1
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Krishnakumar NM, Ramesh BT, Ceasar SA. Medicinal mushrooms as potential sources of anticancer polysaccharides and polysaccharide–protein complexes. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2023:113-148. [DOI: 10.1016/b978-0-323-91296-9.00007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Huo X, Pei Z, Wang W, Liu Y, Sun J, Wang H, Ai N. Lentinan Enhances the Function of Oxaliplatin on the Esophageal Tumors by Persuading Immunogenic Cell Death. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2296574. [PMID: 35844448 PMCID: PMC9286936 DOI: 10.1155/2022/2296574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/09/2022]
Abstract
Objective The focus of this research was to look at the effects of the combination of the lentinan (LNT) and oxaliplatin (Oxa) on the apoptosis of human esophageal cancer cells, as well as the underlying mechanism. Methods LNT and Oxa were used to treat EC-109 human esophageal cancerous cells at various doses, and the cell survival rate was measured using the Cell Counting Kit-8 (CCK-8) assay. In addition, 24 h after treatment of EC-109 cells with a combination of LNT and Oxa, flow cytometry was used to analyze their apoptotic effect on these cells. Additionally, LNT on EC-109 cell apoptotic upshot was assessed via measuring the consequence of LNT on the mRNA and protein expression levels pertaining to immunogenic cell death factors CALR, HSP90, and HSP70 by qPCR (quantitative real-time polymerase chain reaction) and western blot analysis, correspondingly. Results Cell proliferation was inhibited only when EC-109 cells were added with LNT at 1,200 μg/mL to the maximum concentrations, but the combination of LNT and Oxa at a low dose (800 μg/mL and 20 μM, respectively) significantly increased their sensitivity to Oxa and reduced their proliferation (P < 0.05), and their apoptosis was significantly increased by LNT (P < 0.05). The immunogenic cell death-related genes CALR, HSP90, and HSP70 had dramatically enhanced mRNA and protein expression levels after therapy with a combination of LNT and Oxa (P < 0.05). Conclusion These data imply that LNT increases the susceptibility of esophageal cancerous cells to Oxa by driving EC-109 cells to display immunogenic death. Therefore, LNT combined with Oxa may be an effective method in esophageal cancer management.
Collapse
Affiliation(s)
- Xiaolei Huo
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Zhen Pei
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Weiwei Wang
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Yu Liu
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jing Sun
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Hui Wang
- Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi Province, China
| | - Nanping Ai
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
4
|
Sivanesan I, Muthu M, Gopal J, Oh JW. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules 2022; 27:molecules27134090. [PMID: 35807336 PMCID: PMC9267963 DOI: 10.3390/molecules27134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Of the biologically active components, polysaccharides play a crucial role of high medical and pharmaceutical significance. Mushrooms have existed for a long time, dating back to the time of the Ancient Egypt and continue to be well explored globally and experimented with in research as well as in national and international cuisines. Mushroom polysaccharides have slowly become valuable sources of nutraceuticals which have been able to treat various diseases and disorders in humans. The application of mushroom polysaccharides for anticancer mycotherapy is what is being reviewed herein. The widespread health benefits of mushroom polysaccharides have been highlighted and the significant inputs of mushroom-based polysaccharides in anticancer clinical trials have been presented. The challenges and limitation of mushroom polysaccharides into this application and the gaps in the current application areas that could be the future direction have been discussed.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6271; Fax: +82-2-455-1044
| |
Collapse
|
5
|
Abstract
Apoptosis plays a key role in removing abnormal or senescent cells, maintaining the overall health of the tissue, and coordinating individual development. Recently, it has been discovered that the intracellular cytoskeleton plays a role in the apoptotic process. In addition, the regulatory role of extracellular matrix (ECM) fibrous proteins, which can be considered as the extracellular skeleton, in the process of apoptosis is rarely summarized. In this review, we collect the latest knowledge about how fibrous proteins inside and outside cells regulate apoptosis. We describe how ECM fibrous proteins participate in the regulation of death receptor and mitochondrial pathways through various signaling cascades mediated by integrins. We then explore the molecular mechanisms by which intracellular intermediate filaments regulate cell apoptosis by regulating death receptors on the cell membrane surface. Similarly, we report on novel supporting functions of microtubules in the execution phase of apoptosis and discuss their formation mechanisms. Finally, we discuss that the polypeptide fragments formed by caspase degradation of ECM fibrous proteins and intracellular intermediate filament act as local regulatory signals to play different regulatory roles in apoptosis.
