1
|
Xie Y, Wei L, Guo J, Jiang Q, Xiang Y, Lin Y, Xie H, Yin X, Gong X, Wan J. Ginkgolide C attenuated Western diet-induced non-alcoholic fatty liver disease via increasing AMPK activation. Inflammation 2025; 48:770-782. [PMID: 38954260 DOI: 10.1007/s10753-024-02086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a metabolic dysregulation-related disorder that is generally characterized by lipid metabolism dysfunction and an excessive inflammatory response. Currently, there are no authorized pharmacological interventions specifically designed to manage NASH. It has been reported that Ginkgolide C exhibits anti-inflammatory effects and modulates lipid metabolism. However, the impact and function of Ginkgolide C in diet-induced NASH are unclear. METHODS In this study, mice were induced by a Western Diet (WD) with different doses of Ginkgolide C with or without Compound C (adenosine 5 '-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor). The effects of Ginkgolide C were evaluated by assessing liver damage, steatosis, fibrosis, and AMPK expression. RESULTS The results showed that Ginkgolide C significantly alleviated liver damage, steatosis, and fibrosis in the WD-induced mice. In addition, Ginkgolide C markedly improved insulin resistance and attenuated hepatic inflammation. Importantly, Ginkgolide C exerted protective effects by activating the AMPK signaling pathway, which was reversed by AMPK inhibition. CONCLUSION Ginkgolide C alleviated NASH induced by WD in mice, potentially via activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yao Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Leyi Wei
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Jiashi Guo
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yang Xiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Huang Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xinru Yin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China.
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Ali DH, Hegazy HG, Ali EHA, El-Tantawi H. Ginkgo biloba L. leaf extract (EGb 761) alleviates reserpine-induced depression-like symptoms in aged rats by enhancing serotonin/norepinephrine levels and reducing oxidative/nitrosative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03972-9. [PMID: 40100376 DOI: 10.1007/s00210-025-03972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Along with accelerated aging, the prevalence of late-life depression (LLD) exacerbates. Older people are more vulnerable to the adverse effects of antidepressants than the young. Therefore, creating antidepressants from medicinal herbs that are more effective and safer is inevitable. Ginkgo biloba L. leaf extract (EGb761) is broadly applied for treating various neuronal dysfunctions. The present study aimed to evaluate the ameliorative and antidepressant effects of EGb761 against reserpine (RES)-induced depression like symptoms and associated comorbidities in aged female rats. Besides, it compared its efficacy with the antidepressant duloxetine (DULX), offering a more comprehensive understanding of therapeutic potential of EGb 761. Rats grouped into control group, EGb 761-H group, RES group, RES plus either EGb 761-L, EGb 761-H, or DULX groups. The antidepressant effects of EGb 761 were evaluated through a series of behavioral tests, measurement of depression biochemical markers, performing neuronal histopathology and immunohistochemical analyses. EGb 761 significantly attenuated behavioral deficits in the open field test and reduced immobility time in the forced swimming test. Moreover, EGb 761 exerted antidepressant-like actions by ameliorating neurotransmitter imbalances, restoring redox homeostasis in cortical region. Also, EGb 761 increased level of ATP, diminished DNA fragmentation, decreased caspase-3 immunoreactivity and increased immunoreactivity of synaptophysin in the cerebral cortex, besides it enhanced the histological architecture of this region. Overall, EGb 761 has the potential effects to manage LLD focus on the role of both serotonergic and noradrenergic systems in mediating these effects, alongside the impact on oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Dina H Ali
- Zoology Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun St., Abbassia, Cairo, 11566, Egypt.
| | - Hoda G Hegazy
- Zoology Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun St., Abbassia, Cairo, 11566, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Hala El-Tantawi
- Zoology Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun St., Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Urbanska N, Ashaolu TJ, Mattova S, Simko P, Kiskova T. The Potential of Selected Plants and Their Biologically Active Molecules in the Treatment of Depression and Anxiety Disorders. Int J Mol Sci 2025; 26:2368. [PMID: 40076986 PMCID: PMC11900588 DOI: 10.3390/ijms26052368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The incidence of anxiety and depression disorders is increasing worldwide. There is an increasing incidence of hard-to-treat depression with various aspects of origin. Almost 80% of people prefer to use natural remedies and supplements as their primary healthcare solution. Not surprisingly, around one-third of drugs were inspired by nature. Over the past three decades, the use of such remedies has increased significantly. Synthetic antidepressants may cause various negative side effects, whereas herbal medicines are favored because of their ability to relieve symptoms with minimal to no side effects and lower financial burden. This review provides an overview of herbs and biologically active compounds used to treat depression.
