1
|
Lu Y, Wang Y, Yao T, Dong X, Liu Y, Nakamura Y, Qi H. Mechanism of inhibition of melanoma by fucoxanthin simulated in vitro digestion products in cell models constructed using human malignant melanoma cells (A375) and keratinocytes (HaCaT). Food Chem 2025; 462:141003. [PMID: 39208735 DOI: 10.1016/j.foodchem.2024.141003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Recently, the increasing incidence of malignant melanoma has become a major public health concern owing to its poor prognosis and impact on quality of life. Consuming foods with potent antitumor compounds can help prevent melanoma and maintain skin health. Fucoxanthin (FX), a naturally occurring carotenoid found in brown algae, possesses antitumor properties. However, its bioavailability, safety risks, and in vivo effects and mechanisms against melanoma remain unclear. This research focused on evaluating the safety and prospective antimelanoma impact of simulated gastrointestinal digestion products (FX-ID) on HaCaT and A375 cells.The results indicate that FX-ID exerts negative effects on mitochondria in A375 cells, increases Bax expression, releases Cytochrome C, and activates cleaved caspase-3, ultimately promoting apoptosis. Additionally, FX-ID influences the mitogen-activated protein kinase (MAPK) pathway by enhancing cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels, consequently facilitating apoptosis and inflammation without significantly impacting HaCaT cells. These findings provide insight into inhibitory mechanism of FX-ID against melanoma, guiding the development of functional foods for prevention.
Collapse
Affiliation(s)
- Yujing Lu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yida Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tian Yao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiufang Dong
- School of Public Health, Dali University, Dali 671000, China
| | - Yu Liu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
León D, Reyes ME, Weber H, Gutiérrez Á, Tapia C, Silva R, Viscarra T, Buchegger K, Ili C, Brebi P. In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production. Int J Mol Sci 2024; 25:8683. [PMID: 39201369 PMCID: PMC11354225 DOI: 10.3390/ijms25168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG's role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Helga Weber
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Álvaro Gutiérrez
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile
| | - Claudio Tapia
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Kurt Buchegger
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| |
Collapse
|
3
|
Shi Y, Wang Y, Zou H, Zhao B, Zhu T, Nakamura Y, Qi H. Detection of Simulated In Vitro Digestion Products of Fucoxanthin and Their Photodamage Alleviation Effect in Retinal Müller Cells Induced by Ultraviolet B Irradiation: A Proteomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14626-14637. [PMID: 37753556 DOI: 10.1021/acs.jafc.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Our previous study reported that the marine dietary bioactive compound fucoxanthin (FX) has the potential to reduce the level of oxidation in retinal Müller cells (RMCs) induced by ultraviolet B (UVB) irradiation. However, the gastrointestinal environment can inhibit the bioavailability and absorption of FX in the cell systems. In the current study, FX was initially digested in a simulated in vitro gastrointestinal fluid. Nine main digestive products were identified, and the photoprotective activities of FX simulated in vitro gastrointestinal digestion products (FX-ID) were assessed in the same RMC model. FX-ID significantly reduced intracellular ROS and alleviated apoptosis. Western blot assays showed that FX-ID inhibited phosphorylated proteins in the MAPK and NF-κB signaling pathways. Our proteomics analysis revealed that the differentially expressed proteins were linked to biological networks associated with antioxidation and metabolic processes. The data may provide insight into the photoprotective mechanisms of FX-ID and promote the development of various functional foods to prevent retinal disorders.
