1
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024; 61:10747-10769. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
2
|
Li Z, Tang Y, Wang L, Wang K, Huang S, Chen Y. Tetrahedral framework nucleic acids-based delivery of microRNA-155 alleviates intervertebral disc degeneration through targeting Bcl-2/Bax apoptosis pathway. Cell Prolif 2024; 57:e13689. [PMID: 38899529 PMCID: PMC11533059 DOI: 10.1111/cpr.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is one of the most common causes of chronic low back pain, which does great harm to patients' life quality. At present, the existing treatment options are mostly aimed at relieving symptoms, but the long-term efficacy is not ideal. Tetrahedral framework nucleic acids (tFNAs) are regarded as a type of nanomaterial with excellent biosafety and prominent performance in anti-apoptosis and anti-inflammation. MicroRNA155 is a non-coding RNA involved in various biological processes such as cell proliferation and apoptosis. In this study, a complex named TR155 was designed and synthesised with microRNA155 attached to the vertex of tFNAs, and its effects on the nucleus pulposus cells of intervertebral discs were evaluated both in vitro and in vivo. The experimental results showed that TR155 was able to alleviate the degeneration of intervertebral disc tissue and inhibit nucleus pulposus cell apoptosis via Bcl-2/Bax pathway, indicating its potential to be a promising option for the treatment of IDD.
Collapse
Affiliation(s)
- Zhuhai Li
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Department of Spine SurgeryThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yuanlin Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Lihang Wang
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
- Department of Spine SurgeryBeijing Jishuitan Hospital Guizhou HospitalGuiyangChina
| | - Kai Wang
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research InstituteWest China Hospital, Sichuan UniversityChengduChina
| | - Yu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Zhang N, Guo P, Zhao Y, Qiu X, Shao S, Liu Z, Gao Z. Pharmacological mechanisms of puerarin in the treatment of Parkinson's disease: An overview. Biomed Pharmacother 2024; 177:117101. [PMID: 39002442 DOI: 10.1016/j.biopha.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Puerarin, a monomer of traditional Chinese medicine, is a key component of Pueraria radix. Both clinical and experimental researches demonstrated that puerarin has therapeutic effects on Parkinson's disease (PD). Puerarin's pharmacological mechanisms include: 1) Anti-apoptosis. Puerarin inhibits cell apoptosis through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. Puerarin also exerts a hormone-like effect against cell apoptosis; 2) Anti-oxidative stress injury. Puerarin inhibits the Nrf2 nuclear exclusion through the GSK-3β/Fyn pathway to promote the Nrf2 accumulation in the nucleus, and then promotes the antioxidant synthesis through the Nrf2/ARE signaling pathway to protect against oxidative stress; 3) Neuroprotective effects by intervening in the ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP). Puerarin significantly enhances the activity of chaperone-mediated autophagy (CMA), which downregulates the expression of α-synuclein, reduces its accumulation, and thus improves the function of damaged neurons. Additionally, puerarin increases proteasome activity and decreases ubiquitin-binding proteins, thereby preventing toxic accumulation of intracellular proteins; 4) Alleviating inflammatory response. Puerarin inhibits the conversion of microglia to the M1 phenotype while inducing the transition of microglia to the M2 phenotype. Furthermore, puerarin promotes the secretion of anti-inflammatory factor and inhibits the expression of pro-inflammatory factors; 5) Increasing the levels of dopamine and its metabolites. Puerarin could increase the levels of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum; 6) Promoting neurotrophic factor expression and neuronal repair. Puerarin increases the expression of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), thereby exerting a neuroprotective effect. Moreover, the regulation of the gut microbiota by puerarin may be a potential mechanism for the treatment of PD. The current review discusses the molecular mechanisms of puerarin, which may provide insight into the active components of traditional Chinese medicine in the treatment of PD.
Collapse
Affiliation(s)
- Nianping Zhang
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Peng Guo
- Department of Neurology, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Yan Zhao
- Department of Hand and Upper Limb Surgery, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Xiao Qiu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Shuai Shao
- Department of reproductive medicine, Jingmen People's Hospital, Jingmen, Hubei 448000, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zong Gao
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China.
| |
Collapse
|
5
|
Cao H, Tian Q, Chu L, Gao Q. Effects of polyphenol on motor function in mice with Parkinson's disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024; 65:2859-2879. [PMID: 40346822 DOI: 10.1080/10408398.2024.2352541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Polyphenols have been reported to have a multi-targeted neuroprotective effect on Parkinson's disease (PD). However, there has been no comprehensive analysis of the effect of polyphenol therapy on improving motor symptoms in PD. We used keywords to search the electronic databases PubMed, Scopus, EBSCO, SpringerLink, China National Knowledge Infrastructure (CNKI), Wan Fang and Web of Science from the establishment of the database to April 2023. A randomized effects model systematic review and meta-analysis of 83 included studies were conducted to investigate the ameliorative effects of polyphenols on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in a rodent model of PD. The results showed that compared with PD control group, polyphenols significantly improved balance, exploration, vertical crawling, horizontal crawling, muscle strength and sensorimotor function motor dysfunction of rodents. Subgroup analysis showed that the types of polyphenols had different recovery effects on motor symptoms of PD. Oral polyphenol intervention was superior to intraperitoneal and intravenous administration. This meta-analysis provides comprehensive evidence for the prevention or treatment of Parkinson's motor symptoms with polyphenols and expands the idea of future clinical application of polyphenols.
Collapse
Affiliation(s)
- Hongdou Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwen Chu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
7
|
Lotfi MS, Kalalinia F. Flavonoids in Combination with Stem Cells for the Treatment of Neurological Disorders. Neurochem Res 2023; 48:3270-3282. [PMID: 37462837 DOI: 10.1007/s11064-023-03986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 09/22/2023]
Abstract
Neurological disorders are the leading cause of disability and the world's second leading cause of death. Despite the availability of significant knowledge to reduce the burden of some neurological disorders, various studies are exploring more effective treatment options. While the human body can repair and regenerate damaged tissue through stem cell recruitment, nerve regeneration in case of injury is minimal due to the restriction on the location of nerve stem cells. Recently, different types of stem cells extracted from various tissues have been used in combination with natural stimuli to treat neurologic disorders in neuronal tissue engineering. Flavonoids are polyphenolic compounds that can induce the differentiation of stem cells into neurons and stimulate stem cell proliferation, migration, and survival. They can also increase the secretion of nutritional factors from stem cells. In addition to the effects that flavonoids can have on stem cells, they can also have beneficial therapeutic effects on the nervous system alone. Therefore, the simultaneous use of these compounds and stem cells can multiply the therapeutic effect. In this review, we first introduce flavonoid compounds and provide background information on stem cells. We then compile available reports on the effects of flavonoids on stem cells for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Mohammad Sadegh Lotfi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Vakilabad Blvd, Pardis University Campus, Mashhad, 91886 17871, Iran.
| |
Collapse
|
8
|
Long Z, Xiang W, He Q, Xiao W, Wei H, Li H, Guo H, Chen Y, Yuan M, Yuan X, Zeng L, Yang K, Deng Y, Huang Z. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: A systematic review and meta-analysis of 47 randomized controlled trials. Front Immunol 2023; 14:1024120. [PMID: 37033930 PMCID: PMC10073448 DOI: 10.3389/fimmu.2023.1024120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/27/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wei Xiao
- The First People's Hospital of Changde City, Changde, China
| | - Huagen Wei
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hao Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Xiao Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhen Huang
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
9
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
10
|
Pharmacological Modulations of Nrf2 and Therapeutic Implications in Aneurysmal Subarachnoid Hemorrhage. Molecules 2023; 28:molecules28041747. [PMID: 36838735 PMCID: PMC9963186 DOI: 10.3390/molecules28041747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
An aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of stroke with high morbidity and mortality. The main causes of a poor prognosis include early brain injury (EBI) and delayed vasospasm, both of which play a significant role in the pathophysiological process. As an important mechanism of EBI and delayed vasospasm, oxidative stress plays an important role in the pathogenesis of aSAH by producing reactive oxygen species (ROS) through the mitochondria, hemoglobin, or enzymatic pathways in the early stages of aSAH. As a result, antioxidant therapy, which primarily targets the Nrf2-related pathway, can be employed as a potential strategy for treating aSAH. In the early stages of aSAH development, increasing the expression of antioxidant enzymes and detoxifying enzymes can relieve oxidative stress, reduce brain damage, and improve prognosis. Herein, the regulatory mechanisms of Nrf2 and related pharmacological compounds are reviewed, and Nrf2-targeted drugs are proposed as potential treatments for aSAH.