Collapse
Affiliation(s)
- Nicol Urbanska
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, 254 Nguyen Van Linh Street, Thanh-Khe District, Da Nang 550000, Vietnam
| | - Simona Mattova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia
| | - Patrik Simko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia
| | - Terezia Kiskova
- Institute of Pathology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Rastislavova 43, 040 01 Kosice, Slovakia
| |
Collapse
|
4
|
Qaderi K, Shahmoradi A, Thyagarajan A, Sahu RP. Impact of targeting the platelet-activating factor and its receptor in cancer treatment. Mil Med Res 2025; 12:10. [PMID: 40033370 PMCID: PMC11877967 DOI: 10.1186/s40779-025-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
The lipid mediator platelet-activating factor (PAF) and its receptor (PAFR) signaling play critical roles in a wide range of physiological and pathophysiological conditions, including cancer growth and metastasis. The ability of PAFR to interact with other oncogenic signaling cascades makes it a promising target for cancer treatment. Moreover, numerous natural and synthetic compounds, characterized by diverse pharmacological activities such as anti-inflammatory and anti-tumor effects, have been explored for their potential as PAF and PAFR antagonists. In this review, we provide comprehensive evidence regarding the PAF/PAFR signaling pathway, highlighting the effectiveness of various classes of PAF and PAFR inhibitors and antagonists across multiple cancer models. Notably, the synergistic effects of PAF and PAFR antagonists in enhancing the efficacy of chemotherapy and radiation therapy in several experimental cancer models are also discussed. Overall, the synthesis of literature review indicates that targeting the PAF/PAFR axis represents a promising approach for cancer treatment and also exerts synergy with chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Kimya Qaderi
- Department of Molecular and Cell Biology, College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, 66177-13446, Kurdistan, Iran
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
5
|
Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, Yang Y. Comprehensive Exploration of the Neuroprotective Mechanisms of Ginkgo biloba Leaves in Treating Neurological Disorders. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1053-1086. [PMID: 38904550 DOI: 10.1142/s0192415x24500435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.
Collapse
Affiliation(s)
- Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Zongyun Gu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, P. R. China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| |
Collapse
|
6
|
Mueller JK, Müller WE. Multi-target drugs for the treatment of cognitive impairment and fatigue in post-COVID syndrome: focus on Ginkgo biloba and Rhodiola rosea. J Neural Transm (Vienna) 2024; 131:203-212. [PMID: 38347175 PMCID: PMC10874325 DOI: 10.1007/s00702-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Cognitive impairment, depression and (mental) fatigue represent the most frequent neuropsychiatric symptoms of the post-COVID syndrome. Neuroinflammation, oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological mechanisms underlying these symptoms. Attempts to treat post-COVID-associated cognitive impairment and fatigue with different drugs available for other diseases have not yet been successful. One probable explanation could be that these drugs work by one specific mechanism of action only and not in a broad multi-target way. Therefore, they will not address the broad pathophysiological spectrum possibly responsible for cognitive impairment, depression and fatigue in post-COVID syndrome. Notably, nearly all drugs currently under investigation for fatigue in post-COVID syndrome are rather addressing one single target instead of the several pathomechanisms underlying this condition. Contrary to this approach, herbal drugs often consist of many different ingredients with different pharmacological properties and pharmacological targets. Therefore, these drugs might be a promising approach for the treatment of the broad symptomatic presentation and the pathophysiological mechanisms of cognitive impairment and fatigue following a SARS-CoV-2 infection. Of these herbal drugs, extracts of Ginkgo biloba and Rhodiola rosea probably are the best investigated candidates. Their broad pharmacological spectrum in vitro and in vivo includes anti-oxidative, anti-inflammatory, antidepressant as well as properties reducing cognitive impairment and fatigue. In several studies, both drugs showed positive effects on physical and mental fatigue and impaired cognition. Moreover, depressive symptoms were also reduced in some studies. However, even if these results are promising, the data are still preliminary and require additional proof by further studies.