Collapse
Affiliation(s)
- Yixin Shi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| | - Haotian Zou
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| | - Baomin Zhao
- Jiangsu Palarich Food Co., Ltd., Xuzhou 221116, P. R. China
| | - Taihai Zhu
- Jiangsu Palarich Food Co., Ltd., Xuzhou 221116, P. R. China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| |
Collapse
|
4
|
Shi Y, Ren J, Zhao B, Zhu T, Qi H. Photoprotective Mechanism of Fucoxanthin in Ultraviolet B Irradiation-Induced Retinal Müller Cells Based on Lipidomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3181-3193. [PMID: 35199529 DOI: 10.1021/acs.jafc.1c07980] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long-term exposure to sunlight and/or blue light causes vision damage to people of all ages. Dietary pigments and polyphenols have been shown to have photoprotective potential for eyes; however, many unknowns regarding the protective mechanism remain. In this study, we used ultraviolet B (UVB) irradiation-induced retinal Müller cells (RMCs) to screen for dietary polyphenols and pigment compounds with effective photoprotective activity. Fucoxanthin (FX) was shown to have the best therapeutic effect, and the mechanism was evaluated via lipidomics analysis. Both intra- and extracellular ROS, mitochondrial depolarization, and DNA damage induced by UVB irradiation were inhibited by FX. Meanwhile, FX modulated the MAPK signaling pathway, which is correlated with apoptosis and inflammation. Our lipidomics data revealed that FX regulated lipid metabolism disorder and protected the membrane structure. These results confirm the effective photoprotective effects of FX, which may lead to new insights into FX-functionalized photoprotective foods.
Collapse
Affiliation(s)
- Yixin Shi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| | - Jiaying Ren
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| | - Baomin Zhao
- Jiangsu Palarich Food Co., Ltd., Xuzhou 221116, P. R. China
| | - Taihai Zhu
- Jiangsu Palarich Food Co., Ltd., Xuzhou 221116, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, P. R. China
| |
Collapse
|
5
|
Senapathy GJ, George BP, Abrahamse H. Exploring the Role of Phytochemicals as Potent Natural Photosensitizers in Photodynamic Therapy. Anticancer Agents Med Chem 2021; 20:1831-1844. [PMID: 32619181 DOI: 10.2174/1871520620666200703192127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer is still considered a deadly disease worldwide due to difficulties in diagnosis, painful treatment procedures, costly therapies, side effects, and cancer relapse. Cancer treatments using conventional methods like chemotherapy and radiotherapy were not convincing due to its post-treatment toxicity in the host. In Photodynamic Therapy (PDT), three individual non-toxic components including a photosensitizer, light source and oxygen cause damage to the cells and tissues when they are combined. OBJECTIVE In recent years, phytochemicals are being increasingly recognized as potent complementary drugs for cancer because of its natural availability, less toxicity and therapeutic efficiency in par with commercial drugs. Hence, the idea of using phytochemicals as natural photosensitizers in PDT resulted in a multiple pool of research studies with promising results in preclinical and clinical investigations. METHODS In this review, the potential of phytochemicals to act as natural photosensitizers for PDT, their mode of action, drawbacks, challenges and possible solutions are discussed in detail. RESULTS In PDT, natural photosensitizers, when used alone or in combination with other photosensitizers, induced cell death by apoptosis and necrosis, increased oxidative stress, altered cancer cell death signaling pathways, increased cytotoxicity and DNA damage in cancer cells. The pro-oxidant nature of certain antioxidant polyphenols, hormesis phenomenon, Warburg effect and DNA damaging potential plays a significant role in the photosensitizing mechanism of phytochemicals in PDT. CONCLUSION This review explores the role of phytochemicals that can act as photosensitizers alone or in combination with PDT and its mechanism of action on different cancers.