Collapse
|
11
|
Rodrigues-Costa M, Fernandes MSDS, Jurema-Santos GC, Gonçalves LVDP, Andrade-da-Costa BLDS. Nutrigenomics in Parkinson's disease: diversity of modulatory actions of polyphenols on epigenetic effects induced by toxins. Nutr Neurosci 2023; 26:72-84. [PMID: 36625764 DOI: 10.1080/1028415x.2021.2017662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the pathogenesis of Parkinson's Disease (PD) is not completely understood, there is a consensus that it can be caused by multifactorial mechanisms involving genetic susceptibility, epigenetic modifications induced by toxins and mitochondrial dysfunction. In the past 20 years, great efforts have been made in order to clarify molecular mechanisms that are risk factors for this disease, as well as to identify bioactive agents for prevention and slowing down of its progression. Nutraceutical products have received substantial interest due to their nutritional, safe and therapeutic effects on several chronic diseases. The aim of this review was to gather the main evidence of the epigenetic mechanisms involved in the neuroprotective effects of phenolic compounds currently under investigation for the treatment of toxin-induced PD. These studies confirm that the neuroprotective actions of polyphenols involve complex epigenetic modulations, demonstrating that the intake of these natural compounds can be a promising, low-cost, pharmacogenomic strategy against the development of PD.
Collapse
Affiliation(s)
- Moara Rodrigues-Costa
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Matheus Santos de Sousa Fernandes
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Educação Física, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Belmira Lara da Silveira Andrade-da-Costa
- Programa de Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
12
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Wang Q, Shen ZN, Zhang SJ, Sun Y, Zheng FJ, Li YH. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front Pharmacol 2022; 13:1022053. [PMID: 36353499 PMCID: PMC9637631 DOI: 10.3389/fphar.2022.1022053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023] Open
Abstract
Neurological diseases impose a tremendous and increasing burden on global health, and there is currently no curative agent. Puerarin, a natural isoflavone extracted from the dried root of Pueraria montana var. Lobata (Willd.) Sanjappa and Predeep, is an active ingredient with anti-inflammatory, antioxidant, anti-apoptotic, and autophagy-regulating effects. It has great potential in the treatment of neurological and other diseases. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/Akt) signal pathway is a crucial signal transduction mechanism that regulates biological processes such as cell regeneration, apoptosis, and cognitive memory in the central nervous system, and is closely related to the pathogenesis of nervous system diseases. Accumulating evidence suggests that the excellent neuroprotective effect of puerarin may be related to the regulation of the PI3K/Akt signal pathway. Here, we summarized the main biological functions and neuroprotective effects of puerarin via activating PI3K/Akt signal pathway in neurological diseases. This paper illustrates that puerarin, as a neuroprotective agent, can protect nerve cells and delay the progression of neurological diseases through the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Hang Li
- *Correspondence: Feng-Jie Zheng, ; Yu-Hang Li,
| |
Collapse
|
14
|
Huang Y, Wu H, Hu Y, Zhou C, Wu J, Wu Y, Wang H, Lenahan C, Huang L, Nie S, Gao X, Sun J. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxidants (Basel) 2022; 11:antiox11071259. [PMID: 35883750 PMCID: PMC9312059 DOI: 10.3390/antiox11071259] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Puerarin was shown to exert anti-oxidative and anti-ferroptosis effects in multiple diseases. The goal of this study was to explore the neuroprotective effect of puerarin on early brain injury (EBI) after subarachnoid hemorrhage (SAH) in rats. A total of 177 adult male Sprague Dawley rats were used. SAH was included via endovascular perforation. Intranasal puerarin or intracerebroventricular dorsomorphin (AMPK inhibitor) and SR18292 (PGC1α inhibitor) were administered. The protein levels of pAMPK, PGC1α, Nrf2, 4HNE, HO1, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere were significantly increased, whereas SOD, GPX4, and GSH were decreased at 24 h after SAH. Moreover, puerarin treatment significantly increased the protein levels of pAMPK, PGC1α, Nrf2, HO1, SOD, GPX4, and GSH, but decreased the levels of 4HNE, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere at 24 h after SAH. Dorsomorphin or SR18292 partially abolished the beneficial effects of puerarin exerted on neurological dysfunction, oxidative stress injury, and ferroptosis. In conclusion, puerarin improved neurobehavioral impairments and attenuated oxidative-stress-induced brain ferroptosis after SAH in rats. The neuroprotection acted through the activation of the AMPK/PGC1α/Nrf2-signaling pathway. Thus, puerarin may serve as new therapeutics against EBI in SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Honggang Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Neurosurgery, People’s Hospital of Leshan, Leshan 614099, China
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Jiawei Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, USA;
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| |
Collapse
|
15
|
Wen S, Wang L, Wang T, Xu M, Zhang W, Song R, Zou H, Gu J, Bian J, Yuan Y, Liu Z. Puerarin alleviates cadmium-induced mitochondrial mass decrease by inhibiting PINK1-Parkin and Nix-mediated mitophagy in rat cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113127. [PMID: 34979308 DOI: 10.1016/j.ecoenv.2021.113127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) has well-known central nervous system toxicity, and mitochondria are direct targets of Cd-induced neuronal toxicity. However, how Cd induces mitochondrial mass decrease in terms of its neurotoxic effects remains unknown. Puerarin, an isoflavone extracted from kudzu root, can cross the blood-brain barrier and exert protective effects in nervous system disease. The purpose of the study was to determine the mechanism of Cd-induced mitochondrial mass decrease and the protective role of puerarin in rat cortical neurons. The results indicated that Cd induced mitochondrial mass decrease by activating mitophagy mediated by the PTEN-induced putative kinase protein 1 (PINK1)-E3 ubiquitin ligase (Parkin) and Nip3-like protein X (Nix) pathways in rat cortical neurons. Puerarin improved the Cd-induced decrease in mitochondrial membrane potential (MMP) in vitro, and blocked PINK1-Parkin and Nix-mediated mitophagy, inhibiting Cd-induced mitochondrial mass decrease in rat cortical neurons in vitro and in vivo. In summary, our data clearly indicated that puerarin protects rat cortical neurons against Cd-induced neurotoxicity by ameliorating mitochondrial damage, inhibiting mitophagy-mediated mitochondrial mass decrease. Puerarin appears to have great potential as a neuroprotective agent.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Yu CC, Du YJ, Li J, Li Y, Wang L, Kong LH, Zhang YW. Neuroprotective Mechanisms of Puerarin in Central Nervous System Diseases: Update. Aging Dis 2022; 13:1092-1105. [PMID: 35855345 PMCID: PMC9286922 DOI: 10.14336/ad.2021.1205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022] Open
Abstract
Due to global population aging and modern lifestyle changes, the incidence of central nervous system (CNS) disorders, such as neurodegenerative diseases, neuropsychiatric disorders, and cerebrovascular diseases, is increasing and has become a major public health challenge. Current medications commonly used in the clinic are far from satisfactory and may cause serious side effects. Therefore, the identification of novel drugs for the effective management of CNS diseases is very urgent. Puerarin, a highly bioactive ingredient isolated from Pueraria lobata, is known to possess a broad spectrum of pharmacological properties including anti-diabetic, anti-inflammatory, anti-antioxidant, neuroprotective, and cardioprotective features. However, its clinical application is limited due to its poor water solubility. Since puerarin has demonstrated a wide range of neuroprotective functions in various CNS diseases, such as Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and spinal cord injury, it has been attracting increasingly intense attention worldwide. In this review, we intend to extensively summarize the research progress on neuroprotective mechanisms of puerarin in recent years and discuss the future directions of its application in CNS disease treatment.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Jin Li
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Correspondence should be addressed to: Dr. Ying-Wen Zhang, Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China. E-mail:
| |
Collapse
|
17
|
Chen FX, Wan Q, Li QL, Fang J, Peng L, Hu J. Substance P prevents doxorubicin‑induced cardiomyocyte injury by regulating apoptosis and autophagy: In vitro and in vivo evidence. Mol Med Rep 2021; 25:50. [PMID: 34913064 PMCID: PMC8711026 DOI: 10.3892/mmr.2021.12566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/08/2021] [Indexed: 11/06/2022] Open
Abstract
The function of substance P (SP) in myocardial ischemia is well understood, but its effects on congestive heart failure are unclear. The present study aimed to use in vitro and in vivo approaches to investigate the effects of SP on doxorubicin‑induced cardiomyocyte injury. Pathological changes, apoptosis, cardiomyocyte ultrastructure and molecular mechanisms were evaluated in vitro and in vivo. The effects of SP on cell viability of H9c2 myocardial cells were evaluated using the Cell Counting Kit‑8 and flow cytometry. B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), Beclin‑1 and microtubule‑associated protein 1A/1B‑light chain 3 (LC3) were detected by western blotting. Heart failure in rats was established by intraperitoneal injection of doxorubicin. The in vitro data demonstrated that SP at concentrations of 1 µg/ml inhibited doxorubicin‑induced apoptosis of H9c2 cells. Administration of doxorubicin reduced Bcl‑2, Beclin‑1 and LC3 expression levels in H9c2 cells, while having no effect on Bax levels. Administration of SP to these doxorubicin‑treated cells did not affect Bcl‑2 or Bax expression, but further reduced Beclin‑1 while inhibiting the reduction in LC3 expression. In vivo, food intake was significantly increased in rats in the SP group compared with the model group. Cardiomyocytes in the heart‑failure group underwent dysfunctional autophagy as ascertained by transmission electron microscopy. Compared with the heart‑failure group, these pathological changes, including loss of striations and vacuolation, were inhibited by SP treatment, which promoted Bax expression, reduced Beclin‑1 expression and inhibited the reduction in LC3 expression. Taken together, SP reduced cardiomyocyte apoptosis in doxorubicin‑induced cardiomyocyte injury, likely by promoting autophagy, which suggested that SP is a potential therapeutic target for doxorubicin‑induced heart failure.