Collapse
Affiliation(s)
- Juliane K Mueller
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Frankfurt/M, Germany
| | - Walter E Müller
- Department of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt/M, Germany.
| |
Collapse
|
7
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
8
|
Zeng W, Takashima K, Tang Q, Zou X, Ojiro R, Ozawa S, Jin M, Ando Y, Yoshida T, Shibutani M. Natural antioxidant formula ameliorates lipopolysaccharide-induced impairment of hippocampal neurogenesis and contextual fear memory through suppression of neuroinflammation in rats. J Chem Neuroanat 2023; 131:102285. [PMID: 37150363 DOI: 10.1016/j.jchemneu.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
This study investigated the ameliorating effects of a natural antioxidant formula (NAF) consisting of Ginkgo biloba leaf extract, docosahexaenoic acid/eicosapentaenoic acid, ferulic acid, flaxseed oil, vitamin E, and vitamin B12 on a lipopolysaccharide (LPS)-induced cognitive dysfunction model in rats. Six-week-old rats received a diet containing 0.5% (w/w) NAF for 38 days from Day 1, and LPS (1 mg/kg body weight) was administered intraperitoneally once daily on Days 8 and 10. On Day 11, LPS alone increased interleukin-1β and tumor necrosis factor-α in the hippocampus and cerebral cortex and the numbers of M1-type microglia/macrophages and GFAP+ reactive astrocytes in the hilus of the hippocampal dentate gyrus. NAF treatment decreased brain proinflammatory cytokine levels and increased the number of M2-type microglia/macrophages. During Days 34-38, LPS alone impaired fear memory acquisition and the extinction learning process, and NAF facilitated fear extinction learning. On Day 38, LPS alone decreased the number of type-3 neural progenitor cells in the hippocampal neurogenic niche, and NAF restored the number of type-3 neural progenitor cells and increased the numbers of both immature granule cells in the neurogenic niche and reelin+ hilar interneurons. Thus, NAF exhibited anti-inflammatory effects and ameliorated LPS-induced adverse effects on hippocampal neurogenesis and fear memory learning, possibly through amplification of reelin signaling by hilar interneurons. These results suggest that neuroinflammation is a key factor in the development of LPS-induced impairment of fear memory learning, and supplementation with NAF in the present study helped to prevent hippocampal neurogenesis and disruptive neurobehaviors caused by neuroinflammation.
Collapse
Affiliation(s)
- Wen Zeng
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China
| | - Yujiro Ando
- Withpety Co., Ltd., 1-9-3 Shin-ishikawa, Aoba-ku, Yokohama, Kanagawa 225-0003, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
9
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
10
|
Moreira J, Machado M, Dias-Teixeira M, Ferraz R, Delerue-Matos C, Grosso C. The neuroprotective effect of traditional Chinese medicinal plants-A critical review. Acta Pharm Sin B 2023; 13:3208-3237. [PMID: 37655317 PMCID: PMC10465969 DOI: 10.1016/j.apsb.2023.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Neurodegenerative and neuropsychiatric diseases are increasingly affecting individuals' quality of life, thus increasing their cost to social and health systems. These diseases have overlapping mechanisms, such as oxidative stress, protein aggregation, neuroinflammation, neurotransmission impairment, mitochondrial dysfunction, and excitotoxicity. Currently, there is no cure for neurodegenerative diseases, and the available therapies have adverse effects and low efficacy. For neuropsychiatric disorders, such as depression, the current therapies are not adequate to one-third of the patients, the so-called treatment-resistant patients. So, searching for new treatments is fundamental. Medicinal plants appear as a strong alternative and complement towards new treatment protocols, as they have been used for health purposes for thousands of years. Thus, the main goal of this review is to revisit the neuroprotective potential of some of the most predominant medicinal plants (and one fungus) used in traditional Chinese medicine (TCM), focusing on their proven mechanisms of action and their chemical compositions, to give clues on how they can be useful against neurodegeneration progression.