Collapse
Affiliation(s)
- Giftson J Senapathy
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
6
|
Li K, Teng C, Min Q. Advanced Nanovehicles-Enabled Delivery Systems of Epigallocatechin Gallate for Cancer Therapy. Front Chem 2020; 8:573297. [PMID: 33195062 PMCID: PMC7645157 DOI: 10.3389/fchem.2020.573297] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the most abundant polyphenolic constituent derived from green tea extract, which has demonstrated versatile bioactivities in combating cardiovascular diseases, neurodegenerative diseases, diabetes, and cancer. In light of its anticancer activity, increasing attention has been paid to developing potent strategies involving EGCG in cancer chemotherapy. However, the poor bioavailability and stability of EGCG limits its effectiveness and practicality in real biomedical applications. To overcome this drawback, nanotechnology-facilitated drug delivery systems have been introduced and intensively explored to enhance the bioavailability and therapeutic efficacy of EGCG in cancer treatments and interventions. This review briefly discusses the anticancer mechanisms of EGCG, and then summarizes recent advances in engineering nanovehicles for encapsulating and delivering EGCG toward cancer therapy. In addition, we also highlight successful integrations of EGCG delivery with other chemotherapies, gene therapies, and phototherapies in one nanostructured entity for a combination therapy of cancers. To conclude, the current challenges and future prospects of the nanovehicle-based transportation systems of EGCG for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Kai Li
- Shenzhen Polytechnic, Institute of Marine Biomedicine, Shenzhen, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chao Teng
- Shenzhen Polytechnic, Institute of Marine Biomedicine, Shenzhen, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Senapathy GJ, George BP, Abrahamse H. Enhancement of Phthalocyanine Mediated Photodynamic Therapy by Catechin on Lung Cancer Cells. Molecules 2020; 25:molecules25214874. [PMID: 33105655 PMCID: PMC7659931 DOI: 10.3390/molecules25214874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
Worldwide, lung cancer remains one of the leading cancers with increasing mortality rates. Though chemotherapy for lung cancer is effective, it is always accompanied by unavoidable and grave side effects. Photodynamic therapy (PDT), using novel photosensitizers, is an advanced treatment method with relatively few side effects. Plant products are emerging as potent photosensitizers (PSs). The dose-dependent effect of Catechin (CA) (20–100 µM) on cellular morphological changes, cell viability, cytotoxicity, proliferation, DNA damage and apoptosis were studied on A549 adenocarcinoma alveolar basal epithelial cells. The effect of CA, along with Zinc phthalocyanine PS at 680 nm and 5 J/cm2 fluency was also studied. As the doses of CA increased, the results showed a pattern of increased cytotoxicity, accompanied by decreased cell viability and proliferation in A549 cells. Also, at 52 µM (IC50), CA in combination with PS significantly increased the cytotoxicity, DNA damage, and apoptosis, as compared to control and PS alone, treated cells in PDT experiments. These findings leave a possible thread that CA can be used in the application of phyto-photodynamic therapy of cancer in future.
Collapse
|
8
|
León D, Buchegger K, Silva R, Riquelme I, Viscarra T, Mora-Lagos B, Zanella L, Schafer F, Kurachi C, Roa JC, Ili C, Brebi P. Epigallocatechin Gallate Enhances MAL-PDT Cytotoxic Effect on PDT-Resistant Skin Cancer Squamous Cells. Int J Mol Sci 2020; 21:ijms21093327. [PMID: 32397263 PMCID: PMC7247423 DOI: 10.3390/ijms21093327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) has been used to treat certain types of non-melanoma skin cancer with promising results. However, some skin lesions have not fully responded to this treatment, suggesting a potential PDT-resistant phenotype. Therefore, novel therapeutic alternatives must be identified that improve PDT in resistant skin cancer. In this study, we analyzed the cell viability, intracellular protoporphyrin IX (PpIX) content and subcellular localization, proliferation profile, cell death, reactive oxygen species (ROS) detection and relative gene expression in PDT-resistant HSC-1 cells. PDT-resistant HSC-1 cells show a low quantity of protoporphyrin IX and low levels of ROS, and thus a low rate of death cell. Furthermore, the resistant phenotype showed a downregulation of HSPB1, SLC15A2, FECH, SOD2 and an upregulation of HMBS and BIRC5 genes. On the other hand, epigallocatechin gallate catechin enhanced the MAL-PDT effect, increasing levels of protoporphyrin IX and ROS, and killing 100% of resistant cells. The resistant MAL-PDT model of skin cancer squamous cells (HSC-1) is a reliable and useful tool to understand PDT cytotoxicity and cellular response. These resistant cells were successfully sensitized with epigallocatechin gallate catechin. The in vitro epigallocatechin gallate catechin effect as an enhancer of MAL-PDT in resistant cells is promising in the treatment of difficult skin cancer lesions.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Kurt Buchegger
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Department of Basic Sciences, School of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Temuco 4810101, Chile; (R.S.); (I.R.)
