1
|
Németh Z, Paulinné Bukovics M, Sümegi LD, Sturm G, Takács I, Simon-Szabó L. The Importance of Edible Medicinal Mushrooms and Their Potential Use as Therapeutic Agents Against Insulin Resistance. Int J Mol Sci 2025; 26:827. [PMID: 39859540 PMCID: PMC11765957 DOI: 10.3390/ijms26020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to conventional treatments, there is growing interest in preventive and complementary therapies. Proper nutrition can prevent the manifestation of several chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer, and can attenuate the severity of these diseases. Edible mushrooms have been used as nutrition and medicine for thousands of years. The spectrum and quantity of their medicinal compounds made them a widely investigated target both in basic research and clinical trials. The most abundant and medically important components are polysaccharides, terpenoids, phenols, and heterocyclic amines, but bioactive proteins, vitamins, including vitamin D, polyunsaturated fatty acids, and essential minerals are also important ingredients with noteworthy health benefits. Mushroom extracts have anti-diabetic, anti-hyperlipidemic, anti-inflammatory, antioxidant, cardioprotective, anti-osteoporotic, and anti-tumor effects and are well tolerated, even by cancer patients. In our previous review we detailed the molecular aspects of the development of type 2 diabetes, discussing the role of physical activity and diet, but we did not detail the role of medicinal mushrooms as part of nutrition. In this review, we aimed to summarize the most important medical mushrooms, along with their natural habitats, growing conditions, and components, that are presumably sufficient for the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | | | - Liza Dalma Sümegi
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői Út 78/b, 1082 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary; (L.D.S.); (I.T.)
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37–47, 1094 Budapest, Hungary;
| |
Collapse
|
2
|
Zhao Y, Qiao M, Wang X, Luo X, Yang J, Hu J. Allantoin reduces glucotoxicity and lipotoxicity in a type 2 diabetes rat model by modulating the PI3K and MAPK signaling pathways. Heliyon 2024; 10:e34716. [PMID: 39144993 PMCID: PMC11320158 DOI: 10.1016/j.heliyon.2024.e34716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Objective The current study aimed to investigate the potential therapeutic impact of allantoin on diabetes produced by a high-fat diet (HFD) and streptozotocin (STZ) in rats. Subjects and methods Male Sprague-Dawley rats were fed a high-fat diet to induce insulin resistance, followed by streptozotocin injection to induce diabetes. The effect of oral treatment of allantoin (200, 400 and 800 mg/kg/day) for 8 weeks was evaluated by calculating the alteration in metabolic parameters, biochemical indicators, the oral glucose tolerance tests (OGTT) and hyperinsulinemic-euglycemic clamp tests were performed. Histopathological studies were performed in the liver, kidney and pancreas. Next, the expressions of the MAPK and insulin signaling pathway were measured by Western blot analysis to elucidate the potential mechanism underlying these antidiabetic activities. Results The administration of allantoin resulted in a significant decrease in fasting blood glucose (FBG) levels, glycogen levels, and glycosylated hemoglobin levels in diabetic rats. Additionally, allantoin therapy led to a dose-dependent increase in body weight growth and serum insulin levels. In addition, the administration of allantoin resulted in a considerable reduction in lipid profile levels and amelioration of histological alterations in rats with diabetes. The administration of allantoin to diabetic rats resulted in a notable decrease in Malondialdehyde (MDA) levels, accompanied by an increase in the activity of antioxidant enzymes in the serum, liver, and kidney. The findings of oral glucose tolerance and hyperinsulinemic-euglycemic clamp tests demonstrated a significant rise in insulin resistance following the administration of allantoin. The upregulation of IRS-2/PI3K/p-Akt/GLUT expression by allantoin suggests a mechanistic relationship between the PI3K/Akt signaling pathway and the antihyperglycemic activity of allantoin. Furthermore, it resulted in a reduction in the levels of TGF-β1/p38MAPK/Caspase-3 expression in the aforementioned rat tissues affected by diabetes. Conclusions This study implies that allantoin treats type 2 diabetes by activating PI3K. Additionally, it reduces liver, kidney, and pancreatic apoptosis and inflammation-induced insulin resistance.re.
