toxicity; a pharmacokinetic dosing-optimization study of current HIV antiretroviral regimens. Antiviral Res 2018; 159:45-54. [PMID: 30236532 DOI: 10.1016/j.antiviral.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Animal models can be useful tools for the study of HIV antiretroviral (ARV) safety/toxicity in pregnancy and the mechanisms that underlie ARV-associated adverse events. The utility and translatability of animal model-based ARV safety/toxicity data is improved if ARVs are tested in clinically relevant concentrations. The objective of this work was to improve the clinical relevance of our mouse pregnancy model of ARV toxicity, by determining the doses of currently prescribed ARV regimens that would yield human therapeutic plasma concentrations. Pregnant mice were administered increasing doses of ARV combinations by oral gavage, followed by measurement of drug concentrations in the maternal plasma and amniotic fluid. Concentrations of ten different ARVs in maternal plasma and amniotic fluid samples of pregnant mice are presented, with dosing optimization to yield human pregnancy-relevant plasma drug concentrations. We have proposed optimal dosing for different regimen component drugs to achieve human therapeutic plasma levels, so that a clinically relevant standard dosing is established. A review of related ARV pharmacokinetic studies in (pregnant/non-pregnant) rodents and human pregnancy is also shown. We hope these data will inform and encourage the use of mouse pregnancy models in the study of ARV safety/toxicity.
Collapse
Affiliation(s)
- Smriti Kala
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Birgit Watson
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Jeremy Guijun Zhang
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - Eszter Papp
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Monica Guzman Lenis
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada
| | - Michelle Dennehy
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - D William Cameron
- Clinical Investigation Unit at the Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa at the Ottawa Hospital / Research Institute, Ottawa, Canada
| | - P Richard Harrigan
- Division of AIDS, Department of Medicine, University of British Columbia, Vancouver Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Canada.
| |
Collapse
|
5
|
Jia Y, Liu J, Xu J. Influence of grapefruit juice on pharmacokinetics of triptolide in rats grapefruit juice on the effects of triptolide. Xenobiotica 2017; 48:407-411. [PMID: 28359180 DOI: 10.1080/00498254.2017.1313470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yuzhen Jia
- Department of Pediatrics, Yidu Central Hospital of Weifang, China,
| | - Jie Liu
- Yidu Central Hospital of Weifang, China, and
| | - Jisen Xu
- Department of Neurology, Yidu Central Hospital of Weifang, China
| |
Collapse
|
6
|
Ravi PR, Vats R. Comparative pharmacokinetic evaluation of lopinavir and lopinavir-loaded solid lipid nanoparticles in hepatic impaired rat model. J Pharm Pharmacol 2017; 69:823-833. [DOI: 10.1111/jphp.12716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/05/2017] [Indexed: 12/01/2022]
Abstract
Abstract
Objective
Drug-induced hepatotoxicity is a major cause of concern in patients receiving HIV/TB co-treatment. Lopinavir (LPV), an anti-HIV drug, shows poor plasma exposure due to hepatic first-pass metabolism. In this study, we investigated the effect of hepatotoxicity on pharmacokinetics of free LPV and LPV-loaded solid lipid nanoparticles (LPV SLNs) in male Wistar rats.
Methods
Hepatic impairment model in rats was developed by injecting CCl4 (i.p., 2 ml/kg). Comparative pharmacokinetic (n = 5) and tissue distribution studies (n = 3) were conducted following oral administration (20 mg/kg) of free LPV and LPV SLNs in normal and hepatic impaired rats. Isolated perfused liver (IPL) model (n = 3) and cycloheximide intervened lymphatic uptake studies (n = 3) were conducted to appreciate disposition pattern of LPV.
Key findings
In contrary to free LPV, pharmacokinetic results demonstrated no significant (P > 0.05) difference in drug plasma profile of LPV SLNs in normal and impaired rats. IPL model demonstrated trivial role of liver in disposition of LPV SLNs. Tissue distribution studies of SLNs showed higher (P < 0.05) LPV accumulation in lymphoidal organs. Pretreatment of cycloheximide significantly (P < 0.05) reduced AUC and Cmax of LPV SLNs.
Conclusion
From the results, we conclude that unlike conventional formulations of LPV, disposition characteristics of LPV SLNs were similar both in normal and hepatic impaired rats.
Collapse
Affiliation(s)
- Punna Rao Ravi
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Rahul Vats
- Novartis Healthcare, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Shailender J, Ravi PR, Saha P, Myneni S. Oral pharmacokinetic interaction of ester rich fruit juices and pharmaceutical excipients with tenofovir disoproxil fumarate in male Wistar rats. Xenobiotica 2017; 47:1104-1111. [DOI: 10.1080/00498254.2016.1269375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Joseph Shailender
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| | - Punna Rao Ravi
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| | - Paramita Saha
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| | - Srividya Myneni
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| |
Collapse
|
8
|
Sakuma S, Matsumoto S, Ishizuka N, Mohri K, Fukushima M, Ohba C, Kawakami K. Enhanced Boosting of Oral Absorption of Lopinavir Through Electrospray Coencapsulation with Ritonavir. J Pharm Sci 2015; 104:2977-85. [DOI: 10.1002/jps.24492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
|
9
|
Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydr Polym 2014; 110:320-8. [DOI: 10.1016/j.carbpol.2014.03.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/16/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
|
10
|
Ravi PR, Vats R, Dalal V, Gadekar N, N A. Design, optimization and evaluation of poly-ɛ-caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug Dev Ind Pharm 2013; 41:131-40. [DOI: 10.3109/03639045.2013.850710] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Ravi PR, Vats R, Kora UR. Effect of ciprofloxacin and grapefruit juice on oral pharmacokinetics of riluzole in Wistar rats. J Pharm Pharmacol 2012; 65:337-44. [DOI: 10.1111/j.2042-7158.2012.01604.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
The objective of this study was to explore potential drug–drug/food interactions of ciprofloxacin and grapefruit juice, known hepatic cytochrome P450 (CYP) 1A2 inhibitors, on single-dose oral pharmacokinetics of riluzole, a substrate of CYP 1A2 enzymes.