Collapse
Affiliation(s)
- João Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Mariana Machado
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa 1950-396, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
- REQUIMTE/LAQV, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| |
Collapse
|
11
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
13
|
Boateng ID. Potentialities of Ginkgo extract on toxicants, toxins, and radiation: a critical review. Food Funct 2022; 13:7960-7983. [PMID: 35801619 DOI: 10.1039/d2fo01298g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to toxins is a severe threat to human health and life in today's developing and industrialized world. Therefore, identifying a protective chemical could be valuable and fascinating in this case. The purpose of this article was to bring together thorough review of studies on Ginkgo biloba to aid in the creation of ways for delivering its phytoconstituents to treat toxicants and radiation. This review gathered and evaluated studies on the defensive impact of Ginkgo biloba extract (GBE) against toxicities caused by toxic chemical agents (such as lead, cadmium, and aluminum), natural toxins (for example, lipopolysaccharide-induced toxicity and damage, gossypol, latadenes, and lotaustralin), and radiation (for example, gamma, ultra-violet, and radio-frequency radiation). According to this review, GBE has a considerable therapeutic effect by influencing specific pathophysiological targets. Furthermore, GBE has antioxidant, anti-inflammatory, anti-apoptotic, and antigenotoxicity properties against various toxicities. These are due to flavone glycosides (primarily isorhamnetin, kaempferol, and quercetin) and terpene trilactones (ginkgolides A, B, C, and bilobalide) that aid GBEs' neutralizing effect against radiation and toxins by acting independently or synergistically. This will serve as a reference for the functional food, cosmetic, and pharmaceutical industries worldwide.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| |
Collapse
|
14
|
Yang MH, Ha IJ, Lee SG, Um JY, Ahn KS. Abrogation of STAT3 activation cascade by Ginkgolide C mitigates tumourigenesis in lung cancer preclinical model. J Pharm Pharmacol 2021; 73:1630-1642. [PMID: 34559878 DOI: 10.1093/jpp/rgab114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Ginkgolide C (GGC) isolated from Ginkgo biloba (Ginkgoaceae) leaf can demonstrate pleiotropic pharmacological actions. However, its anti-oncogenic impact in non-small cell lung cancer (NSCLC) model has not been reconnoitered. As signal transducer and activator of transcription 3 (STAT3) cascade can promote tumour growth and survival, we contemplated that GGC may interrupt this signalling cascade to expend its anti-cancer actions in NSCLC. METHODS The effect of GGC on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation and apoptosis was examined. The in-vivo effect of GGC on the growth of human NSCLC xenograft tumours in athymic nu/nu female mice was also investigated. KEY FINDINGS GGC attenuated the phosphorylation of STAT3 and STAT3 upstream kinases effectively. Exposure to pervanadate modulated GGC-induced down-regulation of STAT3 activation and promoted an elevation in the level of PTPε protein. Indeed, silencing of the PTPε gene reversed the GGC-promoted abrogation of STAT3 activation and apoptosis. Moreover, GGC exposure significantly reduced NSCLC tumour growth without demonstrating significant adverse effects via decreasing levels of p-STAT3 in mice tissues. CONCLUSIONS Overall, the findings support that GGC may exhibit anti-neoplastic actions by mitigation of STAT3 signalling cascade in NSCLC.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Liu Y, Ding S, Luan Y, Zhu Z, Cai Y, Liu Y. Ginkgo biloba extracts inhibit post-ischemic LTP through attenuating EPSCs in rat hippocampus. Metab Brain Dis 2021; 36:2299-2311. [PMID: 34463942 DOI: 10.1007/s11011-021-00830-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied. The evoked Excitatory postsynaptic currents (EPSCs) and miniature EPSCs were recorded on hippocampal slices from SD rats (14-21 days of age) by whole-cell patch-clamp recording and long-term potentiation (LTP) was induced by theta-burst stimulation. Acutely applied EGb761 inhibited the LTP, but bilaterally affect the evoked EPSCs. The evoked EPSCs were increased by incubation of lower concentration of EGb761, then the evoked EPSCs were decreased by incubation of higher concentration of EGb761. EGb761 monomer component GA, GB and GC could also inhibit the TBS-induced LTP and EPSC amplitude but not paired-pulse ratio (PPR). But quercetin, another monomer component of EGb761, led to increase in EPSC amplitude and decrease in PPR. Simultaneously, EGb761 and its monomer component ginkgolides inhibited the post-ischemic LTP (i-LTP) by inhibiting the EPSCs and the AMPA receptor subunit GluA1 expression on postsynaptic membrane. The results indicated that high concentration of EGb761 might inhibit LTP and i-LTP through inhibition effects of GA, GB and GC on AMPA receptors.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China.
