1
|
Sharma A, Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother Res 2024; 38:4406-4423. [PMID: 38986681 DOI: 10.1002/ptr.8285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with an unknown underlying cause. There is no complete cure for IPF; however, two anti-fibrotic agents (Nintedanib and pirfenidone) are approved by the USFDA to extend the patient's life span. Therefore, alternative therapies supporting the survival of fibrotic patients have been studied in recent literature. The abundance of phenolic compounds, particularly flavonoids, has gathered attention due to their potential health benefits. Various flavonoids, like naringin, quercetin, baicalin, baicalein, puerarin, silymarin, and kaempferol, exhibit anti-inflammatory and anti-oxidant properties, which help decrease lung fibrosis. Various databases, including PubMed, EBSCO, ProQuest, and Scopus, as well as particular websites, such as the World Health Organisation and the National Institutes of Health, were used to conduct a literature search. Several mechanisms of action of flavonoids are reported with the help of in vivo and cell line studies emphasizing their ability to modulate oxidative stress, inflammation, and fibrotic processes in the lungs. They are reported for the restoration of biomarkers like hydroxyproline, cytokines, superoxide dismutase, malondialdehyde and others associated with IPF and for modulating various pathways responsible for the progression of pulmonary fibrosis. Yet, flavonoids have some drawbacks, such as poor solubility, challenging drug loading, stability issues, and scarce bioavailability. Therefore, novel formulations of flavonoids are explored, including liposomes, solid lipid microparticles, polymeric nanoparticles, nanogels, and nanocrystals, to enhance the therapeutic efficacy of flavonoids in pulmonary fibrosis. This review focuses on the role of flavonoids in mitigating idiopathic pulmonary fibrosis, their mode of action and novel formulations.
Collapse
Affiliation(s)
- Anju Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Fu LW, Gao Z, Zhang N, Yang N, Long HY, Kong LY, Li XY. Traditional Chinese medicine formulae: A complementary method for the treatment of polycystic ovary syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117698. [PMID: 38171464 DOI: 10.1016/j.jep.2023.117698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a prevalent female endocrine condition that significantly affects women of all age groups and is characterized by metabolic dysfunction. The efficacy of existing pharmaceutical interventions for the treatment of PCOS remains inadequate. With a rich history and cultural significance spanning thousands of years, Traditional Chinese Medicine (TCM) is extensively employed for treating a variety of ailments and can serve as a supplementary therapy for managing PCOS. Multiple clinical observations and laboratory tests have unequivocally demonstrated the substantial effectiveness and safety of TCM formulae in treating PCOS, and further investigations are currently in progress. AIM OF THE STUDY To summarize the TCM formulae commonly employed in the clinical management of PCOS, examine their therapeutic benefits, investigate their mechanism of action, active constituents, and establish the correlation between efficacy, mechanism of action, and active constituents. MATERIALS AND METHODS We conducted a comprehensive search on PubMed, Web of Science, and China national knowledge infrastructure (CNKI) using the following keywords: "Polycystic Ovary Syndrome", "Traditional Chinese Medicine Decoctions", "Traditional Chinese Medicine formulae", "Traditional Chinese Medicine", "Clinical Observation", "Mechanism", "Treatment", "Pharmacology", and various combinations of these terms. From January 1, 2006 until October 7, 2023, (inclusive). RESULTS This paper summarized the clinical effectiveness, mechanism of action, and active components of 8 TCM formulae for the treatment of PCOS. Our research indicates that TCM formulae can potentially treat PCOS by enhancing the levels of hyperandrogenism and other endocrine hormones, decreasing insulin resistance and hyperinsulinemia, and controlling chronic low-grade inflammation, among other modes of action. In addition, we found an association between epigenetics and TCM formulae for the treatment of PCOS. CONCLUSION TCM formulae have specific advantages in the treatment of Polycystic Ovary Syndrome (PCOS). They achieve therapeutic benefits by targeting several pathways and connections, attracting considerable interest and playing a vital role in the treatment of PCOS. TCM formulae can be used as an adjunctive therapy for the treatment of PCOS.
