1
|
Guo C, Wan L, Li C, Wen Y, Pan H, Zhao M, Wang J, Ma X, Nian Q, Tang J, Zeng J. Natural products for gastric carcinoma prevention and treatment: Focus on their antioxidant stress actions in the Correa's cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155253. [PMID: 38065034 DOI: 10.1016/j.phymed.2023.155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Correa's cascade is a pathological process beginning from gastritis to gastric precancerous lesions, and finally to gastric carcinoma (GC). While the pathogenesis of GC remains unclear, oxidative stress plays a prominent role throughout the entire Correa's cascade process. Studies have shown that some natural products (NPs) could halt and even reverse the development of the Correa's cascade by targeting oxidative stress. METHODS To review the effects and mechanism by which NPs inhibit the Correa's cascade through targeting oxidative stress, data were collected from PubMed, Embase, Web of Science, ScienceDirect, and China National Knowledge Infrastructure databases from initial establishment to April 2023. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as terpenoid, polyphenols and alkaloids, exert multistep antioxidant stress effects on the Correa's cascade. These effects include preventing gastric mucosal inflammation (stage 1), reversing gastric precancerous lesions (stage 2), and inhibiting gastric carcinoma (stage 3). NPs can directly impact the conversion of gastritis to GC by targeting oxidative stress and modulating signaling pathways involving IL-8, Nrf2, TNF-α, NF-κB, and ROS/MAPK. Among which polyphenols have been studied more and are of high research value. CONCLUSIONS NPs display a beneficial multi-step action on the Correa's cascade, and have potential value for clinical application in the prevention and treatment of gastric cancer by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Cui Guo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lina Wan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Chengen Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources,Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianyuan Tang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
2
|
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:906-918. [PMID: 35919388 PMCID: PMC9333650 DOI: 10.1134/s1068162022050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022050132.
Collapse
Affiliation(s)
- E. A. H. Mohammed
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Y. Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Z. Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - X. Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Q. Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
3
|
Kim DH, Sim Y, Hwang JH, Kwun IS, Lim JH, Kim J, Kim JI, Baek MC, Akbar M, Seo W, Kim DK, Song BJ, Cho YE. Ellagic Acid Prevents Binge Alcohol-Induced Leaky Gut and Liver Injury through Inhibiting Gut Dysbiosis and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10091386. [PMID: 34573017 PMCID: PMC8465052 DOI: 10.3390/antiox10091386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major liver disease worldwide and can range from simple steatosis or inflammation to fibrosis/cirrhosis, possibly through leaky gut and systemic endotoxemia. Many patients with alcoholic steatohepatitis (ASH) die within 60 days after clinical diagnosis due to the lack of an approved drug, and thus, synthetic and/or dietary agents to prevent ASH and premature deaths are urgently needed. We recently reported that a pharmacologically high dose of pomegranate extract prevented binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Herein, we investigate whether a dietary antioxidant ellagic acid (EA) contained in many fruits, including pomegranate and vegetables, can protect against binge alcohol-induced leaky gut, endotoxemia, and liver inflammation. Pretreatment with a physiologically-relevant dose of EA for 14 days significantly reduced the binge alcohol-induced gut barrier dysfunction, endotoxemia, and inflammatory liver injury in mice by inhibiting gut dysbiosis and the elevated oxidative stress and apoptosis marker proteins. Pretreatment with EA significantly prevented the decreased amounts of gut tight junction/adherent junction proteins and the elevated gut leakiness in alcohol-exposed mice. Taken together, our results suggest that EA could be used as a dietary supplement for alcoholic hepatitis patients.
Collapse
Affiliation(s)
- Dong-ha Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Yejin Sim
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Jin-hyeon Hwang
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - In-Sook Kwun
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
| | - Jae-Hwan Lim
- Department of Biological Science, Andong National University, Andong 36729, Korea;
| | - Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jee-In Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA;
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda, Bethesda, MD 20892, USA
- Correspondence: (B.-J.S.); (Y.-E.C.)
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Korea; (D.-h.K.); (Y.S.); (J.-h.H.); (I.-S.K.)