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Autónoma de Chile, Temuco 4810101, Chile; (R.S.); (I.R.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Bárbara Mora-Lagos
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Louise Zanella
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
| | - Fabiola Schafer
- Department of Medical Specialties, School of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, São Carlos 13560-970, São Paulo, Brazil;
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Carmen Ili
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Correspondence: (C.I.); (P.B.); Tel.: +56-45-2-596693 (C.I.); +56-45-2-596583 (P.B.)
| | - Priscilla Brebi
- Laboratory of Integrative Biology, Centro de Excelencia en Medicina Traslacional—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (D.L.); (K.B.); (T.V.); (B.M.-L.); (L.Z.)
- Correspondence: (C.I.); (P.B.); Tel.: +56-45-2-596693 (C.I.); +56-45-2-596583 (P.B.)
| |
Collapse
|
9
|
Li K, Teng C, Min Q. Advanced Nanovehicles-Enabled Delivery Systems of Epigallocatechin Gallate for Cancer Therapy. Front Chem 2020. [PMID: 33195062 DOI: 10.3389/fchem.2020.573297/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is the most abundant polyphenolic constituent derived from green tea extract, which has demonstrated versatile bioactivities in combating cardiovascular diseases, neurodegenerative diseases, diabetes, and cancer. In light of its anticancer activity, increasing attention has been paid to developing potent strategies involving EGCG in cancer chemotherapy. However, the poor bioavailability and stability of EGCG limits its effectiveness and practicality in real biomedical applications. To overcome this drawback, nanotechnology-facilitated drug delivery systems have been introduced and intensively explored to enhance the bioavailability and therapeutic efficacy of EGCG in cancer treatments and interventions. This review briefly discusses the anticancer mechanisms of EGCG, and then summarizes recent advances in engineering nanovehicles for encapsulating and delivering EGCG toward cancer therapy. In addition, we also highlight successful integrations of EGCG delivery with other chemotherapies, gene therapies, and phototherapies in one nanostructured entity for a combination therapy of cancers. To conclude, the current challenges and future prospects of the nanovehicle-based transportation systems of EGCG for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Kai Li
- Shenzhen Polytechnic, Institute of Marine Biomedicine, Shenzhen, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chao Teng
- Shenzhen Polytechnic, Institute of Marine Biomedicine, Shenzhen, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Dionisie V, Clichici S, Ion RM, Danila OO, Moldovan R, Decea N, Gheban D, Olteanu FC, Filip GA. In vivosilymarin’s antioxidant and anti-apoptotic effects on photodynamic therapy’s responsiveness. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several studies have shown that some anti-oxidant natural compounds in combination with photodynamic therapy (PDT) can enhance the effectiveness of treatment. The aim of this study is to evaluate the effect of silymarin (SIL) in combination with 5,10,15,20-tetra-sulphonato-phenyl-porphyrin (TSPP) based photodynamic therapy, on experimental tumors. 30 Wistar rats with Walker carcinosarcoma, were divided into 6 groups: group 0 (control) — control, untreated group; group 1 (TSPP) — one dose of TSPP; group 2 (SIL) — silymarin; group 3 (PDT) — TSPP and irradiation 24 h after; group 4 (SIL[Formula: see text]PDT) — silymarin, TSPP and irradiation 24 h after; group 5 (SIL[Formula: see text]IR) and group 6 (IR) — irradiation and in addition, group 5 received SIL. Silymarin administered before photodynamic therapy decreased the lipid peroxidation ([Formula: see text] < 0.05) and modulated the antioxidant defense in tumor treated with PDT and silymarin suggesting that silymarin administration along with photodynamic therapy has an anti-oxidant effect. The caspase — 8 level and -3 activity increased in PDT and PDT [Formula: see text] SIL groups compared to the control; between the two groups there was a significant difference in term of apoptosis in favor to PDT. In conclusion, silymarin administration inhibited the reactive oxygen species generation and reduced the tumoral cells’ apoptosis, suggesting that natural compound administered before photodynamic therapy did not improve the therapy’s effect.
