1
|
Zhang T, Geng M, Li X, Gu Y, Zhao W, Ning Q, Zhao Z, Wang L, Zhang H, Zhang F. Identification of Oxidative Stress-Related Biomarkers for Pain-Depression Comorbidity Based on Bioinformatics. Int J Mol Sci 2024; 25:8353. [PMID: 39125922 PMCID: PMC11313298 DOI: 10.3390/ijms25158353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Oxidative stress has been identified as a major factor in the development and progression of pain and psychiatric disorders, but the underlying biomarkers and molecular signaling pathways remain unclear. This study aims to identify oxidative stress-related biomarkers and signaling pathways in pain-depression comorbidity. Integrated bioinformatics analyses were applied to identify key genes by comparing pain-depression comorbidity-related genes and oxidative stress-related genes. A total of 580 differentially expressed genes and 35 differentially expressed oxidative stress-related genes (DEOSGs) were identified. By using a weighted gene co-expression network analysis and a protein-protein interaction network, 43 key genes and 5 hub genes were screened out, respectively. DEOSGs were enriched in biological processes and signaling pathways related to oxidative stress and inflammation. The five hub genes, RNF24, MGAM, FOS, and TKT, were deemed potential diagnostic and prognostic markers for patients with pain-depression comorbidity. These genes may serve as valuable targets for further research and may aid in the development of early diagnosis, prevention strategies, and pharmacotherapy tools for this particular patient population.
Collapse
Affiliation(s)
- Tianyun Zhang
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Menglu Geng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoke Li
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yulin Gu
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenjing Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi Ning
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Zijie Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medica University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Paul P, Campbell G, Zekeridou A, Mauermann M, Naddaf E. Diagnosing Peripheral Neuropathy in Patients With Alcohol Use Disorder. Mayo Clin Proc 2024; 99:S0025-6196(24)00132-0. [PMID: 39093265 DOI: 10.1016/j.mayocp.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 08/04/2024]
Abstract
With the lack of distinctive features or diagnostic biomarkers, peripheral neuropathy in patients with excessive alcohol consumption is often misdiagnosed as alcohol-related neuropathy, influenced by underlying implicit and explicit bias against patients with an alcohol use disorder (AUD). Alcohol-related nerve toxicity has been attributed to various underlying mechanisms including altered trophic factor signaling, disrupted protein synthesis, free radical injury from oxidative stress, and nutritional deficiencies. Alcohol-related neuropathy has been most described as mild but painful, predominantly affecting small sensory fibers, without major functional limitations. This phenotype may be indistinguishable from a chronic idiopathic axonal neuropathy; hence, a causal relationship with AUD cannot be established with certainty. Searching for alternative causes is warranted, especially in patients with a more severe or rapidly progressive peripheral neuropathy. At the same time, there is underlying implicit and explicit bias in the medical field against patients with AUDs. Patients often experience devaluation and stigma, which can affect their adherence to medical advice and may lead to social reclusion. Addressing biases in health care workers is crucial to ensure that individuals receive proper care and are not subjected to stigmatization. In this article, we present a comprehensive narrative review of the literature on the clinical presentation and underlying pathomechanisms of alcohol-related peripheral neuropathy, raising awareness of the bias in the medical field against patients with AUD.