Collapse
Affiliation(s)
- Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Ming Qiao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| | - Xiaomei Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Xinjie Luo
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| |
Collapse
|
3
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
4
|
Molecular Basis of Irisin Regulating the Effects of Exercise on Insulin Resistance. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin resistance is recognized as one major feature of metabolic syndrome, and frequently emerges as a difficult problem encountered during long-term pharmacological treatment of diabetes. Insulin resistance often causes organs or tissues, such as skeletal muscle, adipose, and liver, to become less responsive or resistant to insulin. Exercise can promote the physiological function of those organs and tissues and benefits insulin action via increasing insulin receptor sensitivity, glucose uptake, and mitochondrial function. This is done by decreasing adipose tissue deposition, inflammatory cytokines, and oxidative stress. However, understanding the mechanism that regulates the interaction between exercise and insulin function becomes a challenging task. As a novel myokine, irisin is activated by exercise, released from the muscle, and affects multi-organ functions. Recent evidence indicates that it can promote glucose uptake, improve mitochondrial function, alleviate obesity, and decrease inflammation, as a result leading to the improvement of insulin action. We here will review the current evidence concerning the signaling pathways by which irisin regulates the effect of exercise on the up-regulation of insulin action in humans and animals.
Collapse
|
5
|
Zhao R. Irisin at the crossroads of inter-organ communications: Challenge and implications. Front Endocrinol (Lausanne) 2022; 13:989135. [PMID: 36267573 PMCID: PMC9578559 DOI: 10.3389/fendo.2022.989135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The physiological functions of organs are intercommunicated occurring through secreted molecules. That exercise can improve the physiological function of organs or tissues is believed by secreting myokines from muscle to target remote organs. However, the underlying mechanism how exercise regulates the inter-organ communications remains incompletely understood yet. A recently identified myokine-irisin, primarily found in muscle and adipose and subsequently extending to bone, heart, liver and brain, provides a new molecular evidence for the inter-organ communications. It is secreted under the regulation of exercise and mediates the intercommunications between exercise and organs. To best our understanding of the regulatory mechanism, this review discusses the recent evidence involving the potential molecular pathways of the inter-organ communications, and the interactions between signalings and irisin in regulating the impact of exercise on organ functions are also discussed.
Collapse
|
6
|
Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. MATERIALS 2021; 14:ma14247640. [PMID: 34947237 PMCID: PMC8706457 DOI: 10.3390/ma14247640] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
It is well-known that the utilization of mushrooms as therapeutic agents is not new. Over the past years, they have been used by local individuals as food, as well as medicines, throughout the world. Nowadays, mushrooms are excessively used in the medicine, pharmacy, food, and fermentation fields as well. Wild mushrooms are of particular interest, especially Trametes versicolor (commonly known as turkey mushrooms) due to their various uses in the food and pharmaceutical industries. They represent not only a huge storehouse of vitamins, minerals, and dietary fiber, but they are also an important source of bioactive polysaccharides. They are widely used in traditional oriental therapies. The fruiting bodies are used in the preparation of health tonics and tea. The present review is necessary to explore more about this mushroom-like classical taxonomy, morphology, nutritional value, bioactivity, various health attributes, mechanism of bioactive components against various diseases, and food applications. The influence of processing processes on the nutritional properties and bioactivity of the fungus is discussed. Potential bioactive components promising health attributes of Trametes versicolor are extensively described. Additionally, several in vivo and in vitro studies have demonstrated the beneficial effects of polysaccharopeptides (PSP) and Polysaccharide-K (PSK) on the aspects related to immune function and inflammation, also presenting an anticancerous effect. Moreover, PSP and PSK were successfully described to decrease several life-threatening diseases. The potential food applications of Trametes versicolor were detailed to signify the effective utilization of the mushroom in functional food formulation.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India;
- Correspondence: (P.C.); (M.F.); (S.Z.)