Collapse
Affiliation(s)
- Vlad Dionisie
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Rodica M. Ion
- National Research and Development Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul, Independentei, 060021 Bucharest, Romania
| | - Oana O. Danila
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Morphopathology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 35 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Florin Catalin Olteanu
- Industrial Engineering and Management Department, Transylvania University, 29 Eroilor Boulevard, 500036, Brasov, Romania
| | - Gabriela A. Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Eghbaliferiz S, Iranshahi M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother Res 2016; 30:1379-91. [DOI: 10.1002/ptr.5643] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Samira Eghbaliferiz
- Biotechnology Research Center, School of Pharmacy; Mashhad University of Medical Science; Mashhad Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy; Mashhad University of Medical Science; Mashhad Iran
| |
Collapse
|
12
|
Doan HQ, Nguyen HP, Rady P, Tyring SK. Expression patterns of immune-associated genes in external genital and perianal warts treated with sinecatechins. Viral Immunol 2015; 28:236-40. [PMID: 25774455 DOI: 10.1089/vim.2014.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of human papillomavirus (HPV) in human disease includes external genital and perianal warts (EGW), with some HPV genotypes having oncogenic potential (i.e., HPV-16 and -18). While green-tea extracts have antitumor and antiproliferative effects in vitro, the mechanism of action of sinecatechins in the treatment of EGW is not well understood. To investigate the role of immune-regulated genes further, an open-label, single institution, prospective study was conducted enrolling patients with clinically diagnosed EGW. Thirty subjects were enrolled, and 18 completed the trial. All patients applied sinecatechins 15% ointment to target lesions in the study. RNA expression microarrays were obtained from treated EGW lesions and analyzed for differential gene expression of immune-regulated genes. HPV types were analyzed and, based on copy number, were stratified into virological responders (VR) or nonresponders (VNR). Gene expression analysis of RNA samples was performed using TaqMan arrays for human T cell receptor and CD3 complex (TCR), Toll-like receptors (TLR) pathway, interferon (IFN) pathway, and antigen processing pathway. A total of 256 genes were analyzed across the four arrays. Genes that were significantly regulated between VRs and VNRs were CREB3L4, HIST1H3A, HIST1H3H, IFNA1, IFNA4, IFNA5, IFNA6, IFNA8, IFNA14, IFNG, IFNAR1, IL6, IRF9, MAPK4, MAPK5, MAPK14, NET1, and PIK3C2A in the IFN array. In the TCR array, HLA_B was found to be statistically significantly upregulated in both the VR and VNR groups; concomitantly, CD8A was found to be statistically significantly downregulated only in VRs. In the TLR array, only LBP and MAPK8 were found to be differentially regulated. In the antigen processing array, HLA-A, HLA-C, HLA-DMA, HLA-DMB, HLA-F, PSMA5, PSMB8, and PSMB9 were differentially downregulated. Based on these findings, it was determined that sinecatechins treatment modulates and downregulates genes involved in the pro-inflammatory response to HPV infection.
Collapse
Affiliation(s)
- Hung Q Doan
- 1 Department of Dermatology, University of Texas Health Science Center , Houston, Texas
| | | | | | | |
Collapse
|
13
|
Tang Y, Abe N, Qi H, Zhu B, Murata Y, Nakamura Y. Tea Catechins Inhibit Cell Proliferation Through Hydrogen Peroxide-Dependent and -Independent Pathways in Human T lymphocytic Leukemia Jurkat Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.1245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University
- Graduate School of Natural Science and Technology, Okayama University
| | - Naomi Abe
- Graduate School of Environmental and Life Science, Okayama University
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University
| | | |
Collapse
|