| | - Supeng Ding
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yifei Luan
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| | - Zhichao Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yuting Cai
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Yingkui Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
16
|
Dal-Pizzol F, de Medeiros GF, Michels M, Mazeraud A, Bozza FA, Ritter C, Sharshar T. What Animal Models Can Tell Us About Long-Term Psychiatric Symptoms in Sepsis Survivors: a Systematic Review. Neurotherapeutics 2021; 18:1393-1413. [PMID: 33410107 PMCID: PMC8423874 DOI: 10.1007/s13311-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lower sepsis mortality rates imply that more patients are discharged from the hospital, but sepsis survivors often experience sequelae, such as functional disability, cognitive impairment, and psychiatric morbidity. Nevertheless, the mechanisms underlying these long-term disabilities are not fully understood. Considering the extensive use of animal models in the study of the pathogenesis of neuropsychiatric disorders, it seems adopting this approach to improve our knowledge of postseptic psychiatric symptoms is a logical approach. With the purpose of gathering and summarizing the main findings of studies using animal models of sepsis-induced psychiatric symptoms, we performed a systematic review of the literature on this topic. Thus, 140 references were reviewed, and most of the published studies suggested a time-dependent recovery from behavior alterations, despite the fact that some molecular alterations persist in the brain. This review reveals that animal models can be used to understand the mechanisms that underlie anxiety and depression in animals recovering from sepsis.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | | | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Aurélien Mazeraud
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
| | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, 75015 Paris, France
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| |
Collapse
|
17
|
Kaukas L, Krieg J, Collins-Praino L, Corrigan F. Effects of Remote Immune Activation on Performance in the 5-Choice Serial Reaction Time Task Following Mild Traumatic Brain Injury in Adolescence. Front Behav Neurosci 2021; 15:659679. [PMID: 33867953 PMCID: PMC8046921 DOI: 10.3389/fnbeh.2021.659679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In adult pre-clinical models, traumatic brain injury (TBI) has been shown to prime microglia, exaggerating the central inflammatory response to an acute immune challenge, worsening depressive-like behavior, and enhancing cognitive deficits. Whether this phenomenon exists following mTBI during adolescence has yet to be explored, with age at injury potentially altering the inflammatory response. Furthermore, to date, studies have predominantly examined hippocampal-dependent learning domains, although pre-frontal cortex-driven functions, including attention, motivation, and impulsivity, are significantly affected by both adolescent TBI and acute inflammatory stimuli. As such, the current study examined the effects of a single acute peripheral dose of LPS (0.33 mg/kg) given in adulthood following mTBI in mid-adolescence in male Sprague–Dawley rats on performance in the 5-choice serial reaction time task (5-CSRTT). Only previously injured animals given LPS showed an increase in omissions and reward collection latency on the 5-CSRTT, with no effect noted in sham animals given LPS. This is suggestive of impaired motivation and a prolonged central inflammatory response to LPS administration in these animals. Indeed, morphological analysis of myeloid cells within the pre-frontal cortex, via IBA1 immunohistochemistry, found that injured animals administered LPS had an increase in complexity in IBA1+ve cells, an effect that was seen to a lesser extent in sham animals. These findings suggest that there may be ongoing alterations in the effects of acute inflammatory stimuli that are driven, in part by increased reactivity of microglial cells.
Collapse
Affiliation(s)
- Lola Kaukas
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justin Krieg
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey Collins-Praino
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Frances Corrigan
- Head Injury Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Omidkhoda SF, Razavi BM, Hosseinzadeh H. Protective effects of Ginkgo biloba L. against natural toxins, chemical toxicities, and radiation: A comprehensive review. Phytother Res 2019; 33:2821-2840. [PMID: 31429152 DOI: 10.1002/ptr.6469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays in our developing and industrial world, humans' health or even their life is threatened by exposure to poisons. In this situation, detecting a protective compound could be helpful and interesting. In the present article, we collected and reviewed all studies, which have been conducted so far about the protective effects of Ginkgo biloba L. (GB), one of the most ancient medicinal tree species, against toxicities induced by chemical toxic agents, natural toxins, and also radiation. In overall, investigations showed that GB exerts the antioxidant, antiinflammatory, antiapoptotic, and antigenotoxicity effects in different toxicities. There are also some special mechanisms about its protective effects against some specific toxic agents, such as acetylcholine esterase inhibition in the aluminium neurotoxicity or membrane-bond phosphodiesterase activation in the triethyltin toxicity. Ginkgolide A was the most investigated active ingredient of G. biloba leaf extract as a protective compound against toxicities, which had the similar effects of total extract. A few clinical studies have been conducted in this field, which demonstrated the beneficial effects of GB against toxic agents. However, the promising effects of this valuable herbal extract will practically remain useless without carrying out more clinical studies and proving its effects on human beings.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - BiBi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Felger JC. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders. Curr Neuropharmacol 2018; 16:533-558. [PMID: 29173175 PMCID: PMC5997866 DOI: 10.2174/1570159x15666171123201142] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/23/2017] [Accepted: 11/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have reported evidence that inflammation and release of inflammatory cytokines affect circuitry relevant to both reward and threat sensitivity to contribute to behavioral change. Of relevance to mood and anxiety-related disorders, biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of patients with major depressive disorder (MDD), bipolar disorder, anxiety disorders and post-traumatic stress disorder (PTSD). Methods This review summarized clinical and translational work demonstrating the impact of peripheral inflammation on brain regions and neurotransmitter systems relevant to both reward and threat sensitivity, with a focus on neuroimaging studies involving administration of inflammatory stimuli. Recent translation of these findings to further understand the role of inflammation in mood and anxiety-related disorders is also discussed. Results Inflammation was consistently found to affect basal ganglia and cortical reward and motor circuits to drive reduced motivation and motor activity, as well as anxiety-related brain regions including amygdala, insula and anterior cingulate cortex, which may result from cytokine effects on monoamines and glutamate. Similar relationships between inflammation and altered neurocircuitry have been observed in MDD patients with increased peripheral inflammatory markers, and such work is on the horizon for anxiety disorders and PTSD. Conclusion Neuroimaging effects of inflammation on reward and threat circuitry may be used as biomarkers of inflammation for future development of novel therapeutic strategies to better treat mood and anxiety-related disorders in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
20
|
Hu Q, Shen P, Bai S, Dong M, Liang Z, Chen Z, Wang W, Wang H, Gui S, Li P, Xie P. Metabolite-related antidepressant action of diterpene ginkgolides in the prefrontal cortex. Neuropsychiatr Dis Treat 2018; 14:999-1011. [PMID: 29713170 PMCID: PMC5907891 DOI: 10.2147/ndt.s161351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ginkgo biloba extract (GBE) contains diterpene ginkgolides (DGs), which have been shown to have neuroprotective effects by a number of previous studies. We previously demonstrated part of the action of DG. However, the impact of DG on the prefrontal cortex (PFC) remains unclear. Here, we evaluated the effects of DG and venlafaxine (for comparison) on behavioral and metabolite changes in the PFC using mice models and gas chromatography-mass spectrometry-based metabolomics. MATERIALS AND METHODS Mice were randomly divided into control (saline), DG (12.18 mg/kg) and venlafaxine (16 mg/kg) groups. After 2 weeks of treatment, depression and anxiety-related behavioral tests were performed. Metabolic profiles of the PFC were detected by gas chromatography-mass spectrometry. RESULTS The DG group exhibited positive effects in the sucrose preference test. The differential metabolites were mainly related to amino acid metabolism, energy metabolism and lipid metabolism. The results indicated that the DG group exhibited perturbed lipid metabolism, molecular transport and small-molecule biochemistry in the PFC. Compared with the control group, pathway analysis indicated that venlafaxine and DG had similar effects on alanine, aspartate and glutamate metabolism. CONCLUSION These findings demonstrate that DG has antidepressant-like, but not anxiolytic-like, effects in mice, suggesting that it might have therapeutic potential for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Qingchuan Hu
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University
| | - Peng Shen
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Shunjie Bai
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University
| | - Meixue Dong
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Zihong Liang
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing.,Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia
| | - Zhi Chen
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Siwen Gui
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Pengfei Li
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science.,Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
EGb761 attenuates depressive-like behaviours induced by long-term light deprivation in C57BL/6J mice through inhibition of NF-κB-IL-6 signalling pathway. Cent Eur J Immunol 2017; 41:350-357. [PMID: 28450797 PMCID: PMC5382876 DOI: 10.5114/ceji.2016.63807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Our previous investigation found that Ginkgo extract EGb761 could attenuate the depressive-like behaviours induced by a single injection of lipopolysaccharide in mice. However, it has not been investigated whether EGb761 is effective on depressive-like behaviours induced by long-term light deprivation and whether its effects are associated with the inhibition of NF-κB-IL-6 signalling pathway. In this study, three groups (vehicle group, EGb761 low-dose group, and EGb761 high-dose group) of C57BL/6J male mice were exposed to constant darkness for four weeks. The control mice remained on a 12 : 12 light-dark cycle. Depressive-like behaviours were evaluated by tail suspension test (TST), forced swim test (FST), and sucrose preference test (SPT). Spontaneous locomotor activity was evaluated by open field test (OFT). Levels of IL-6, IL-6 mRNA, NF-κB p65, phospho-NF-κB p65, IκBα, and phospho-IκBα were measured using Elisa, western blotting, or PCR assays. NF-κB p65 DNA binding activity was evaluated using Chemi Transcription Factor Assay Kit. Results showed long-term light deprivation prolonged the immobile time in TST and FST, shortened the latency to immobility in FST, reduced spontaneous locomotor activity in OFT, decreased sucrose preference in SPT, and increased levels of IL-6, IL-6 mRNA, NF-κB p65, phospho-NF-κB p65, and phospho-IκBα in hippocampal tissue. EGb761 dose-dependently reversed the changes of the above parameters induced by long-term light deprivation, without affecting spontaneous locomotor activity. We conclude that EGb761 could attenuate the depressive-like behaviours and inhibit the NF-κB-IL-6 signalling pathway in a light-deprivation-induced mouse model of depression.