Collapse
Affiliation(s)
- Fa-Xiu Chen
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qin Wan
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing-Ling Li
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Fang
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Le Peng
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Hu
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021; 15:717008. [PMID: 34720898 PMCID: PMC8554240 DOI: 10.3389/fnbeh.2021.717008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia triggers vascular dementia (VD), which is characterized by memory loss, cognitive deficits, and vascular injury in the brain. Puerarin (Pur) represents the major isoflavone glycoside of Radix Puerariae, with verified neuroprotective activity and cardiovascular protective effects. However, whether Pur ameliorates cognitive impairment and vascular injury in rats with permanent occlusion of bilateral common carotid arteries (BCCAO) remains unknown. This work aimed to assess Pur's effects on BCCAO-induced VD and to dissect the underlying mechanisms, especially examining the function of transient receptor potential melastatin-related 2 (TRPM2) in alleviating cognitive deficits and vascular injuries. Rats with BCCAO developed VD. Pur (50, 100, and 150 mg/kg) dose-dependently attenuated the pathological changes, increased synaptic structural plasticity in the dorsal CA1 hippocampal region and decreased oxidative stress, which eventually reduced cognitive impairment and vascular injury in BCCAO rats. Notably, Pur-improved neuronal cell loss, synaptic structural plasticity, and endothelial vasorelaxation function might be mediated by the reactive oxygen species (ROS)-dependent TRPM2/NMDAR pathway, evidenced by decreased levels of ROS, malondialdehyde (MDA), Bax, Bax/Bcl2, and TRPM2, and increased levels of superoxide dismutase (SOD), Bcl2, and NR2A. In conclusion, Pur has therapeutic potential for VD, alleviating neuronal cell apoptosis and vascular injury, which may be related to the ROS-dependent TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Zeqing Wu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guangrui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuangxi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| |
Collapse
|
19
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
20
|
Zeng J, Zheng S, Chen Y, Qu Y, Xie J, Hong E, Lv H, Ding R, Feng L, Xie Z. Puerarin attenuates intracerebral hemorrhage-induced early brain injury possibly by PI3K/Akt signal activation-mediated suppression of NF-κB pathway. J Cell Mol Med 2021; 25:7809-7824. [PMID: 34180121 PMCID: PMC8358853 DOI: 10.1111/jcmm.16679] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) can induce intensively oxidative stress, neuroinflammation, and brain cell apoptosis. However, currently, there is no highly effective treatment available. Puerarin (PUE) possesses excellent neuroprotective effects by suppressing the NF‐κB pathway and activating the PI3K/Akt signal, but its role and related mechanisms in ICH‐induced early brain injury (EBI) remain unclear. In this study, we intended to observe the effects of PUE and molecular mechanisms on ICH‐induced EBI. ICH was induced in rats by collagenase IV injection. PUE was intraperitoneally administrated alone or with simultaneously intracerebroventricular injection of LY294002 (a specific inhibitor of the PI3K/Akt signal). Neurological deficiency, histological impairment, brain edema, hematoma volume, blood–brain barrier destruction, and brain cell apoptosis were evaluated. Western blot, immunohistochemistry staining, reactive oxygen species (ROS) measurement, and enzyme‐linked immunosorbent assay were performed. PUE administration at 50 mg/kg and 100 mg/kg could significantly reduce ICH‐induced neurological deficits and EBI. Moreover, PUE could notably restrain ICH‐induced upregulation of the NF‐κB pathway, pro‐inflammatory cytokines, ROS level, and apoptotic pathway and activate the PI3K/Akt signal. However, LY294002 delivery could efficaciously weaken these neuroprotective effects of PUE. Overall, PUE could attenuate ICH‐induced behavioral defects and EBI possibly by PI3K/Akt signal stimulation‐mediated inhibition of the NF‐κB pathway, and this made PUE a potential candidate as a promising therapeutic option for ICH‐induced EBI.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huashan Hospital, Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shizhong Zheng
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yizhao Chen
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayu Xie
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Hongzhu Lv
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Rui Ding
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Feng
- Department of Neurosurgery, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Zhichong Xie
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Zheng Y, Zeng JT, Wang XY, Huang HX, Huang LX, Zeng CQ. Advanced oxidation protein products trigger apoptosis and block epithelial-to-mesenchymal transition in crypt epithelial cells. Exp Ther Med 2021; 22:885. [PMID: 34194563 DOI: 10.3892/etm.2021.10317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/22/2020] [Indexed: 11/06/2022] Open
Abstract
Advanced oxidation protein products (AOPPs) are uremic toxins. The present study aimed to investigate the effects of AOPPs on the epithelial mesenchymal transition (EMT) and apoptosis of rat crypt epithelial cells, and to assess the signaling pathways involved. The oxidized rat serum albumin was obtained by sodium hypochlorite modification as AOPPs, and the rat serum albumin (RSA) without sodium hypochlorite modification was set as the control. Different concentrations of AOPPs or RSA were incubated with rat crypt epithelial cells (IEC-6 cells). After culturing for 48 and 72 h, apoptosis was detected by flow cytometry. IEC-6 cells were divided into three groups: A normal group, an AOPPs group and an RSA group. Three groups of cells were collected following treatment for 2 h, and the phosphorylation levels of Akt and p65 NF-κB were detected by western blotting. After 72 h of treatment, the cells were collected and the apoptotic rate was detected by flow cytometry. The expression of EMT-related proteins was detected by reverse transcription-quantitative polymerase chain reaction and western blotting. The apoptotic rate of IEC-6 cells increased with the concentration of AOPPs, and the apoptotic rate of the AOPPs group was higher than that of the RSA group. The expression of fibronectin, snail, slug and collagen I in the AOPPs group was lower than that in the RSA group, while the expression of E-cadherin was not significantly different between the two groups. In addition, the expression of fibronectin, snail, slug and collagen I genes in the AOPPs-treated group was equal to or lower than that in the normal group. Compared with the normal group, the Akt phosphorylation level was decreased and the p65 phosphorylation level was increased in the AOPPs- or RSA-treated groups. Compared with the AOPPs-treated group, Akt and p65 phosphorylation levels in RSA-treated group were slightly higher. In conclusion, AOPPs trigger apoptosis and inhibit the EMT of rat crypt epithelial cells, which may be associated with the inhibition of Akt phosphorylation and the promotion of p65 phosphorylation.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jin-Tao Zeng
- Basic Medical College, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiang-Yu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hai-Xiao Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Liang-Xiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Chang-Qing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
22
|
Xiong S, Luo J, Wang Q, Li Z, Li J, Liu Q, Gao L, Fang S, Li Y, Pan H, Wang H, Zhang Y, Wang Q, Chen X, Chen T. Targeted graphene oxide for drug delivery as a therapeutic nanoplatform against Parkinson's disease. Biomater Sci 2021; 9:1705-1715. [PMID: 33427264 DOI: 10.1039/d0bm01765e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has been an exponential increase in the rate of incidence of Parkinson's disease (PD) with aging in the global population. PD, the second most common neurodegenerative disorder, results from damaged dopamine neurons in the substantia nigra pars compacta (SNpc), along with the deposition of abnormal α-synuclein (α-Syn), and the progressive degeneration of neurons in striatal regions. Despite extensive investigations to understand the pathophysiology of PD to develop effective therapies to restrict its progression, there is currently no cure for PD. Puerarin (Pue) is a natural compound with remarkable anti-PD properties. However, its poor pharmacological properties, including poor water solubility, inadequate bioavailability, and incomplete penetration of the blood-brain barrier (BBB) have restricted its use for the treatment of PD. Nevertheless, advancements in nanotechnology have revealed the potential advantages of targeted drug delivery into the brain to treat PD. Here, we used Pue-loaded graphene oxide (GO) nanosheets, which have an excellent drug-loading ability, modifiable surface functional groups, and good biocompatibility. Then, Pue was transported across the BBB into the brain using lactoferrin (Lf) as the targeting ligand, which could bind to the vascular endothelial receptor on the BBB. In vivo and in vitro results indicated that this multifunctional brain targeted drug delivery system (Lf-GO-Pue) was an effective and safe therapy for PD.