Collapse
Affiliation(s)
- Jia-Hao Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang Y, Liu Y, Zhou Y, Zheng Z, Tang W, Song M, Wang J, Wang K. Lentinan inhibited colon cancer growth by inducing endoplasmic reticulum stress-mediated autophagic cell death and apoptosis. Carbohydr Polym 2021; 267:118154. [PMID: 34119128 DOI: 10.1016/j.carbpol.2021.118154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Lentinan (SLNT) has been shown to be directly cytotoxic to cancer cells. However, this direct antitumour effect has not been thoroughly investigated in vivo, and the mechanism remains unclear. We aimed to examine the direct antitumour effect of SLNT on human colon cancer and the mechanism in vivo and in vitro. SLNT significantly inhibited tumour growth and induced autophagy and endoplasmic reticulum stress (ERS) in HT-29 cells and tumour-bearing nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Experiments with the autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) showed that autophagy facilitated the antitumour effect of SLNT. Moreover, ERS was identified as the common upstream regulator of SLNT-induced increases in Ca2+concentrations, autophagy and apoptosis by using ERS inhibitors. In summary, our study demonstrated that SLNT exerted direct antitumour effects on human colon cancer via ERS-mediated autophagy and apoptosis, providing a novel understanding of SLNT as an anti-colon cancer therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenqi Tang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
7
|
Wang H, Yuan X, Huang HM, Zou SH, Li B, Feng XQ, Zhao HP. Swertia mussotii extracts induce mitochondria-dependent apoptosis in gastric cancer cells. Biomed Pharmacother 2018; 104:603-612. [DOI: 10.1016/j.biopha.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
|
8
|
Pang G, Wang F, Zhang LW. Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydr Polym 2018; 195:243-256. [PMID: 29804974 DOI: 10.1016/j.carbpol.2018.04.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Polysaccharides from natural resources possess anti-tumor activities for decades, but the efficacy of polysaccharides as the adjuvant drugs for cancer treatment at prescribed doses remains open for debate. In this review, molecular mechanisms involved in direct killing effects of polysaccharides, including apoptosis, cell cycle arrest and mitochondria/DNA damage were described. However, the concentrations/doses used to reach the direct killing effects are too high to be applicable. Polysaccharides can also exert anti-tumor effects through immunoregulation at lower doses, and the effects of polysaccharides on natural killer cells, dendritic cells and other lymphocytes for tumor destruction, along with the receptor recognition and downstream signaling pathways, were delineated. Unfortunately, the prescribed doses of polysaccharides are too low to stimulate immunoresponse, resulting in the failure of some clinical trials. Therefore, understanding the sophisticated mechanisms of the immunoregulatory function of natural polysaccharides with refined doses for clinical use will help the standardization of traditional medicine.
Collapse
Affiliation(s)
- Guibin Pang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Fujun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Zhejiang Reachall Pharmaceutical Co. Ltd., Zhejiang, 322100, China; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, China.
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China; Zhejiang Reachall Pharmaceutical Co. Ltd., Zhejiang, 322100, China.
| |
Collapse
|
9
|
Joseph TP, Chanda W, Padhiar AA, Batool S, LiQun S, Zhong M, Huang M. A Preclinical Evaluation of the Antitumor Activities of Edible and Medicinal Mushrooms: A Molecular Insight. Integr Cancer Ther 2017; 17:200-209. [PMID: 29094602 PMCID: PMC6041903 DOI: 10.1177/1534735417736861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, “mushrooms,” contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).
Collapse
Affiliation(s)
| | - Warren Chanda
- 1 Dalian Medical University, Dalian, Liaoning, China
| | | | - Samana Batool
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - Shao LiQun
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - MinTao Zhong
- 1 Dalian Medical University, Dalian, Liaoning, China
| | - Min Huang
- 1 Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Xiang Y, Jing Z, Haixia W, Ruitao Y, Huaixiu W, Zenggen L, Lijuan M, Yiping W, Yanduo T. Antiproliferative Activity of Phenylpropanoids Isolated fromLagotis brevitubaMaxim. Phytother Res 2017; 31:1509-1520. [DOI: 10.1002/ptr.5875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Yuan Xiang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
- University of Chinese Academy of Sciences; Beijing 100000 China
| | - Zhao Jing
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Wang Haixia
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
| | - Yu Ruitao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
| | - Wen Huaixiu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
- University of Chinese Academy of Sciences; Beijing 100000 China
| | - Liu Zenggen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
| | - Mei Lijuan
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
| | - Wang Yiping
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Tao Yanduo
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining 810001 China
| |
Collapse
|
11
|
|
12
|
Wang J, Wang Y, Shen L, Qian Y, Yang J, Wang F. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:27-35. [PMID: 28364801 DOI: 10.1016/j.pestbp.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 06/07/2023]
Abstract
Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H2O2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H2DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD.
Collapse
Affiliation(s)
- Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Yaofeng Wang
- Qingyang Oriental Tobacco Company Ltd., Gansu, China
| | - Lili Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Yumei Qian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China
| | - Jinguang Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China.
| | - Fenglong Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, 11 Keyuanjing Si Rd., Laoshan District, Qingdao, China.
| |
Collapse
|
13
|
A Natural Triterpene Derivative from Euphorbia kansui Inhibits Cell Proliferation and Induces Apoptosis against Rat Intestinal Epithelioid Cell Line in Vitro. Int J Mol Sci 2015; 16:18956-75. [PMID: 26274958 PMCID: PMC4581281 DOI: 10.3390/ijms160818956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022] Open
Abstract
Kansenone is a triterpene from the root of the traditional Chinese medicine, Euphorbia kansui. However, kansenone exerts serious toxicity, but the exact mechanism was not clear. In this work, the effects of kansenone on cell proliferation, cell cycle, cell damage, and cell apoptosis were investigated. The suppression of cell proliferation was assessed via the colorimetric MTT assay, and cell morphology was visualized via inverted microscopy after IEC-6 cells were incubated with different concentrations of kansenone. Reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) content were detected for evaluating cell damage. RNase/propidium iodide (PI) labeling for evaluation of cell cycle distribution was performed by flow cytometry analysis. Annexin V-fluorescein isothiocyanate (FITC)/PI and Hoechst 33342/Annexin V-FITC/PI staining assay for cell apoptosis detection were performed using confocal laser scanning microscopy and high content screening. Moreover, apoptosis induction was further confirmed by transmission electron microscope (TEM) and JC-1 mitochondrial membrane potential, western blot and RT-PCR analysis. The results demonstrated that kansenone exerted high cytotoxicity, induced cell arrest at G0/G1 phase, and caused mitochondria damage. In addition, kansenone could up-regulate the apoptotic proteins Bax, AIF, Apaf-1, cytochrome c, caspase-3, caspase-9, caspase-8, FasR, FasL, NF-κB, and TNFR1 mRNA expression levels, and down-regulate the anti-apoptotic Bcl-2 family proteins, revealing that kansenone induces apoptosis through both the death receptor and mitochondrial pathways.
Collapse
|