Collapse
Affiliation(s)
- Pritikanta Paul
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL
| | | | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
3
|
Madaan P, Behl T, Sehgal A, Singh S, Sharma N, Yadav S, Kaur S, Bhatia S, Al-Harrasi A, Abdellatif AAH, Ashraf GM, Abdel-Daim MM, Dailah HG, Anwer MK, Bungau S. Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy. Neurotox Res 2022; 40:646-669. [DOI: 10.1007/s12640-022-00477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
|
4
|
Zhao M, Zhang X, Tao X, Zhang B, Sun C, Wang P, Song T. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front Pharmacol 2021; 12:646477. [PMID: 33897435 PMCID: PMC8063033 DOI: 10.3389/fphar.2021.646477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xueshu Tao
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Cong Sun
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pinying Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Tao Song
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Buján GE, Serra HA, Molina SJ, Guelman LR. Oxidative Stress-Induced Brain Damage Triggered by Voluntary Ethanol Consumption during Adolescence: A Potential Target for Neuroprotection? Curr Pharm Des 2020; 25:4782-4790. [PMID: 31814553 DOI: 10.2174/1381612825666191209121735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022]
Abstract
Alcohol consumption, in particular ethanol (EtOH), typically begins in human adolescence, often in a "binge like" manner. However, although EtOH abuse has a high prevalence at this stage, the effects of exposure during adolescence have been less explored than prenatal or adult age exposure. Several authors have reported that EtOH intake during specific periods of development might induce brain damage. Although the mechanisms are poorly understood, it has been postulated that oxidative stress may play a role. In fact, some of these studies revealed a decrease in brain antioxidant enzymes' level and/or an increase in reactive oxygen species (ROS) production. Nevertheless, although existing literature shows a number of studies in which ROS were measured in developing animals, fewer reported the measurement of ROS levels after EtOH exposure in adolescence. Importantly, neuroprotective agents aimed to these potential targets may be relevant tools useful to reduce EtOH-induced neurodegeneration, restore cognitive function and improve treatment outcomes for alcohol use disorders (AUDs). The present paper reviews significant evidences about the mechanisms involved in EtOH-induced brain damage, as well as the effect of different potential neuroprotectants that have shown to be able to prevent EtOH-induced oxidative stress. A selective inhibitor of the endocannabinoid anandamide metabolism, a flavonol present in different fruits (quercetin), an antibiotic with known neuroprotective properties (minocycline), a SOD/catalase mimetic, a potent antioxidant and anti-inflammatory molecule (resveratrol), a powerful ROS scavenger (melatonin), an isoquinoline alkaloid (berberine), are some of the therapeutic strategies that could have some clinical relevance in the treatment of AUDs. As most of these works were performed in adult animal models and using EtOH-forced paradigms, the finding of neuroprotective tools that could be effective in adolescent animal models of voluntary EtOH intake should be encouraged.
Collapse
Affiliation(s)
- Gustavo E. Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Hector A. Serra
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina
| | - Sonia J. Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Laura R. Guelman
- Universidad de Buenos Aires, Facultad de Medicina, 1 Cátedra de Farmacología, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBACONICET), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
6
|
Ucak T, Karakurt Y, Tasli G, Cimen FK, Icel E, Kurt N, Ahiskali I, Süleyman H. The effects of thiamine pyrophosphate on ethanol induced optic nerve damage. BMC Pharmacol Toxicol 2019; 20:40. [PMID: 31277705 PMCID: PMC6612179 DOI: 10.1186/s40360-019-0319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background We aimed to determine the protective effects of thiamine pyrophosphate on ethanol induced optic neuropathy in an experimental model. Methods The rats were assigned into 4 groups, with 6 rats in each group as follows: healthy controls (HC group), only ethanol administered group (EtOH group), ethanol + thiamine pyrophosphate (20 mg/kg) administered group (TEt-20 group), and only thiamine pyrophosphate (20 mg/kg) (TPG group) administered group. To the rats in TEt-20 and TPG groups, 20 mg/kg thiamine pyrophosphate was administered via intraperitoneal route. To the rats in HC and EtOH groups, the same volume (0.5 ml) of distilled water as solvent was applied in the same manner. To the rats in TEt-20 and EtOH groups, one hour after application of thiamine pyrophosphate or distilled water, 32% ethanol with a dose of 5 g/kg was administered via oral gavage. This procedure was repeated once a day for 6 weeks. From the blood samples and tissues obtained from the rats, Malondialdehyde (MDA), reduced glutathione (GSH), interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) levels were studied. Histopathological evaluations were performed to the optic nerve tissue. Results Serum and tissue IL-1β, TNF-α and MDA levels were the highest in EtOH group which were significantly lower in thiamine pyrophosphate administered group (TEt-20 group) (p: 0.001). Serum and tissue reduced GSH levels were the lowest in EtOH group which were also significantly higher in TEt-20 group (p:0.001). In histopathological evaluations, in EtOH group there was obvious destruction and edema with hemorrhage and dilated blood vessels which were not present in any other groups. Conclusions There was an apparent destruction in ethanol administered group in histopathological analyses with an augmented level of oxidative stress markers and all those alterations were prevented with concomitant thiamine pyrophosphate administration. These protective effects of thiamine pyrophosphate are extremely important in chronic ethanol consumption. Clinical studies are warranted to define the exact role of thiamine pyrophosphate in prevention of ethanol induced optic neuropathy.