Collapse
Affiliation(s)
- Li-Wen Fu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zu Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ning Zhang
- Department of Reproduction and Genetics, Shandong Province Hospital of Traditional Chinese, Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Nan Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui-Yan Long
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ling-Yuan Kong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiu-Yang Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
The young fruit of Citrus aurantium L. or Citrus sinensis Osbeck as a natural health food: A deep insight into the scientific evidence of its health benefits. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
4
|
Chen SY, Zhou QYJ, Chen L, Liao X, Li R, Xie T. The Aurantii Fructus Immaturus flavonoid extract alleviates inflammation and modulate gut microbiota in DSS-induced colitis mice. Front Nutr 2022; 9:1013899. [PMID: 36276817 PMCID: PMC9581122 DOI: 10.3389/fnut.2022.1013899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing immune-mediated disease that always leads to a progressive loss of intestinal function. Therefore, it is important to find potential therapeutic drugs. This study was conducted to elucidate the effect of Aurantii Fructus immaturus flavonoid extract (AFI, 8% neohesperidin, 10% naringin) on DSS-induced intestinal inflammation and the gut microbiome. To explore the mechanism of action by which AFI protects against intestinal inflammation, a total of 50 mice were randomly divided into 5 groups [CG (control group), MG (model group), AFI low dose, AFI middle dose, and AFI high dose] and received 2.5% DSS for 7 days. Then, mice in the AFI groups were orally administered different doses of AFI for 16 days. The results showed that, compared with the MG group, the food intake and body weight were increased in the AFI groups, but the water intake was lower. Additionally, AFI significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), and colon pathological damage. The levels of IL-6, IL-1β and TNF-α in serum and colon tissue were significantly decreased. The diversity and abundance of the intestinal microbiota in the AFI group were decreased. The relative abundance of Bacteroidota was increased, and the relative abundance of Firmicutes was decreased. AFI plays an important role in alleviating DSS-induced intestinal inflammation and regulating Oscillospira, Prevotellaceae and Lachnospiraceae in the intestine at low, medium and high doses, respectively. This report is a pioneer in the assessment of AFI. This study not only demonstrated the anti-inflammatory activity of AFI but also identified the microbiota regulated by different concentrations of AFI.
Collapse
Affiliation(s)
- Si-Yuan Chen
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Yi-Jun Zhou
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Lin Chen
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xin Liao
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ran Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China,Hunan Yueyang Maternal & Child Health-Care Hospital, Yueyang, China,*Correspondence: Ran Li,
| | - Tao Xie
- Changsha Traditional Chinese Medicine Hospital, Changsha, China,Tao Xie,
| |
Collapse
|
5
|
Iridin abrogates LPS-induced inflammation in L6 skeletal muscle cells by inhibiting NF-κB and MAPK signaling pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4295802. [PMID: 35911155 PMCID: PMC9328972 DOI: 10.1155/2022/4295802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022]
Abstract
Skeletal muscle mass responds rapidly to growth stimuli, precipitating hypertrophies (increased protein synthesis) and hyperplasia (activation of the myogenic program). For ages, muscle degeneration has been attributed to changes in the intracellular myofiber pathways. These pathways are tightly regulated by hormones and lymphokines that ultimately pave the way to decreased anabolism and accelerated protein breakdown. Despite the lacunae in our understanding of specific pathways, growing bodies of evidence suggest that the changes in the myogenic/regenerative program are the major contributing factor in the development and progression of muscle wasting. In addition, inflammation plays a key role in the pathophysiology of diseases linked to the failure of skeletal muscles. Chronic inflammation with elevated levels of inflammatory mediators has been observed in a spectrum of diseases, such as inflammatory myopathies and chronic obstructive pulmonary disease (COPD). Although the pathophysiology of these diseases varies greatly, they all demonstrate sarcopenia and dysregulated skeletal muscle physiology as common symptoms. Medicinal plants harbor potential novel chemical moieties for a plenitude of illnesses, and inflammation is no exception. However, despite the vast number of potential antiinflammatory compounds found in plant extracts and isolated components, the research on medicinal plants is highly daunting. This review aims to explore the various phytoconstituents employed in the treatment of inflammatory responses in skeletal muscles, while providing an in-depth molecular insight into the latter.