Collapse
Affiliation(s)
- Sha Xiong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhongjun Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
| | - Juntong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Hong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yongbin Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
23
|
Lu C, Yang W, Zhou J, Zhang Z, Gong Y, Hu F, Yu W, Dong X. Inhibition of Pre-B Cell Colony Enhancing Factor Reduces Lung Injury in Rats Receiving Cardiopulmonary Bypass. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:51-60. [PMID: 33442236 PMCID: PMC7800440 DOI: 10.2147/dddt.s281554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
Objective Pre-B cell colony enhancing factor (PBEF) is an important proinflammatory cytokine involved in acute lung injury. However, whether PBEF participates in lung injury caused by cardiopulmonary bypass (CPB) is still unknown. This study aimed to investigate the effects of silencing PBEF on lung injury and the sodium and water transport system in rats receiving CPB. Methods Morphological changes in lung tissues were evaluated using hematoxylin and eosin (H&E) staining. PBEF was detected using immunohistochemistry. The sodium and water transport system-related proteins and cellular signaling pathways were detected by Western blotting. Results Rats receiving CPB (model group) had more severe alveolar wall damage and higher expression of PBEF in free form than the control rats. Western blotting showed that the expression of PBEF, surfactant protein D (SP), aquaporin (AQP) 1, AQP5, and epithelial sodium channel (ENaC) was significantly higher in the lung tissue of CPB rats than control rats. By contrast, adenovirus-encoding sh-PBEF significantly reduced the expression of PBEF, SP, AQP1, AQP5, and ENaC in the lung tissues of rats treated with CPB. The phosphorylation levels of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase B (AKT), and p38 mitogen-activated protein kinase (MAPK) were significantly increased in the lung tissue of rats that received CPB, and were downregulated by adenovirus-encoding sh-PBEF. Conclusion Adenovirus-encoding sh-PBEF could reduce lung injury and repair the sodium–water transport system in rats receiving CPB, likely through reducing MAPK, ERK1/2, and Akt signaling pathways.
Collapse
Affiliation(s)
- Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Zulei Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
24
|
Botanical Drug Puerarin Promotes Neuronal Survival and Neurite Outgrowth against MPTP/MPP +-Induced Toxicity via Progesterone Receptor Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7635291. [PMID: 33123315 PMCID: PMC7586160 DOI: 10.1155/2020/7635291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
Background Progesterone receptor (PR) modulates neuroprotective and regenerative responses in Parkinson's disease and related neurological diseases. Objectives The present study was designed to determine whether botanical drug puerarin could exhibit neuroprotective and neurorestorative activities via PR signaling. Methods The neuroprotective and neurotrophic activities of puerarin were investigated in MPTP-lesioned mice and MPP+-challenged primary rat midbrain neurons. Rotarod performance test and tail suspension test were used to assess motor functions. Tyrosine hydroxylase (TH) and PR were determined by immunostaining, Western blotting, and luciferase reporter assays. Neurite outgrowth was assessed by fluorescence staining and immunostaining. Results Puerarin effectively ameliorated the MPTP-induced motor abnormalities in MPTP-lesioned mice and protected primary rat midbrain neurons against MPP+-induced toxicity via PR signaling although progesterone exhibited the neuroprotection. PR antagonist mifepristone (RU486) diminished the neuroprotection of puerarin in MPTP-lesioned mice and MPP+-induced primary rat midbrain neurons. Moreover, puerarin promoted the differentiation of primary rat midbrain neurons and potentiated NGF to induce neuritogenesis in PC12 cells. RU486 and PR-siRNA could inhibit the effect of puerarin. Puerarin and progesterone could enhance the PR promoter. Conclusion Puerarin attenuated MPTP- and MPP+-induced toxicity and potentiated neurite outgrowth via PR. These results suggested that puerarin may become an alternative hormone for suppressing MPTP- and MPP+-induced toxicity in neurodegenerative diseases.
Collapse
|
25
|
Zhao J, Zhu M, Kumar M, Ngo FY, Li Y, Lao L, Rong J. A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:103-114. [PMID: 30394219 DOI: 10.2174/1871527317666181105093834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's disease (AD) and Parkinson's disease (PD) affect an increasing number of the elderly population worldwide. The existing treatments mainly improve the core symptoms of AD and PD in a temporary manner and cause alarming side effects. Naturally occurring flavonoids are well-documented for neuroprotective and neurorestorative effects against various neurodegenerative diseases. Thus, we analyzed the pharmacokinetics of eight potent natural products flavonoids for the druggability and discussed the neuroprotective and neurorestorative effects and the underlying mechanisms. CONCLUSION This review provides valuable clues for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mengxia Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mukesh Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yinghui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.,Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong Shenzhen, Shenzhen, China
| |
Collapse
|
26
|
Jeon YD, Lee JH, Lee YM, Kim DK. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed Pharmacother 2020; 124:109847. [DOI: 10.1016/j.biopha.2020.109847] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
|
27
|
Pogačnik L, Ota A, Poklar Ulrih N. An Overview of Crucial Dietary Substances and Their Modes of Action for Prevention of Neurodegenerative Diseases. Cells 2020; 9:E576. [PMID: 32121302 PMCID: PMC7140513 DOI: 10.3390/cells9030576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases, namely Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis are becoming one of the main health concerns due to the increasing aging of the world's population. These diseases often share the same biological mechanisms, including neuroinflammation, oxidative stress, and/or protein fibrillation. Recently, there have been many studies published pointing out the possibilities to reduce and postpone the clinical manifestation of these deadly diseases through lifelong consumption of some crucial dietary substances, among which phytochemicals (e.g., polyphenols) and endogenous substances (e.g., acetyl-L-carnitine, coenzyme Q10, n-3 poysaturated fatty acids) showed the most promising results. Another important issue that has been pointed out recently is the availability of these substances to the central nervous system, where they have to be present in high enough concentrations in order to exhibit their neuroprotective properties. As so, such the aim of this review is to summarize the recent findings regarding neuroprotective substances, their mechanisms of action, as well as to point out therapeutic considerations, including their bioavailability and safety for humans.
Collapse
Affiliation(s)
| | | | - Nataša Poklar Ulrih
- Department of Food Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.P.); (A.O.)