Collapse
Affiliation(s)
- Turgay Ucak
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey.
| | - Yucel Karakurt
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey
| | - Gamze Tasli
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey
| | - Ferda Keskin Cimen
- Department of Pathology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Erel Icel
- Department of Ophthalmology, Faculty of Medicine, Erzincan University, 24100, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, College of Medicine, Atatürk University Hospital, Erzurum, Turkey
| | - Ibrahim Ahiskali
- Department of Ophthalmology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| |
Collapse
|
7
|
Shamsi Meymandi M, Sepehri G, Izadi G, Zamiri Z. Evidence for antinociceptive effects of combined administration of vitamin E and celecoxib in tail-flick and formalin test in male rats. Pharmacol Rep 2019; 71:457-464. [DOI: 10.1016/j.pharep.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/06/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
|
8
|
Circulating miR-23b-3p, miR-145-5p and miR-200b-3p are potential biomarkers to monitor acute pain associated with laminitis in horses. Animal 2017; 12:366-375. [PMID: 28689512 DOI: 10.1017/s1751731117001525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging as promising biomarkers for several disorders and related pain. In equine practice, acute laminitis is a common disease characterised by intense pain that severely compromises horse welfare. Recently, the Horse Grimace Scale (HGS), a facial expression-based pain coding system, was shown to be a valid welfare indicator to identify pain linked to acute laminitis. The present study aimed to: determine whether miRNAs can be used as biomarkers for acute pain in horses (Equus caballus) affected by laminitis; integrate miRNAs to their target genes and to categorise target genes for biological processes; gather additional evidence on concurrent validity of HGS by investigating how it correlates to miRNAs. Nine horses presenting acute laminitis with no prior treatment were recruited. As control group, nine healthy horses were further included in the experimental design. Samples were collected from horses with laminitis at admission before any treatment ('pre-treatment') and 7 days after routine laminitis treatment ('post-treatment'). The expression levels of nine circulating miRNAs, namely hsa-miR-532-3p, hsa-miR-219-5p, mmu-miR-134-5p, mmu-miR-124a-3p, hsa-miR-200b-3p, hsa-miR-146a-5p, hsa-miR-23b-3p, hsa-miR-145-5p and hsa-miR-181a-5p, were detected and assessed as potential biomarkers of pain by quantitative PCR using TaqMan® probes. The area under the receiver operating curve (AUC) was then used to evaluate the diagnostic performance of miRNAs. Molecular data were integrated with HGS scores assessed by one trained treatment and time point blind veterinarian. The comparative analysis demonstrated that the levels of miR-23b-3p (P=0.029), miR-145-5p (P=0.015) and miR-200b-3p (P=0.023) were significantly higher in pre-treatment and the AUCs were 0.854, 0.859 and 0.841, respectively. MiR-200b-3p decreased after routine laminitis treatment (P=0.043). Combining two miRNAs in a panel, namely miR-145-5p and miR-200b-3p, increased efficiency in distinguishing animals with acute pain from controls. In addition, deregulated miRNAs were positively correlated to HGS scores. Computational target prediction and functional enrichment identified common biological pathways between different miRNAs. In particular, the glutamatergic pathway was affected by all three miRNAs, suggesting a crucial role in the pathogenesis of pain. In conclusion, the dynamic expression of circulating miR-23b-3p, miR-145-5p and miR-200b-3p was detected in horses with acute laminitis and miRNAs can be considered potentially promising pain biomarkers. Further studies are needed in order to assess their relevancy in other painful conditions severely compromising horse welfare. An important implication would be the possibility to use them for the concurrent validation of non-invasive indicators of pain in horses.