Collapse
|
22
|
Deng H, Xu J, Yeung WF. Ginkgo biloba versus placebo for schizophrenia. Hippokratia 2017. [DOI: 10.1002/14651858.cd012524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongyong Deng
- Shanghai University of Traditional Chinese Medicine; Institute of TCM Literature; No. 1200 Cailun Road Pudong District Shanghai China 201203
| | - Ji Xu
- Shanghai University of Traditional Chinese Medicine; Institute of TCM Literature; No. 1200 Cailun Road Pudong District Shanghai China 201203
| | - Wing-Fai Yeung
- The Hong Kong Polytechnic University; School of Nursing; Hong Kong China
| |
Collapse
|
23
|
Felger JC, Treadway MT. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017; 42:216-241. [PMID: 27480574 PMCID: PMC5143486 DOI: 10.1038/npp.2016.143] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023]
Abstract
Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Tung YC, Hsieh PH, Pan MH, Ho CT. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J Food Drug Anal 2017; 25:100-110. [PMID: 28911527 PMCID: PMC9333434 DOI: 10.1016/j.jfda.2016.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
Dietary phytochemicals from food and herbs have been studied for their health benefits for a long time. The incidence of obesity has seen an incredible increase worldwide. Although dieting, along with increased physical activity, seems an easy method in theory to manage obesity, it is hard to apply in real life. Obesity treatment drugs and surgery are not successful or targeted for everyone and can have significant side effects. This low rate of success is the major reason that the overweight as well as the pharmaceutical industry seek alternative methods, including phytochemicals. Therefore, more and more research has focused on the role of phytochemicals to alleviate lipid accumulation or enhance energy expenditure in adipocytes. This review discusses selected phytochemicals from food and herbs and their effects on adipogenesis, lipogenesis, lipolysis, oxidation of fatty acids, and browning in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
| | - Pei-Hsuan Hsieh
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 106,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402,
Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354,
Taiwan
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901,
USA
- Corresponding authors: Institute of Food Science and Technology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan (M.-H. Pan); Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA (C.-T. Ho). E-mail addresses: (M.-H. Pan), (C.-T. Ho)
| |
Collapse
|
25
|
GC-MS-based metabolomic study on the antidepressant-like effects of diterpene ginkgolides in mouse hippocampus. Behav Brain Res 2016; 314:116-24. [PMID: 27498146 DOI: 10.1016/j.bbr.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Ginkgo biloba extract (GBE), including EGb-761, have been suggested to have antidepressant activity based on previous behavioral and biochemical analyses. However, because GBE contain many constituents, the mechanisms underlying this suggested antidepressant activity are unclear. Here, we investigated the antidepressant-like effects of diterpene ginkgolides (DG), an important class of constituents in GBE, and studied their effects in the mouse hippocampus using a GC-MS-based metabolomics approach. Mice were randomly divided into five groups and injected daily until testing with 0.9% NaCl solution, one of three doses of DG (4.06, 12.18, and 36.54mg/kg), or venlafaxine. Sucrose preference (SPT) and tail suspension (TST) tests were then performed to evaluate depressive-like behaviors in mice. DG (12.18 and 36.54mg/kg) and venlafaxine (VLX) administration significantly increased hedonic behavior in mice in the SPT. DG (12.18mg/kg) treatment also shortened immobility time in the TST, suggestive of antidepressant-like effects. Significant differences in the metabolic profile in the DG (12.18mg/kg) compared with the control or VLX group indicative of an antidepressant-like effect were observed using multivariate analysis. Eighteen differential hippocampal metabolites were identified that discriminated the DG (12.18mg/kg) and control groups. These biochemical changes involved neurotransmitter metabolism, oxidative stress, glutathione metabolism, lipid metabolism, energy metabolism, and kynurenic acid, providing clues to the therapeutic mechanisms of DG. Thus, this study showed that DG has antidepressant-like activities in mice and shed light on the biological mechanisms underlying the effects of diterpene ginkgolides on behavior, providing an important drug candidate for the treatment of depression.