Methods
Pharmacokinetic parameters of riluzole were determined in Wistar rats after single-dose co-administration with ciprofloxacin and grapefruit juice. In-vitro metabolic inhibition studies using rat and human liver microsomes and intestinal absorption studies of riluzole in a rat everted gut-sac model were conducted to elucidate the mechanism of interaction. A validated HPLC method was employed to quantify riluzole in the samples obtained in various studies.
Key findings
Co-administration of ciprofloxacin with riluzole caused significant increase in systemic exposure of riluzole (area under the curve, maximum plasma concentration and mean residence time were found to increase). Co-administration of grapefruit juice with riluzole did not cause any significant difference in the pharmacokinetic parameters of riluzole. In-vitro metabolism studies demonstrated significant inhibition of riluzole metabolism when it was co-incubated with ciprofloxacin or grapefruit juice. No significant change was observed in apparent permeability of riluzole.
Conclusions
Co-administration of ciprofloxacin with riluzole increases the systemic levels of riluzole and thereby the oral pharmacokinetic properties of riluzole while co-administration of grapefruit juice with riluzole has no significant effect.
Collapse
Affiliation(s)
- Punna Rao Ravi
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | - Rahul Vats
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | - Upendra Reddy Kora
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
12
|
Vats R, Varanasi KVS, Arla R, Veeraraghvan S, Rajak S. Drug-drug interaction study to assess the effects of atorvastatin co-administration on pharmacokinetics and anti-thrombotic properties of cilostazol in male Wistar rats. Biopharm Drug Dispos 2012; 33:455-65. [DOI: 10.1002/bdd.1812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Rahul Vats
- BITS-Pilani Hyderabad Campus, Pharmacy Department; Hyderabad Campus; Hyderabad; Andhra Pradesh; India
| | - Kanthikiran V. S. Varanasi
- Glenmark Research Centre, Glenmark Pharmaceuticals Ltd, Drug Metabolism and Pharmacokinetics; Mumbai; Maharastra; India
| | - Rambabu Arla
- Glenmark Research Centre, Glenmark Pharmaceuticals Ltd, Drug Metabolism and Pharmacokinetics; Mumbai; Maharastra; India
| | - Sridhar Veeraraghvan
- Glenmark Research Centre, Glenmark Pharmaceuticals Ltd, Drug Metabolism and Pharmacokinetics; Mumbai; Maharastra; India
| | - Shraddha Rajak
- Glenmark Research Centre, Glenmark Pharmaceuticals Ltd, Drug Metabolism and Pharmacokinetics; Mumbai; Maharastra; India
| |
Collapse
|
13
|
Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther 2012; 136:186-201. [PMID: 22884524 DOI: 10.1016/j.pharmthera.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
14
|
Vats R, Varanasi KVS, Arla R, Veeraraghavan S, Rajak S, Murthy AN. Effect of multidose cilostazol on pharmacokinetic and lipid profile of atorvastatin in male Wistar rats. J Pharm Pharmacol 2012; 64:1638-45. [DOI: 10.1111/j.2042-7158.2012.01542.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Objectives
Atorvastatin (ATV) and cilostazol (CLZ) are often co-prescribed to treat conditions such as peripheral arterial disease. In the present study, the drug–drug interaction potential of multi-dose CLZ on both pharmacokinetics and the lipid-lowering ability of single-dose ATV is demonstrated.
Method
The pharmacokinetic parameters of ATV were determined in Wistar rats after per-oral pre-treatment with CLZ for 7 days in order to assess the interaction potential between ATV and CLZ. In-vitro metabolic inhibition and everted gut sac studies were conducted to elucidate the mechanism of this interaction. Biochemistry analyser was used to estimate lipid profiles in Wistar rats. A validated LC-MS/MS method was employed to simultaneously quantify both ATV and CLZ in rat plasma matrix.
Key findings
A statistically significant increase in systemic exposure to ATV after a single dose was observed in CLZ pre-treated rats. In-vitro metabolism studies using rat liver microsome (RLM) demonstrated statistically significant inhibition of ATV metabolism when co-incubated with CLZ. No change in apparent permeability of ATV was observed in the presence of CLZ. The blood lipid profile study after ATV administration indicated a statistically significant decrease in total cholesterol, triglycerides and LDL-cholesterol.
Conclusions
Multi-dose administration of CLZ influences the pharmacokinetics and lipid-lowering properties of ATV. Collectively, an apparent interaction between selected drugs was evident.
Collapse
Affiliation(s)
- Rahul Vats
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Andhra Pradesh, India
| | | | - Rambabu Arla
- DMPK, Glenmark Research centre, Glenmark Pharmaceuticals Ltd, Navi Mumbai, India
| | | | - Shraddha Rajak
- DMPK, Glenmark Research centre, Glenmark Pharmaceuticals Ltd, Navi Mumbai, India
| | | |
Collapse
|