| |
Collapse
|
28
|
Mohd Sairazi NS, Sirajudeen KNS. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6565396. [PMID: 32148547 PMCID: PMC7042511 DOI: 10.1155/2020/6565396] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nur Shafika Mohd Sairazi
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - K. N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
29
|
Liang Y, Li C, Liu B, Zhang Q, Yuan X, Zhang Y, Ling J, Zhao L. Protective effect of extracorporeal membrane oxygenation on intestinal mucosal injury after cardiopulmonary resuscitation in pigs. Exp Ther Med 2019; 18:4347-4355. [PMID: 31777541 PMCID: PMC6862391 DOI: 10.3892/etm.2019.8087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to explore the protective effects of extracorporeal membrane oxygenation (ECMO) on intestinal mucosal injury following cardiopulmonary resuscitation (CPR), and to assess the potential mechanisms involved. A total of 24 healthy adult domestic pigs were selected as the study subjects. A ventricular fibrillation model was induced through programmed electric stimulation. Subsequently, the animals were randomly divided into conventional CPR and CPR+ECMO groups (n=12 per group). The mortality and hemodynamic parameters of the two groups were compared. The expression levels of inflammatory cytokines in the serum and intestinal mucosa were detected by ELISAs. The intestinal mucosa was subjected to hematoxylin and eosin, and immunohistochemical staining, followed by electron microscopy, to assess the degree of apoptosis and necrosis. The animals in both groups recovered from the programmed ventricular fibrillation. In the CPR group, two animals died at 2 h and two more animals died a further 2 h later, resulting in a 33.3% mortality rate, whereas no cases of mortality were observed in the CPR+ECMO group. Compared with the animals in the CPR group, the hemodynamic parameters of the animals in the CPR+ECMO group revealed significantly improved outcomes. Multiple inflammatory factors (tumor necrosis factor α, interleukin-1 and interleukin-6), myeloperoxidase and malondialdehyde levels were decreased, whereas Na/Ca-ATPase and superoxide dismutase levels were elevated in the intestinal mucosa of animals in the CPR+ECMO group compared with those in the CPR group. Additionally, pathological staining demonstrated that the intestinal mucosa tissue in the CPR+ECMO group exhibited less apoptosis, necrosis and inflammatory cell infiltration, which was further supported by a decrease in Bax expression and an increase in Bcl-2 expression. Overall, ECMO after CPR reduced the intestinal mucosal barrier injury after spontaneous circulation recovery, and the mechanism involved decreased inflammation and apoptosis.
Collapse
Affiliation(s)
- Yong Liang
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Chunsheng Li
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Bo Liu
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Qiang Zhang
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Xiaoli Yuan
- Department of Emergency, Beijing Tong-Ren Hospital Affiliated to Capital Medical University, Beijing 100043, P.R. China
| | - Yun Zhang
- Department of Emergency, Beijing Tong-Ren Hospital Affiliated to Capital Medical University, Beijing 100043, P.R. China
| | - Jiyang Ling
- Department of Emergency, Beijing Tong-Ren Hospital Affiliated to Capital Medical University, Beijing 100043, P.R. China
| | - Lianxing Zhao
- Department of Emergency, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
30
|
Wang X, Zhang G, Zhu C, Lin L, Zhao Z, Yu X, Liu G, Zhang H, Li Q, Dong W, Wang J. Vitamin C Prevents Hydrocortisone-Induced Injury in HMEC-1 through Promoting Bestrophin-3 Expression. Nutr Cancer 2019; 71:852-860. [PMID: 30672332 DOI: 10.1080/01635581.2018.1539184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the protective effects and underlying mechanisms of Vitamin C (VC) on hydrocortisone (HC)-induced cell injury in human microvascular endothelial cells (HMEC). METHODS Cell viability was measured by CCK-8 assay and the expression of Best-3 was detected by Western blotting assay. The experiment was divided into normal control, HC injury group, VC treatment groups, HC + Best-3 siRNA group, HC + VC + Best-3 siRNA group, HC + pcDNA3.1 Best-3 group, and HC + VC + pcDNA3.1 Best-3 group. RESULTS HC inhibited HMEC-1 cell viability was balanced with lower expression of Best-3 in a dose-dependent manner. Conversely, VC promoted HMEC-1 cell viability was paralleled to higher expression of Best-3 in a dose-dependent manner. Silencing Best-3 with Best-3 siRNA inhibited HMEC-1 cell viability, however, over-expression of Best-3 with pcDNA3.1 Best-3 promoted HMEC-1 cell viability. Moreover, VC and over-expression of Best-3 prevented HC-induced HMEC-1 cell apoptosis; however, silencing Best-3 further enhanced HC-induced HMEC-1 cell apoptosis. HC reduced Best-3 expression, which was alleviated by VC treatment. HC treatment decreased Bcl-2 expression, facilitated Bax expression. Both of VC and over-expression of Best-3 promoted Bcl-2 expression and decreased Bax expression. Additionally, VC and Best-3 expression have a synergistic effect. CONCLUSIONS VC can efficiently attenuate HC-induced HMEC-1 cell injury, which may be related to promote Best-3 expression.
Collapse
Affiliation(s)
- Xuexin Wang
- a Department of Rehabilitation Medicine , Yuhuangding Hospital , Yantai , PR China
| | - Guoping Zhang
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Chaohua Zhu
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Lei Lin
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Zhenshuan Zhao
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Xiaoguang Yu
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Guobin Liu
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Haijing Zhang
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Quanhai Li
- c Department of Cell Therapy Center , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Wei Dong
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| | - Jian Wang
- b Department of Orthopedics , The First Hospital of Hebei Medical University , Shijiazhuang , PR China
| |
Collapse
|
31
|
Chen IC, Chang CN, Chen WL, Lin TH, Chao CY, Lin CH, Lin HY, Cheng ML, Chiang MC, Lin JY, Wu YR, Lee-Chen GJ, Chen CM. Targeting Ubiquitin Proteasome Pathway with Traditional Chinese Medicine for Treatment of Spinocerebellar Ataxia Type 3. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:63-95. [PMID: 30612452 DOI: 10.1142/s0192415x19500046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nine autosomal dominant spinocerebellar ataxias (SCAs) are caused by an abnormal expansion of CAG trinucleotide repeats that encodes a polyglutamine (polyQ) tract within different genes. Accumulation of aggregated mutant proteins is a common feature of polyQ diseases, leading to progressive neuronal dysfunction and degeneration. SCA type 3 (SCA3), the most common form of SCA worldwide, is characterized by a CAG triplet expansion in chromosome 14q32.1 ATXN3 gene. As accumulation of the mutated polyQ protein is a possible initial event in the pathogenic cascade, clearance of aggregated protein by ubiquitin proteasome system (UPS) has been proposed to inhibit downstream detrimental events and suppress neuronal cell death. In this study, Chinese herbal medicine (CHM) extracts were studied for their proteasome-activating, polyQ aggregation-inhibitory and neuroprotective effects in GFPu and ATXN3/Q 75 -GFP 293/SH-SY5Y cells. Among the 14 tested extracts, 8 displayed increased proteasome activity, which was confirmed by 20S proteasome activity assay and analysis of ubiquitinated and fused GFP proteins in GFPu cells. All the eight extracts displayed good aggregation-inhibitory potential when tested in ATXN3/Q 75 -GFP 293 cells. Among them, neuroprotective effects of five selected extracts were shown by analyses of polyQ aggregation, neurite outgrowth, caspase 3 and proteasome activities, and ATXN3-GFP, ubiquitin, BCL2 and BAX protein levels in neuronal differentiated ATXN3/Q 75 -GFP SH-SY5Y cells. Finally, enhanced proteasome function, anti-oxidative activity and neuroprotection of catalpol, puerarin and daidzein (active constituents of Rehmannia glutinosa and Pueraria lobata) were demonstrated in GFPu and/or ATXN3/Q 75 -GFP 293/SH-SY5Y cells. This study may have therapeutic implication in polyQ-mediated disorders.