Collapse
|
7
|
Kono Y, Miyamoto A, Hiraoka S, Negoro R, Fujita T. Mesenchymal Stem Cells Alter the Inflammatory Response of C2C12 Mouse Skeletal Muscle Cells. Biol Pharm Bull 2020; 43:1785-1791. [DOI: 10.1248/bpb.b20-00536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yusuke Kono
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Akihiro Miyamoto
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Serina Hiraoka
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Takuya Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
- Research Center for Drug Discovery and Development, Ritsumeikan University
| |
Collapse
|
8
|
An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7864269. [PMID: 29854097 PMCID: PMC5954905 DOI: 10.1155/2018/7864269] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/24/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023]
Abstract
Citrus aurantium L. (Rutaceae), commonly known as bitter orange, possesses multiple therapeutic potentials. These biological credentials include anticancer, antianxiety, antiobesity, antibacterial, antioxidant, pesticidal, and antidiabetic activities. The essential oil of C. aurantium was reported to display marked pharmacological effects and great variation in chemical composition depending on growing locations but mostly contained limonene, linalool, and β-myrcene. Phytochemically, C. aurantium is rich in p-synephrine, an alkaloid, and many health-giving secondary metabolites such as flavonoids. Animal studies have demonstrated a low affinity of p-synephrine for adrenergic receptors and an even lower affinity in human models. The present review focuses on the different biological activities of the C. aurantium in animal and human models in the form of extract and its pure secondary metabolites. Finally, it is concluded that both the extract and isolated compounds have no unwanted effects in human at therapeutic doses and, therefore, can confidently be used in various dietary formulations.
Collapse
|
9
|
Yu Y, Bai J, Chen C, Plotto A, Baldwin EA, Gmitter FG. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1124-1131. [PMID: 28731231 DOI: 10.1002/jsfa.8563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). RESULTS Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. CONCLUSIONS The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Jinhe Bai
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, USA
| | - Chunxian Chen
- Southeastern Fruit and Tree Nut Research Laboratory, ARS, USDA, Byron, GA, USA
| | - Anne Plotto
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, USA
| | | | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
10
|
Yuan Z, Luan G, Wang Z, Hao X, Li J, Suo Y, Li G, Wang H. Flavonoids from Potentilla parvifolia
Fisch
. and Their Neuroprotective Effects in Human Neuroblastoma SH-SY5Y Cells in vitro. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Zhenzhen Yuan
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Guangxiang Luan
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Xueyan Hao
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Ji Li
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging; College of Life Sciences; Yantai University; Yantai 264005 P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810008 P. R. China
- State Key Laboratory of Plateau Ecology and Agriculture; Qinghai University; Xining 810008 P. R. China
| |
Collapse
|
11
|
Tan W, Li Y, Wang Y, Zhang Z, Wang T, Zhou Q, Wang X. Anti-coagulative and gastrointestinal motility regulative activities of Fructus Aurantii Immaturus and its effective fractions. Biomed Pharmacother 2017; 90:244-252. [PMID: 28363170 DOI: 10.1016/j.biopha.2017.03.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fructus Aurantii Immaturus (FAI) has been used in the treatment of gastrointestinal disorders (GIDs) in traditional Chinese medicine (TCM) for thousands of years, which also has been found to have effects on cardiovascular diseases (CVDs) in recent years. The current study aimed at investigating the anti-coagulative and gastrointestinal motility regulative activities of different fractions isolated from FAI, which may have both effects on gastrointestinal and cardiovascular systems, in the manners of network pharmacology analysis and experiments in vivo and in vitro. METHODS We obtained water decoction, volatile oils, alkaloids and flavonoids from FAI, which were identified by gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). Network pharmacological analysis was used to explore the relationship between the various types of chemical constituents, gene target and biological pathways of FAI. Then, the effective fractions in terms of anti-coagulative and gastrointestinal motility regulative activities were investigated by the experiment of rabbit intestinal smooth muscles contraction, mice small intestine propulsion rate and blood-clotting time, and verified by the blood stasis model. RESULTS From the Network pharmacological analysis, the flavonoids were predicted to be the main active ingredients on gastrointestinal and cardiovascular systems. Experimental results also showed that flavonoids could significantly increase the small intestine propulsion rate and extend the blood-clotting time of mice. The Flavonoids could alleviate the increased fractional shortening (FS), left ventricular outflow, hematocrit and fibrinogen, and ameliorate the pathological changes of myocardial tissues caused by blood stasis. CONCLUSION These findings indicated that flavonoids in FAI might be the main effective fractions on gastrointestinal motility and anti-coagulation.
Collapse
Affiliation(s)
- Wangxiao Tan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ye Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yu Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhaojian Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Qian Zhou
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
12
|
|
13
|
A Systematic Review on the Effects of Botanicals on Skeletal Muscle Health in Order to Prevent Sarcopenia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5970367. [PMID: 27051451 PMCID: PMC4804074 DOI: 10.1155/2016/5970367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
We performed a systematic review to evaluate the evidence-based medicine regarding the main botanical extracts and their nutraceutical compounds correlated to skeletal muscle health in order to identify novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function and to improve the quality of life of older subjects. This review contains all eligible studies from 2010 to 2015 and included 57 publications. We focused our attention on effects of botanical extracts on growth and health of muscle and divided these effects into five categories: anti-inflammation, muscle damage prevention, antifatigue, muscle atrophy prevention, and muscle regeneration and differentiation.