- Correspondence: (B.-J.S.); (Y.-E.C.)
| |
Collapse
|
4
|
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K, Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 2021; 41:2195-2246. [PMID: 33587317 DOI: 10.1002/med.21791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. PLANTA MEDICA 2021; 87:511-527. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Zhengqi Cheng
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Yue Li
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Youmna Ali
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
6
|
Chen K, Yang R, Shen FQ, Zhu HL. Advances in Pharmacological Activities and Mechanisms of Glycyrrhizic Acid. Curr Med Chem 2021; 27:6219-6243. [PMID: 31612817 DOI: 10.2174/0929867325666191011115407] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Licorice (Glycyrrhiza glabra L.) is widely regarded as an important medicinal plant and has been used for centuries in traditional medicine because of its therapeutic properties. Studies have shown that metabolites isolated from licorice have many pharmacological activities, such as antiinflammatory, anti-viral, participation in immune regulation, anti-tumor and other activities. This article gives an overview of the pharmacological activities and mechanisms of licorice metabolites and the adverse reactions that need attention. This review helps to further investigate the possibility of licorice as a potential drug for various diseases. It is hoped that this review can provide a relevant theoretical basis for relevant scholars' research and their own learning.
Collapse
Affiliation(s)
- Kun Chen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Rong Yang
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Fa-Qian Shen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and
Application, School of Life Science, Guangzhou University, Guangzhou 510006, People’s Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing 210023, People’s Republic of China
| |
Collapse
|
7
|
Li Y, Wu Y, Li YJ, Meng L, Ding CY, Dong ZJ. Effects of Silymarin on the In Vivo Pharmacokinetics of Simvastatin and Its Active Metabolite in Rats. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24091666. [PMID: 31035343 PMCID: PMC6540003 DOI: 10.3390/molecules24091666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Herein, the effect of silymarin pretreatment on the pharmacokinetics of simvastatin in rats was evaluated. To ensure the accuracy of the results, a rapid and sensitive UPLC-MS/MS method was established for simultaneous quantification of simvastatin (SV) and its active metabolite simvastatin acid (SVA). This method was applied for studying the pharmacokinetic interactions in rats after oral co-administration of silymarin (45 mg/kg) and different concentrations of SV. The major pharmacokinetic parameters, including Cmax, tmax, t1/2, mean residence time (MRT), elimination rate constant (λz) and area under the concentration-time curve (AUC0-12h), were calculated using the non-compartmental model. The results showed that the co-administration of silymarin and SV significantly increased the Cmax and AUC0-12h of SVA compared with SV alone, while there was no significant difference with regards to Tmax and t1/2. However, SV pharmacokinetic parameters were not significantly affected by silymarin pretreatment. Therefore, these changes indicated that drug-drug interactions may occur after co-administration of silymarin and SV.
Collapse
Affiliation(s)
- Ying Li
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Yin Wu
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Ya-Jing Li
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Lu Meng
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Cong-Yang Ding
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Zhan-Jun Dong
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| |
Collapse
|
8
|
Fu Y, Wu HQ, Cui HL, Li YY, Li CZ. Gastroprotective and anti-ulcer effects of oxymatrine against several gastric ulcer models in rats: Possible roles of antioxidant, antiinflammatory, and prosurvival mechanisms. Phytother Res 2018; 32:2047-2058. [PMID: 30024074 DOI: 10.1002/ptr.6148] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yan Fu
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Huan-qing Wu
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Huai-liang Cui
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Yue-yun Li
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Chang-zheng Li
- Institute of biological life sciences; Xinxiang Medical University; Xinxiang 453003 China
| |
Collapse
|
9
|
Yurdakok-Dikmen B, Turgut Y, Filazi A. Herbal Bioenhancers in Veterinary Phytomedicine. Front Vet Sci 2018; 5:249. [PMID: 30364115 PMCID: PMC6191517 DOI: 10.3389/fvets.2018.00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Herbal bioenhancers are active phytomolecules that increase the bioavailability, bioefficacy and biological activity of various drugs when coadministered at low concentrations. These valuable compounds reduce the dose, increase the treatment rate, decrease the treatment duration, drug resistance or related adverse reactions which have economical implications in livestock and pet medicine. Eventhough the concept of herbal bioenhancers are known for years through Ayurvedic medicine, the underlying mechanisms remains unclear. The main mechanisms involved are related to drug absorption (effect on solubility, drug efflux and transport proteins, increased permeability in gastrointestinal system) and drug metabolism (inhibition/induction of drug metabolysing enzymes, thermogenic effect). Due to species specific differences in these mechanisms, corresponding data on human and laboratory animal could not be attributed. As multidrug resistance is a major treat to both human and animal health, within "One Health" concept, efficient therapeutical strategies are encouraged by authorities, where focus on herbal supplements as a vast unexploited field remains to be researched within "Bioenhancement Concept." This review brings insight to mechanims involved in bioenhancing effect, examples of herbal extracts and phytoactive compounds and their potential in the veterinary medicine including different classes of drugs such as antibiotics, anticancerous, antiviral, and antituberculosis.