Collapse
Affiliation(s)
- I-Cheng Chen
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chia-Ning Chang
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Te-Hsien Lin
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Ying Chao
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chih-Hsin Lin
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Hsuan-Yuan Lin
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Mei-Ling Cheng
- ‡ Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan 33302, Taiwan
| | | | - Jung-Yaw Lin
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
32
|
Zhang S, Wang J, Zhao H, Luo Y. Effects of three flavonoids from an ancient traditional Chinese medicine Radix puerariae on geriatric diseases. Brain Circ 2018; 4:174-184. [PMID: 30693344 PMCID: PMC6329217 DOI: 10.4103/bc.bc_13_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
As the worldwide population ages, the morbidity of neurodegenerative, cardiovascular, cerebrovascular, and endocrine diseases, such as diabetes and osteoporosis, continues to increase. The etiology of geriatric diseases is complex, involving the interaction of genes and the environment, which makes effective treatment challenging. Traditional Chinese medicine, unlike Western medicine, uses diverse bioactive ingredients to target multiple signaling pathways in geriatric diseases. Radix puerariae is one of the most widely used ancient traditional Chinese medicines and is also consumed as food. This review summarizes the evidence from in vivo and in vitro studies of the pharmacological effects of the main active components of the tuber of Radix puerariae on geriatric diseases.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haiping Zhao
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China
| | - Yumin Luo
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, The First Clinical Medical College of Capital Medical University, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
33
|
Yong J, Yan L, Wang J, Xiao H, Zeng Q. Effects of compound 21, a non‑peptide angiotensin II type 2 receptor agonist, on general anesthesia‑induced cerebral injury in neonatal rats. Mol Med Rep 2018; 18:5337-5344. [PMID: 30365086 PMCID: PMC6236271 DOI: 10.3892/mmr.2018.9602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023] Open
Abstract
General anesthesia has a great impact on neurodevelopment. However, the mechanisms underlying this effect and therapeutic methods to address it remain limited. The present study aimed to investigate the effects of compound (C)21, a non-peptide angiotensin II type 2 receptor agonist, on general anesthesia-induced cerebral injury in neonatal rats. Neonatal Sprague Dawley rats (postnatal day 7) were randomly divided into three groups (n=6 per group): The control, isoflurane and C21+ isoflurane (C21) group. General anesthesia was induced through inhalation of 1.3% isoflurane. Apoptosis and synaptic structure were analyzed. The levels of peroxisome proliferator-activated receptor (PPAR)-α were detected using an enzyme-linked immunosorbent assay. BCL2, apoptosis regulator (Bcl-2) expression was also measured. Compared with the control group, the cerebral cortex, hippocampus, amygdala and hypothalamus in the isoflurane group had significantly more apoptotic cells (P<0.05). The nuclei of the control group were round and transparent, while shrunken nuclei and condensed chromatin were visible in the isoflurane group. A reduction in synapse number was observed in the isoflurane group compared with the control. By contrast, nuclei shrinkage and the decrease in synaptic number was improved in the C21 group. PPAR-α and Bcl-2 expression, at the mRNA and protein levels, was significantly reduced in the isoflurane group compared with the control (P<0.05). C21 treatment reduced the decrease in PPAR-α and Bcl-2 in the cerebral cortex, hippocampus, amygdala and hypothalamus (P<0.05). Collectively, it was demonstrated that C21 prevented apoptosis and synaptic loss induced by general anesthesia in neonatal rats by enhancing the expression of PPAR-α and Bcl-2.
Collapse
Affiliation(s)
- Jun Yong
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Li Yan
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Jing Wang
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Hongmei Xiao
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Qingfan Zeng
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| |
Collapse
|
34
|
Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomed Pharmacother 2018; 106:1236-1242. [DOI: 10.1016/j.biopha.2018.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
|
35
|
Chen Y, Huang Y, Lu X, Wang G, Chi P. Antitumor effects of the silencing of programmed cell death ligand 1 in colorectal cancer via immunoregulation. Oncol Rep 2018; 40:3370-3380. [PMID: 30272332 PMCID: PMC6196599 DOI: 10.3892/or.2018.6738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Activation of programmed cell death 1 (PD-1)/PD-ligand 1 (PD-L1) can promote immune suppression of the tumor microenvironment. However, the effects and mechanisms of PD-L1 silencing on colorectal cancer growth are largely unknown. In the present study, PD-L1 expression was compared in colorectal cancer and paracancerous tissues by immunofluorescence. A stable colorectal carcinoma cell line encoding PD-L1 short hairpin RNA (shRNA) was established. Thereafter, inoculated tumors were modeled in C57B/L6 mice. Experiments were divided into 3 groups: Control group, vector group, and PD-L1 silencing group (inoculated with the stable CT26 cell line encoding PD-L1 shRNA). Following decapitation of the mice, tumors were weighed and apoptosis of tumor cells was detected. The number and viability of cluster of differentiation (CD)4+ and CD8+ T cells were analyzed by flow cytometry and a cell counting kit assay, respectively. Compared with paracancerous tissue, colorectal cancer tissue extensively expressed PD-L1, RAC-α serine/threonine-protein kinase (AKT), and phosphatidylinositol 3-kinase (PI3K). Lymphocyte-activating gene 3 (LAG-3) expression was observed at the edge of tumor tissue, but rarely observed in paracancerous tissue. A stable CT26 cell line encoding PD-L1 shRNA was established, and lack of PD-L1 expression was confirmed by reverse transcription-polymerase chain reaction and western blotting. Compared with the control, the shPD-L1 group demonstrated reduced tumor growth, a high level of apoptosis in tumor cells, a low level of PI3K and AKT expression, and an increased number of cells and greater activity of CD4+ T and CD8+ T cells. Taken together, PD-L1 silencing promoted tumor cell apoptosis, at least in part, through the activation of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Yilin Chen
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ying Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xingrong Lu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Gaoxiong Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
36
|
Tripathi MK, Rajput C, Mishra S, Rasheed MSU, Singh MP. Malfunctioning of Chaperone-Mediated Autophagy in Parkinson's Disease: Feats, Constraints, and Flaws of Modulators. Neurotox Res 2018; 35:260-270. [PMID: 29949106 DOI: 10.1007/s12640-018-9917-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Homeostatic regulation of class II programmed cell death/autophagy for the degradation and elimination of substandard organelles and defective proteins is decisive for the survival of dopaminergic neurons. Chaperone-mediated autophagy (CMA), one of the most highly dedicated self-sacrificing events, is accountable for the partial elimination of redundant soluble cytoplasmic proteins in Parkinson's disease (PD). CMA is characterized by the selective delivery of superfluous protein containing lysine-phenylalanine-glutamate-arginine-glutamine (KFERQ)/KFERQ-like motif to the lysosome through molecular chaperones, such as heat shock cognate-70 (Hsc-70). KFERQ/KFERQ-like motif present in the poor quality cytoplasmic substrate protein and Hsc-70 complex is recognized by a janitor protein, which is referred to as the lysosome-associated membrane protein-2A (LAMP-2A). This protein is known to facilitate an entry of substrate-chaperone complex in the lumen for hydrolytic cleavage of substrate and elimination of end-products. Impaired CMA is repeatedly blamed for an accumulation of surplus soluble proteins. However, it is still an enigma if CMA is a bonus or curse for PD. Case-control studies and cellular and animal models have deciphered the contribution of impaired CMA in PD. Current article updates the role of CMA in toxicant models and recapitulates the evidences that have highlighted a link between impaired CMA and PD. Although PD is an irreversible happening and CMA is a dual edging phenomenon, it is anticipated that fine-tuning of the latter encounters the former to a certain extent. Besides, the truth, embellishment, and propaganda regarding the issue are also emphasized in the final segment of the article.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Charul Rajput
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Saumya Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
37
|
Bhuiyan MMH, Haque MN, Mohibbullah M, Kim YK, Moon IS. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:100-107. [PMID: 28734961 DOI: 10.1016/j.jep.2017.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neurologic disorders are frequently characterized by synaptic pathology, including abnormal density and morphology of dendritic spines, synapse loss, and aberrant synaptic signaling and plasticity. Therefore, to promote and/or protect synapses by the use of natural molecules capable of modulating neurodevelopmental events, such as, spinogenesis and synaptic plasticity, could offer a preventive and curative strategy for nervous disorders associated with synaptic pathology. Radix Puerariae, the root of Pueraria monatana var. lobata (Willd.) Sanjappa&Pradeep, is a Chinese ethnomedicine, traditionally used for the treatment of memory-related nervous disorders including Alzheimer's disease. In the previous study, we showed that the ethanolic extracts of Radix Puerariae (RPE) and its prime constituent, puerarin induced neuritogenesis and synapse formation in cultured hippocampal neurons, and thus could improve memory functions. AIMS OF THE STUDY In the present study, we specifically investigated the abilities of RPE and puerarin to improve memory-related brain disorders through modulating synaptic maturation and functional potentiation. MATERIALS AND METHODS Rat embryonic (E19) brain neurons were cultured in the absence or presence of RPE or puerarin. At predetermined times, cells were live-stained with DiO or fixed and immunostained to visualize neuronal morphologies, or lysed for protein harvesting. Morphometric analyses of dendritic spines and synaptogenesis were performed using Image J software. Functional pre- and postsynaptic plasticity was measured by FM1-43 staining and whole-cell patch clamping, respectively. RPE or puerarin-mediated changes in actin-related protein 2 were assessed by Western blotting. Neuronal survivals were measured using propidium iodide exclusion assay. RESULTS RPE and puerarin both: (1) promoted a significant increase in the numbers, and maturation, of dendritic spines; (2) modulated the formation of glutamatergic synapses; (3) potentiated synaptic transmission by increasing the sizes of reserve vesicle pools at presynaptic terminals; (4) enhanced NMDA receptor-mediated postsynaptic currents, and (5) increased cell viability against naturally occurring cell death. Moreover, upregulation of actin-related protein 2 (ARP2) in RPE and puerarin treated brain neurons suggest that RPE and puerarin induced synaptic plasticity might be associated, at least in part, with ARP2-mediated actin-dependent regulation of spinogenesis. CONCLUSIONS Our findings indicate that RPE and puerarin might play a substantial role in the morphological and functional maturation of brain neurons and suggest that RPE and puerarin are potentially valuable preventative therapeutics for memory-related nervous disorders.