Collapse
|
9
|
Riffel APK, de Souza JA, Santos MDCQ, Horst A, Scheid T, Kolberg C, Belló-Klein A, Partata WA. Systemic administration of vitamins C and E attenuates nociception induced by chronic constriction injury of the sciatic nerve in rats. Brain Res Bull 2016; 121:169-77. [PMID: 26855326 DOI: 10.1016/j.brainresbull.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
Abstract
Antioxidants have been tested to treat neuropathic pain, and α-Tocopherol (vitamin E--vit. E) and ascorbic acid (vitamin C--vit. C) are potent antioxidants. We assessed the effect of intraperitoneal administration of vit. C (30 mg/kg/day) and vit. E (15 mg/kg/day), given alone or in combination, on the mechanical and thermal thresholds and the sciatic functional index (SFI) in rats with chronic constriction injury (CCI) of the sciatic nerve. We also determined the lipid hydroperoxides and total antioxidant capacity (TAC) in the injured sciatic nerve. Further, we assessed the effects of oral administration of vit. C+vit. E (vit. C+E) and of a combination of vit. C+E and gabapentin (100mg/kg/day, i.p.) on the mechanical and thermal thresholds of CCI rats. The vitamins, whether administered orally or i.p., attenuated the reductions in the mechanical and thermal thresholds induced by CCI. The antinociceptive effect was greater with a combination of vit. C+E than with each vitamin given alone. The SFI was also improved in vitamin-treated CCI rats. Co-administration of vit. C+E and gabapentin induced a greater antinociceptive effect than gabapentin alone. No significant change occurred in TAC and lipid hydroperoxide levels, but TAC increased (45%) while lipid hydroperoxides decreased (38%) in the sciatic nerve from vit. C+E-treated CCI rats. Thus, treatment with a combination of vit. C+E was more effective to treat CCI-induced neuropathic pain than vitamins alone, and the antinociceptive effect was greater with co-administration of vit. C+E and gabapentin than with gabapentin alone.
Collapse
Affiliation(s)
- Ana Paula K Riffel
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Jéssica A de Souza
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria do Carmo Q Santos
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andréa Horst
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Taína Scheid
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Kolberg
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wania A Partata
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Salehi Z, Roayaei M. Effect of Vitamin E on Oxaliplatin-induced Peripheral Neuropathy Prevention: A Randomized Controlled Trial. Int J Prev Med 2015; 6:104. [PMID: 26682028 PMCID: PMC4671163 DOI: 10.4103/2008-7802.169021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/22/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Peripheral neuropathy is one of the most important limitations of oxaliplatin base regimen, which is the standard for the treatment of colorectal cancer. Evidence has shown that Vitamin E may be protective in chemotherapy-induced peripheral neuropathy. The aim of this study is to evaluate the effect of Vitamin E administration on prevention of oxaliplatin-induced peripheral neuropathy in patients with colorectal cancer. METHODS This was a prospective randomized, controlled clinical trial. Patients with colorectal cancer and scheduled to receive oxaliplatin-based regimens were enrolled in this study. Enrolled patients were randomized into two groups. The first group received Vitamin E at a dose of 400 mg daily and the second group observed, until after the sixth course of the oxaliplatin regimen. For oxaliplatin-induced peripheral neuropathy assessment, we used the symptom experience diary questionnaire that completed at baseline and after the sixth course of chemotherapy. Only patients with a score of zero at baseline were eligible for this study. RESULTS Thirty-two patients were randomized to the Vitamin E group and 33 to the control group. There was no difference in the mean peripheral neuropathy score changes (after - before) between two groups, after sixth course of the oxaliplatin base regimen (mean difference [after - before] of Vitamin E group = 6.37 ± 2.85, control group = 6.57 ± 2.94; P = 0.78). Peripheral neuropathy scores were significantly increased after intervention compared with a base line in each group (P < 0.001). CONCLUSIONS The results from this current trial demonstrate a lack of benefit for Vitamin E in preventing oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Zeinab Salehi