Collapse
|
26
|
Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol 2016; 19:pyw028. [PMID: 27026361 PMCID: PMC5043641 DOI: 10.1093/ijnp/pyw028] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/23/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Jennifer L Remus
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert Dantzer
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
de Oliveira DR, Zamberlam CR, Rêgo GM, Cavalheiro A, Cerutti JM, Cerutti SM. Effects of a Flavonoid-Rich Fraction on the Acquisition and Extinction of Fear Memory: Pharmacological and Molecular Approaches. Front Behav Neurosci 2016; 9:345. [PMID: 26778988 PMCID: PMC4700274 DOI: 10.3389/fnbeh.2015.00345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
The effects of flavonoids have been correlated with their ability to modulate the glutamatergic, serotoninergic, and GABAergic neurotransmission; the major targets of these substances are N-methyl-D-aspartic acid receptor (NMDARs), serotonin type1A receptor (5-HT1ARs), and the gamma-aminobutyric acid type A receptors (GABAARs). Several studies showed that these receptors are involved in the acquisition and extinction of fear memory. This study assessed the effects of treatment prior to conditioning with a flavonoid-rich fraction from the stem bark of Erythrina falcata (FfB) on the acquisition and extinction of the conditioned suppression following pharmacological manipulations and on gene expression in the dorsal hippocampus (DH). Adult male Wistar rats were treated before conditioned fear with FfB, vehicle, an agonist or antagonist of the 5-HT1AR, GABAARs or the GluN2B-NMDAR or one of these antagonists before FfB treatment. The effects of these treatments on fear memory retrieval, extinction training and extinction retrieval were evaluated at 48, 72, and 98 h after conditioning, respectively. We found that activation of GABAARs and inactivation of GluN2B-NMDARs play important roles in the acquisition of lick response suppression. FfB reversed the effect of blocking GluN2B-NMDARs on the conditioned fear and induced the spontaneous recovery. Blocking the 5-HT1AR and the GluN2B-NMDAR before FfB treatment seemed to be associated with weakening of the spontaneous recovery. Expression of analysis of DH samples via qPCR showed that FfB treatment resulted in the overexpression of Htr1a, Grin2a, Gabra5, and Erk2 after the retention test and of Htr1a and Erk2 after the extinction retention test. Moreover, blocking the 5-HT1ARs and the GluN2B-NMDARs before FfB treatment resulted in reduced Htr1a and Grin2b expression after the retention test, but played a distinct role in Grin2a and Erk2 expression, according session evaluated. We show for the first time that the serotoninergic and glutamatergic receptors are important targets for the effect of FfB on the conditioned fear and spontaneous recovery, in which the ERK signaling pathway appears to be modulated. Further, these results provide important information regarding the role of the DH in conditioned suppression. Taken together, our data suggest that FfB represents a potential therapy for preventing or treating memory impairments.
Collapse
Affiliation(s)
- Daniela R de Oliveira
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de São PauloSão Paulo, Brazil; Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São PauloSão Paulo, Brazil
| | - Claudia R Zamberlam
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de São PauloSão Paulo, Brazil; Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São PauloSão Paulo, Brazil
| | - Gizelda M Rêgo
- Department of Forestry Colombo, Brazilian Agricultural Research Corporation Colombo, Brazil
| | - Alberto Cavalheiro
- Institute of Chemistry, Nuclei of Bioassay, Biosynthesis and Ecophysiology of Natural Products, São Paulo State University, Universidade Estadual Paulista Araraquara, Brazil
| | - Janete M Cerutti
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo São Paulo, Brazil
| | - Suzete M Cerutti
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
28
|
Felger JC. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications. Curr Top Behav Neurosci 2016; 31:199-219. [PMID: 27225499 DOI: 10.1007/7854_2016_13] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences and The Winship Cancer Institute, Emory University School of Medicine, 1365-B Clifton Road, 5th Floor, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:298635. [PMID: 26413119 PMCID: PMC4568043 DOI: 10.1155/2015/298635] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022]
Abstract
Ginkgolide C, isolated from Ginkgo biloba leaves, is a diterpene lactone derivative [corrected] reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.
Collapse
|
30
|
Esin RG, Naprienko MV, Mukhametova ER, Khairullin IK, Esin OR. [Tanakan as a multimodal cytoprotective factor in general medicine (part II)]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:177-182. [PMID: 26978514 DOI: 10.17116/jnevro2015115112177-182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The second section of the review provides an update of the data on mechanisms of action of a standardized extract of Ginkgo biloba EGb761® (tanakan) and its efficacy in treatment of depression, pain, complications of diabetes, Parkinson disease, tinnitus and dizziness, reproductive dysfunction. Updated data enable to use EGb761® (tanakan) as a highly-effective cytoprotective agent in treatment of cardiovascular, degenerative and metabolic diseases of the nervous system, inner ear disturbances (tinnitus), dysfunction of reproductive system as well as in prevention and treatment of stress-induced disorders.
Collapse
Affiliation(s)
- R G Esin
- Kazan State Medical Academy, Kazan; Kazan Federal University, Kazan
| | - M V Naprienko
- Sechenov First Moscow State Medical University, Moscow
| | | | | | | |
Collapse
|