Collapse
|
14
|
Tsai HC, Li YC, Young TH, Chen MH. Citrus polyphenol for oral wound healing in oral ulcers and periodontal diseases. J Formos Med Assoc 2016; 115:100-7. [DOI: 10.1016/j.jfma.2015.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/08/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
|
15
|
BQ123 Stimulates Skeletal Muscle Antioxidant Defense via Nrf2 Activation in LPS-Treated Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2356853. [PMID: 26823945 PMCID: PMC4707360 DOI: 10.1155/2016/2356853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/24/2015] [Accepted: 10/11/2015] [Indexed: 01/02/2023]
Abstract
Little is understood of skeletal muscle tissue in terms of oxidative stress and inflammation. Endothelin-1 is an endogenous, vasoconstrictive peptide which can induce overproduction of reactive oxygen species and proinflammatory cytokines. The aim of this study was to evaluate whether BQ123, an endothelin-A receptor antagonist, influences the level of TNF-α, IL-6, SOD-1, HO-1, Nrf2 mRNA, and NF-κB subunit RelA/p65 mRNA in the femoral muscle obtained from endotoxemic rats. Male Wistar rats were divided into 4 groups (n = 6) and received iv (1) saline (control), (2) LPS (15 mg/kg), (3) BQ123 (1 mg/kg), (4) BQ123 (1 mg/kg), and LPS (15 mg/kg, resp.) 30 min later. Injection of LPS led to significant increase in levels of RelA/p65 mRNA, TNF-α, and IL-6, while content of SOD-1, HO-1, and Nrf2 mRNA was unchanged. Administration of BQ123 prior to LPS challenge resulted in a significant reduction in RelA/p65 mRNA, TNF-α, and IL-6 levels, as well as markedly elevated concentrations of SOD-1, HO-1, and Nrf2 mRNA. BQ123 appears to enhance antioxidant defense and prevent production of TNF-α and IL-6 in skeletal muscle of LPS-treated rat. In conclusion, endothelin-A receptor antagonism exerts significant impact on the skeletal muscle favouring anti-inflammatory effects and protection against oxidative stress.
Collapse
|
16
|
Flavonoids isolated from Citrus platymamma induce mitochondrial-dependent apoptosis in AGS cells by modulation of the PI3K/AKT and MAPK pathways. Oncol Rep 2015; 34:1517-25. [PMID: 26165353 DOI: 10.3892/or.2015.4122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/03/2015] [Indexed: 11/05/2022] Open
Abstract
Citrus platymamma hort. ex Tanaka (Rutaceae family) has been widely used in Korean folk medicine for its wide range of medicinal benefits including an anticancer effect. In the present study, we aimed to investigate the molecular mechanism of the anticancer effects of flavonoids isolated from Citrus platymamma (FCP) on AGS cells. FCP treatment significantly inhibited AGS cell growth in a dose‑dependent manner. Furthermore, FCP significantly increased the percentage of cells in the sub-G1 phase (apoptotic cell population), and apoptosis was confirmed by Annexin V double staining. Chromatin condensation and apoptotic bodies were also noted in the FCP-treated AGS cells. Moreover, immunoblotting results showed that FCP treatment significantly decreased the expression of procaspase-3, -6, -8 and -9, and PARP and increased cleaved caspase-3, cleaved PARP and the Bax/Bcl-xL ratio in a dose-dependent manner. In addition, the phosphorylation of AKT was significantly decreased, whereas extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) were significantly increased in the FCP-treated AGS cells. Taken together, the cell death of AGS cells in response to FCP was mitochondrial-dependent via modulation of the PI3K/AKT and MAPK pathways. These findings provide new insight for understanding the mechanism of the anticancer effects of FCP. Thus, FCP may be a potential chemotherapeutic agent for the treatment of gastric cancer.