Collapse
Affiliation(s)
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
| | - Yung Kyu Kim
- Department of Physiology, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
38
|
Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2017; 155:120-148. [DOI: 10.1016/j.pneurobio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/04/2023]
|
39
|
Qiu ZK, Zhang GH, Zhong DS, He JL, Liu X, Chen JS, Wei DN. Puerarin ameliorated the behavioral deficits induced by chronic stress in rats. Sci Rep 2017; 7:6266. [PMID: 28740098 PMCID: PMC5524961 DOI: 10.1038/s41598-017-06552-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to investigate the mechanisms underlying the antidepressant-like effects of puerarin via the chronic unpredictable stress (CUS) procedure in rats. Similar to Sertraline (Ser), Chronic treatment of puerarin (60 and 120 mg/kg, i.g) elicited the antidepressant-like effects by reversing the decreased sucrose preference in sucrose preference test (SPT), by blocking the increased latency to feed in novelty-suppressed feeding test (NSFT) and the increased immobility time in forced swimming test (FST) without affecting locomotor activity. However, acute puerarin treatment did not ameliorate the antidepressant- and anxiolytic- like effects in FST and NSFT, respectively. In addition, enzyme linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemical detection (HPLC-ECD) showed that chronic treatment of puerarin (60 and 120 mg/kg, i.g) reversed the decreased levels of progesterone, allopregnanolone, serotonin (5-HT) and 5-Hydroxyindoleacetic acid (5-HIAA) in prefrontal cortex and hippocampus of post-CUS rats. Furthermore, puerarin (60 and 120 mg/kg, i.g) blocked the increased corticotropin releasing hormone (CRH), corticosterone (Cort) and adrenocorticotropic hormone (ACTH). Collectively, repeated administration of puerarin alleviated the behavioral deficits induced by chronic stress which was associated with the biosynthesis of neurosteroids, normalization of serotonergic system and preventing HPA axis dysfunction.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Guan-Hua Zhang
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China
| | - De-Sheng Zhong
- Department of Pharmacy, Hui Zhou Municipal Centre Hospital, Huizhou, Guangdong, P.R. China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, P.R. China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, P.R. China
- Academy of Military Medical Sciences, Beijing, 100850, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China.
| | - Da-Nian Wei
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
40
|
de Rus Jacquet A, Timmers M, Ma SY, Thieme A, McCabe GP, Vest JHC, Lila MA, Rochet JC. Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:408-425. [PMID: 28214539 PMCID: PMC6149226 DOI: 10.1016/j.jep.2017.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/28/2017] [Accepted: 02/13/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta and the presence in surviving neurons of Lewy body inclusions enriched with aggregated forms of the presynaptic protein α-synuclein (aSyn). Although current therapies provide temporary symptomatic relief, they do not slow the underlying neurodegeneration in the midbrain. In this study, we analyzed contemporary herbal medicinal practices used by members of the Lumbee tribe to treat PD-related symptoms, in an effort to identify safe and effective herbal medicines to treat PD. AIM OF THE STUDY The aims of this study were to (i) document medicinal plants used by Lumbee Indians to treat PD and PD-related symptoms, and (ii) characterize a subset of plant candidates in terms of their ability to alleviate neurotoxicity elicited by PD-related insults and their potential mechanisms of neuroprotection. MATERIALS AND METHODS Interviews of Lumbee healers and local people were carried out in Pembroke, North Carolina, and in surrounding towns. Plant samples were collected and prepared as water extracts for subsequent analysis. Extracts were characterized in terms of their ability to induce activation of the nuclear factor E2-related factor 2 (Nrf2) antioxidant response in cortical astrocytes. An extract prepared from Sambucus caerulea flowers (elderflower extract) was further examined for the ability to induce Nrf2-mediated transcription in induced pluripotent stem cell (iPSC)-derived astrocytes and primary midbrain cultures, to ameliorate mitochondrial dysfunction, and to alleviate rotenone- or aSyn-mediated neurotoxicity. RESULTS The ethnopharmacological interviews resulted in the documentation of 32 medicinal plants used to treat PD-related symptoms and 40 plants used to treat other disorders. A polyphenol-rich extract prepared from elderflower activated the Nrf2-mediated antioxidant response in cortical astrocytes, iPSC-derived astrocytes, and primary midbrain cultures, apparently via the inhibition of Nrf2 degradation mediated by the ubiquitin proteasome system. Furthermore, the elderflower extract rescued mitochondrial functional deficits in a neuronal cell line and alleviated neurotoxicity elicited by rotenone and aSyn in primary midbrain cultures. CONCLUSIONS These results highlight potential therapeutic benefits of botanical extracts used in traditional Lumbee medicine, and they provide insight into mechanisms by which an elderflower extract could suppress neurotoxicity elicited by environmental and genetic PD-related insults.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Michael Timmers
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Andrew Thieme
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | - Jay Hansford C Vest
- University of North Carolina at Pembroke, PO Box 1510, Pembroke, NC 28372, USA.
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
41
|
Abstract
Research and clinical experience with vagotomy have confirmed that damage to the central nervous system severely affects physiological movement in the gastrointestinal system. The aim of this study was to investigate the effects of synchronized dual-pulse gastric electrical stimulation (SGES) on the apoptosis of enteric neurons and the possible pathways involved in these effects in vagotomized rats. For this purpose, Male Sprague-Dawley (SD) rats were randomized into a control group, an early subdiaphragmatic vagotomized group (ESDV group), an early subdiaphragmatic vagotomized group with short-term SGES (ESDV + SSGES group), a terminal subdiaphragmatic vagotomized group (TSDV group) and a terminal subdiaphragmatic vagotomized group with long-term SGES (TSDV + LSGES group). The expression levels of connexin 43 (Cx43), glial cell line-derived neurotrophic factor (GDNF), p-Akt, pan-Akt and PGP9.5 were assessed by RT-qPCR, western blot analysis and immunofluorescence staining. Apoptosis was determined by terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assay. We found that Cx43 expression was decreased in the ESDV and TSDV groups, but was significantly upregulated in the SSGES and LSGES groups. In addition, the GDNF and PGP9.5 expression levels were significantly decreased in the ESDV group compared with the control and TSDV groups and were upregulated in both the SSGES and LSGES groups. The LSGES group exhibited a clear increase in p-Akt expression compared with the TSDV group. Fewer TUNEL-positive cells were observed in the SSGES and LSGES groups than in the ESDV and TSDV groups. More TUNEL-positive cells were found in the stomach of rats subjected to subdiaphragmatic vagotomy. On the whole, our data indicate that SGES improved enteric neuronal survival, possibly through GDNF and the phosphatidylinositol 3-kinase (PI3K)/Akt pathways.
Collapse
Affiliation(s)
- Nian Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuangning Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
42
|
Valproic Acid Protects Primary Dopamine Neurons from MPP +-Induced Neurotoxicity: Involvement of GSK3 β Phosphorylation by Akt and ERK through the Mitochondrial Intrinsic Apoptotic Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8124501. [PMID: 28421199 PMCID: PMC5380829 DOI: 10.1155/2017/8124501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Valproic acid (VPA), a drug widely used to treat manic disorder and epilepsy, has recently shown neuroprotective effects in several neurological diseases, particularly in Parkinson's disease (PD). The goal of the present study was to confirm VPA's dose-dependent neuroprotective propensities in the MPP+ model of PD in primary dopamine (DA) neurons and to investigate the underlying molecular mechanisms using specific mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase- (PI3K-) Akt signaling inhibitors. VPA reversed MPP+-induced mitochondrial apoptosis and counteracted MPP+-induced extracellular signal-regulated kinase (ERK) and Akt repression and inhibited glycogen synthase kinase 3β (GSK3β) activation through induction of GSK3β phosphorylation. Moreover, inhibitors of the PI3K and MAPK pathways abolished GSK3β phosphorylation and diminished the VPA-induced neuroprotective effect. These findings indicated that VPA's neuroprotective effect in the MPP+-model of PD is associated with GSK3β phosphorylation via Akt and ERK activation in the mitochondrial intrinsic apoptotic pathway. Thus, VPA may be a promising therapeutic candidate for clinical treatment of PD.