Collapse
|
10
|
Gao CJ, Ding PJ, Yang LL, He XF, Chen MJ, Wang DM, Tian YX, Zhang HM. Oxymatrine Sensitizes the HaCaT Cells to the IFN-γ Pathway and Downregulates MDC, ICAM-1, and SOCS1 by Activating p38, JNK, and Akt. Inflammation 2017; 41:606-613. [DOI: 10.1007/s10753-017-0716-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother Res 2017; 31:1635-1650. [PMID: 28833680 DOI: 10.1002/ptr.5893] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Licorice (Glycyrrhiza glabra) has been considered as an herbal drug since ancient time. Nowadays, it is a well-known spice that possesses worth pharmacological effects. However, some relevant articles have revealed negative impacts of licorice in health. By considering the great wishes in using herbal medicine, it is important to show adverse effects of herbal medicine in health. At present, there are misunderstandings toward the safety of herbal medicines. Herein, we gathered scientific research projects on the toxicity effects of licorice and glycyrrhizin to highlight their safety. In this regards, we categorized our findings about the toxicity effects of licorice and glycyrrhizin in acute, sub-acute, sub-chronic, and chronic states. Besides, we discussed on the cytotoxicity, genotoxicity, mutagenicity, and carcinogenicity of licorice and glycyrrhizin as well as their developmental toxicity. This review disclosed that G. glabra and glycyrrhizin salts are moderately toxic. They need to be used with caution during pregnancy. G. glabra and glycyrrhizin possess selective cytotoxic effects on cancerous cells. The most important side effects of licorice and glycyrrhizin are hypertension and hypokalemic-induced secondary disorders. Licorice side effects are increased by hypokalemia, prolonged gastrointestinal transient time, decreased type 2 11-beta-hydroxysteroid dehydrogenase activities, hypertension, anorexia nervosa, old age, and female sex. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Somayeh Nazari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Stolf AM, Cardoso CC, Acco A. Effects of Silymarin on Diabetes Mellitus Complications: A Review. Phytother Res 2017; 31:366-374. [PMID: 28124457 DOI: 10.1002/ptr.5768] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is a common metabolic disorder that is caused by a deficit in the production of (type 1) or response to (type 2) insulin. Diabetes mellitus is characterized by a state of chronic hyperglycemia and such symptoms as weight loss, thirst, polyuria, and blurred vision. These disturbances represent one of the major causes of morbidity and mortality nowadays, despite available treatments, such as insulin, insulin secretagogues, insulin sensitizers, and oral hypoglycemic agents. However, many efforts have been made to discover new drugs for diabetes treatment, including medicinal plant extracts. Silymarin is a powder extract of the seeds from Silybum marianum, a plant from the Asteraceae family. The major active ingredients include four isomers: silybin, isosilybin, silychristin, and silydianin. Silymarin is indicated for the treatment of hepatic disorders, such as cirrhosis, chronic hepatitis, and gallstones. Moreover, several studies of other pathologies, including diabetes, sepsis, osteoporosis, arthritis, hypercholesterolemia, cancer, viral infections, and Alzheimer's and Parkinson's diseases, have tested the effects of silymarin and reported promising results. This article reviews data from clinical, in vivo, and in vitro studies on the use of silymarin, with a focus on the complications of diabetes, including nephropathy, neuropathy, healing delays, oxidative stress, hepatotoxicity, and cardiomyopathy. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aline Maria Stolf
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|