Collapse
|
17
|
Kim C, Kim D, Nam D, Chung WS, Ahn KS, Kim SH, Choi SH, Shim BS, Cho SK, Ahn KS. Anti-metastatic effect of supercritical extracts from the Citrus hassaku pericarp via inhibition of C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinase-9 (MMP-9). Phytother Res 2014; 28:1374-82. [PMID: 24638915 DOI: 10.1002/ptr.5140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 11/08/2022]
Abstract
The fruit of hassaku (Citrus hassaku Hort. ex Tanaka) is locally known as phalsak in Korea. Recently, the fruit extract has been known to exhibit in vivo preventive effects against UVB-induced pigmentation, antiallergic activity, and enhancement of blood fluidity. However, the exact mechanisms of how supercritical extracts of phalsak peel (SEPS) inhibits tumor metastasis and invasion are still not fully understood. We found that SEPS could downregulate the constitutive expression of both CXCR4 and HER2 in human breast cancer MDA-MB-231 cells as compared with other cells. SEPS also suppressed matrix metalloproteinase-9 (MMP-9) expression and its enzymatic activity under non-cytotoxic concentrations. Neither proteasome inhibition nor lysosomal stabilization had any effect on the SEPS-induced decrease in CXCR4 expression. A detailed study of the underlying molecular mechanisms revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression, suppression of NF-κB activity, and inhibition of chromatin immunoprecipitation activity. Suppression of CXCR4 expression by SEPS correlated with the inhibition of CXCL12-stimulated invasion of MDA-MB-231 cells. Overall, our results indicate, for the first time, that SEPS can suppress CXCR4 and MMP-9 expressions through blockade of NF-κB activation and thus has the potential to suppress metastasis of breast cancer.
Collapse
Affiliation(s)
- Chulwon Kim
- College of Korean Medicine and Institute of Korean Medicine, Kyung Hee University, 1 Hoegidong Dongdaemungu, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim JA, Park HS, Park KI, Hong GE, Nagappan A, Zhang J, Han DY, Shin SC, Won CG, Kim EH, Kim GS. Proteome Analysis of the Anti-inflammatory Response of Flavonoids Isolated from Korean Citrus aurantium L. in Lipopolysaccharide-Induced L6 Rat Skeletal Muscle Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:901-12. [DOI: 10.1142/s0192415x13500602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skeletal muscle is an important organ in our body and a dynamic composite of proteins. Citrus aurantium L. has been widely used in oriental medicine in Eastern Asia for a long time. It contains over 100 bioactive compounds and flavonoids that regulate the inflammatory response and tumorigenesis, through various mechanisms. In the present study, we investigated changes in the protein pattern using two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF/MS) to assess the anti-inflammatory effect of flavonoids isolated from Korean C. aurantium L. in lipopolysaccharide (LPS)-induced L6 cells. L6 skeletal muscle cells were pretreated with flavonoids for 1 h and stimulated with LPS for 24 h. Proteins from the L6 cells of the control, LPS treated and flavonoid treated groups were extracted and resolved by 2-DE using pH 4–7 IPG strips loaded with 150 μg of protein. Forty-one differentially expressed protein spots were identified (more than two-fold was considered significant, p < 0.05), and 18 were detected by MALDI-TOF/MS. These results suggest that proteomics can be used to identify changes in the expression of marker proteins and the anti-inflammatory effect of flavonoids isolated from Korean C. aurantium L.
Collapse
Affiliation(s)
- Jin-A Kim
- Korea National Animal Research Resource Center, Korea National Animal Bio-Resource Bank, Research Institute of Life Science, Gazwa, Jinju, Republic of Korea
| | - Hyeon-Soo Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic of Korea
| | - Kwang-Il Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic of Korea
| | - Gyeong-Eun Hong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic of Korea
| | - Arulkumar Nagappan
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic of Korea
| | - Jue Zhang
- Key Laboratory of Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Dae-Yong Han
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sung-Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chung-Gil Won
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic of Korea
| | - Eun-Hee Kim
- Department of Nursing Science, International University of Korea, Sangmoon, Jinju, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic of Korea
| |
Collapse
|
19
|
Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. Novel Insights into the Pharmacology of Flavonoids. Phytother Res 2013; 27:1588-96. [DOI: 10.1002/ptr.5023] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Barbara Romano
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Ester Pagano
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Vittorino Montanaro
- Department of Pharmacy; University of Naples Federico II; via Pansini 5 80131 Naples Italy
| | - Alfonso L. Fortunato
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Natasa Milic
- Department of Pharmacy; Faculty of Medicine, University of Novi Sad; Hajduk Veljkova, 3 21000 Novi Sad Serbia
| | - Francesca Borrelli
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| |
Collapse
|
20
|
Clinical Study to Assess the Efficacy and Safety of a Citrus Polyphenolic Extract of Red Orange, Grapefruit, and Orange (Sinetrol-XPur) on Weight Management and Metabolic Parameters in Healthy Overweight Individuals. Phytother Res 2013; 28:212-8. [DOI: 10.1002/ptr.4981] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 11/07/2022]
|