Collapse
|
43
|
Yue P, Gao L, Wang X, Ding X, Teng J. Intranasal Administration of GDNF Protects Against Neural Apoptosis in a Rat Model of Parkinson’s Disease Through PI3K/Akt/GSK3β Pathway. Neurochem Res 2017; 42:1366-1374. [DOI: 10.1007/s11064-017-2184-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
|
44
|
Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016; 39:253-260. [DOI: 10.3892/ijmm.2016.2833] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
45
|
Xu Q, Fan W, Ye SF, Cong YB, Qin W, Chen SY, Cai J. Cistanche tubulosa Protects Dopaminergic Neurons through Regulation of Apoptosis and Glial Cell-Derived Neurotrophic Factor: in vivo and in vitro. Front Aging Neurosci 2016; 8:295. [PMID: 28018211 PMCID: PMC5159610 DOI: 10.3389/fnagi.2016.00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/21/2016] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease with the pathological hallmark of reduced nigrostriatal dopamine. In traditional Chinese medicine (TCM) clinical practice, the nanopowder of Cistanche tubulosa has therapeutic effects on PD. To identify the therapeutic mechanism, this study tested the protective effect of different doses of MPP+-induced toxicity in MES23.5 cells using the MTT assay and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice (vehicles). Immunohistochemistry was used to assess cytomorphology and tyrosine hydroxylase (TH) expression. Behavioral tests in vehicles, high performance liquid chromatography (HPLC) tests in dopamine, immunohistochemistry and western blot analysis were used to detect the expression of TH, glial cell line-derived neurotrophic factor (GDNF) and its receptors. Our results demonstrated that the C. tubulosa nanopowder improved the viability of MPP+-treated cells, increased TH expression and reduced the number of apoptotic cells. It also increased Bcl2 protein expression and suppressed Bax protein expression in MPP+-treated cells in a dose-dependent manner. In addition, C. tubulosa nanopowder improved the behavioral deficits in vehicle mice, reduced the stationary duration of swimming, enhanced the ability for spontaneous activity and increased the expression of GDNF, the GDNF family receptor alpha (GFRα1) and Ret in cells of the substantia nigra (SN). Furthermore, the protein expression of GDNF, GFRα1 and Ret increased after treatment with different doses of C. tubulosa nanopowder, with a significant difference between the high-dose and vehicle groups. The protein expression of Bcl2 and Bax were similar in the in vivo and in vitro, which suggested that C. tubulosa nanopowder has anti-apoptotic effects in neurons.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Wen Fan
- Department of Internal Medicine, Xiamen Hai Cang Hospital Xiamen, China
| | - Shui-Fen Ye
- Department of Geratology, Longyan First Hospital Longyan, China
| | - Yi-Bo Cong
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Wei Qin
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Shi-Ya Chen
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Jing Cai
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| |
Collapse
|
46
|
Wei S, Tong J, Xue Q, Liu Y, Xu X. Effect of puerarin on transcriptome of astrocyte during oxygen-glucose deprivation/reoxygenation injury. Mol Cell Biochem 2016; 425:113-123. [PMID: 27844252 DOI: 10.1007/s11010-016-2867-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
Stroke is a serious disease with complex pathomechanism and limited therapeutic effect in clinic. Our previous research has found obvious therapeutic effect of Puerarin (Pur) on stroke injury of rat. The aim of this study is to investigate the transcriptome changes of oxygen-glucose deprivation/reoxygenation (OGD/R)-injured astrocytes before and after the intervention of Pur. Cells activity and apoptosis detection indicated that the activity of OGD/R-injured astrocytes was improved, and the apoptosis was ameliorated by Pur. Affymetrix GeneChip Rat Genome 230 2.0 Array assays indicated that after intervention of Pur, mRNA expressions of 31 genes were up-regulated and 40 genes were down-regulated in OGD group, whereas mRNA expression of 36 genes were up-regulated, and 88 genes were down-regulated in OGD/R group. Pathway analysis indicated that the olfactory transduction pathway and the JAK (janus kinase) 2/STAT (signal transducer and activator of transcription) three pathways were down-regulated by Pur during OGD/R injury of astrocytes. These data indicated that Pur regulates transcriptome and expresses protective effect on astrocytes during OGD/R injury, and may be a potential therapeutic agent for the treatment of stroke.
Collapse
Affiliation(s)
- Shuyong Wei
- Southwest University, Rongchang campus, Rongchang, Chongqing, 402460, China.
| | - Jie Tong
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China
| | - Qiang Xue
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China
| | - Yang Liu
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China
| | - Xiaoyu Xu
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China.
| |
Collapse
|
47
|
GPR30 Activation Contributes to the Puerarin-Mediated Neuroprotection in MPP+-Induced SH-SY5Y Cell Death. J Mol Neurosci 2016; 61:227-234. [DOI: 10.1007/s12031-016-0856-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
|
48
|
Yuan Y, Zhou H, Wu QQ, Li FF, Bian ZY, Deng W, Zhou MQ, Tang QZ. Puerarin attenuates the inflammatory response and apoptosis in LPS-stimulated cardiomyocytes. Exp Ther Med 2015; 11:415-420. [PMID: 26893624 PMCID: PMC4734177 DOI: 10.3892/etm.2015.2910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/26/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with septic shock suffer from high mortality rates, particularly when complicated by severe myocardial depression which is characterized by hypotension and a reduction in cardiac output. Inflammation is an important factor involved in the early stages of sepsis. The aim of the present study was to investigate the effect of the Chinese herbal compound puerarin (1, 5, 10, 20 and 40 µM) on cardiomyocyte inflammatory response in a sepsis model using H9c2 cardiomyocytes stimulated with 1 µg/ml lipopolysaccharide (LPS). The mRNA expression levels of tumor necrosis factor (TNF)-α and interleukin (IL)-β were evaluated using reverse transcription-quantitative polymerase chain reaction. In addition, the protein expression levels of various factors were determined using western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was used to evaluate the apoptosis rates in the various groups, and immunocytochemical analysis was employed to determine the effect of puerarin on the nuclear translocation of p65 protein. The present study demonstrated that LPS stimulation increased IL-1β and TNF-α mRNA expression levels, as compared with the controls (P<0.05). Following treatment with various concentrations of puerarin, the expression levels of IL-1β and TNF-α were markedly blunted, particularly in the LPS + 40 µM puerarin group (P<0.05 vs. the LPS group). Furthermore, puerarin administration significantly inhibited LPS-induced apoptosis in H9c2 cardiomyocytes, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining (TUNEL positive cells: LPS + 40 µM puerarin group, 5.5% vs. LPS group, 10.5%; P<0.01). In addition, puerarin significantly decreased LPS-induced phosphorylated nuclear factor (p-NF)-κB p65 and Bax expression levels, and increased the expression levels of Bcl-2, as compared with the LPS group (P<0.05). These data indicated that puerarin may serve as a valuable protective agent against cardiovascular inflammatory diseases.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
49
|
Zhu G, Li J, He L, Wang X, Hong X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol 2015; 172:2354-68. [PMID: 25560396 DOI: 10.1111/bph.13061] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. EXPERIMENTAL APPROACHES I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. KEY RESULTS Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) -induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg(-1) ) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP(+) ) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. CONCLUSIONS AND IMPLICATIONS Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models.
Collapse
Affiliation(s)
- Guoqi Zhu
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | | | | | | |
Collapse
|
50
|
Liu B, Kongstad KT, Qinglei S, Nyberg NT, Jäger AK, Staerk D. Dual high-resolution α-glucosidase and radical scavenging profiling combined with HPLC-HRMS-SPE-NMR for identification of minor and major constituents directly from the crude extract of Pueraria lobata. JOURNAL OF NATURAL PRODUCTS 2015; 78:294-300. [PMID: 25679337 DOI: 10.1021/np5009416] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The crude methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with hyphenated HPLC-HRMS-SPE-NMR. Direct analysis of the crude extract without preceding purification was facilitated by combining chromatograms from two analytical-scale HPLC separations of 120 and 600 μg on-column, respectively. High-resolution α-glucosidase and radical scavenging profiles were obtained after microfractionation of the eluate in 96-well microplates. This allowed full bioactivity profiling of individual peaks in the HPLC chromatogram of the crude methanol extract. Subsequent HPLC-HRMS-SPE-NMR analysis allowed identification of 21 known compounds in addition to two new compounds, i.e., 3'-methoxydaidzein 8-C-[α-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside and 6″-O-malonyl-3'-methoxydaidzin, as well as an unstable compound tentatively identified as 3'-de-O-methylpuerariafuran.
Collapse
Affiliation(s)
- Bingrui Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|