- Department of Radiotherapy and Oncology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Roayaei
- Department of Radiotherapy and Oncology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
12
|
Donnadieu-Rigole H, Daien V, Blanc D, Michau S, Villain M, Nalpas B, Perney P. The prevalence of optic neuropathy in alcoholic patients--a pilot study. Alcohol Clin Exp Res 2014; 38:2034-8. [PMID: 24961289 DOI: 10.1111/acer.12468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/10/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alcohol has particularly toxic effects on the central and peripheral nervous systems. Optic neuropathy (ON) is one of these neurological complications. Its diagnosis has not been codified, and its prevalence is poorly known. The aim of this pilot study was to assess the prevalence of ON and identify risk factors in a cohort of patients hospitalized for alcohol withdrawal. METHODS This was a single-center prospective study. A complete standardized eye examination was performed during the patient's alcohol withdrawal; The data collected included: sociodemographic status; the number of withdrawals; the type and amount of alcohol drunk, tobacco, and illicit drug consumption; and ophthalmological results. RESULTS One hundred patients were included prospectively from January 2010 to June 2011 (67 men and 33 women) with a mean age of 47 ± 12 and 46 ± 10 years, respectively. The average alcohol consumption was higher for men than women: 207 ± 122 vs. 146 ± 92 g/d, p = 0.013. The most frequent definition of ON in the literature is a decrease in visual acuity associated with impaired color vision. Thirteen percent of men and 3% of women met these criteria. But monocular ON was observed in 22% of men and 18% women, and partial damage was demonstrated in 27% of men and 7% of women. CONCLUSIONS ON is a relatively rare complication of chronic alcohol consumption, but the high prevalence of incomplete forms should prompt screening and early treatment.
Collapse
Affiliation(s)
- Hélène Donnadieu-Rigole
- Department of Internal Medicine and Addiction, Hôpital Saint-Eloi, University Hospital of Montpellier, Montpellier Cedex 5, France; INSERM U844, Montpellier, France; Montpellier University of Medicine (UM1), Rue de l'école de médecine, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Long-term, excessive consumption of alcoholic beverages produces a peripheral neuropathy with symptoms of decreased superficial sensation, hyperalgesia, and weakness. Alcoholic neuropathy is characterized by axonal degeneration with reduced density of both small and large fibers and axonal sprouting. Electrophysiologic studies reveal a marked reduction in the amplitude of sensory potentials and moderate slowing of nerve conduction, mainly in the lower extremities. Dietary deficiency of vitamins, which are often associated with chronic alcoholism, can contribute to the pathogenesis. Recent studies using animal models have identified several mechanisms by which ethanol impacts peripheral nerve function. Ethanol can exert direct neurotoxic effects on peripheral nerves via its metabolite acetaldehyde and by enhancing oxidative stress. Ethanol activation of protein kinase Cε signaling in primary afferent nociceptors plays an important role in lowering nociceptive threshold. Further, ethanol causes cytoskeletal dysfunction and inhibits both anterograde and retrograde axonal transport. Alcoholic neuropathy is potentially reversible and treatments include abstinence from alcoholic beverages and consumption of a nutritionally balanced diet supplemented with B vitamins. However, response to these treatment strategies can be variable, which underscores the need for novel therapeutic strategies. In this review, we provide an overview of the clinical findings and insights on molecular mechanisms from animal models.
Collapse
Affiliation(s)
- Rajani P Maiya
- College of Pharmacy, University of Texas, Austin, TX, USA
| | | |
Collapse
|
14
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
15
|
Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:985093. [PMID: 24527432 PMCID: PMC3914604 DOI: 10.1155/2013/985093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.
Collapse
|