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India;
| | - Agnieszka Najda
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (P.C.); (M.F.); (S.Z.)
| | - Szabolcs Fogarasi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Correspondence: (P.C.); (M.F.); (S.Z.)
| |
Collapse
|
7
|
Ha X, Cai X, Cao H, Li J, Yang B, Jiang R, Li X, Li B, Xin Y. Docking protein 1 and free fatty acids are associated with insulin resistance in patients with type 2 diabetes mellitus. J Int Med Res 2021; 49:3000605211048293. [PMID: 34727748 PMCID: PMC8573522 DOI: 10.1177/03000605211048293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Insulin resistance (IR) is a key defect in type 2 diabetes mellitus (T2DM); therefore, effective means of ameliorating IR are sought. METHODS We performed a retrospective cohort study of 154 patients with T2DM and 39 with pre-diabetes (pre-DM). The effects of IR and a high concentration of FFA on gene expression were determined using microarray analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR) in patients with T2DM or pre-DM. RESULTS Serum FFA concentration and homeostasis model assessment of IR (HOMA-IR) were significantly higher in patients with T2DM but no obesity and in those with pre-DM than in controls. HOMA-IR was significantly associated with T2DM. RT-qPCR showed that the expression of FBJ murine osteosarcoma viral oncogene homolog (FOS) and AE binding protein 1 (AEBP1) was much lower in the circulation of participants with obesity and diabetes. RT-qPCR showed that the expression of docking protein 1 (DOK1) was significantly lower in the blood of participants with diabetes but no obesity and in those with pre-DM than in controls. CONCLUSIONS FFA and DOK1 are associated with IR in patients with T2DM but no obesity or pre-DM. The downregulation of DOK1 might inhibit lipid synthesis and induce lipolysis, inducing or worsening IR.
Collapse
Affiliation(s)
- Xiaoqin Ha
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China.,The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Cai
- Department of Medical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Huizhe Cao
- The Second Medical Centre of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Li
- The First People's Hospital of Baiyin, China
| | - Bo Yang
- Department of Obstetrics and Gynaecology, Reproductive Medicine Centre, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ruru Jiang
- Department of Haematology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xin Li
- The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China
| | - Yuan Xin
- Department of Clinical Laboratory, The People's Liberation Army Joint Service Support Unit 940 Hospital, Lanzhou, China
| |
Collapse
|
8
|
Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, Shrivastava G, Almutary AG, Alnuqaydan AM, Barh D, Dua K, Chellappan DK, Gupta G, Lotfi M, Serrano-Aroca Á, Bahar B, Mishra YK, Takayama K, Panda PK, Bakshi HA, Tambuwala MM. Overview of key molecular and pharmacological targets for diabetes and associated diseases. Life Sci 2021; 278:119632. [PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Yogendra Kumar Mishra
- University of Southern Denmark, Mads Clausen Institute, NanoSYD, Alsion 2, 6400 Sønderborg, Denmark
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Hamid A Bakshi
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom.
| |
Collapse
|
9
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
10
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
11
|
Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines 2020; 8:biomedicines8050135. [PMID: 32466253 PMCID: PMC7277906 DOI: 10.3390/biomedicines8050135] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Coriolus versicolor (L.) Quél. is a higher fungi or mushroom which is now known by its accepted scientific name as Trametes versicolor (L.) Lloyd (family Polyporaceae). The polysaccharides, primarily two commercial products from China and Japan as PSP and PSK, respectively, have been claimed to serve as adjuvant therapy for cancer. In this paper, research advances in this field, including direct cytotoxicity in cancer cells and immunostimulatory effects, are scrutinised at three levels: in vitro, in vivo and clinical outcomes. The level of activity in the various cancers, key targets (both in cancer and immune cells) and pharmacological efficacies are discussed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
12
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Ye X, Shen Y, Ni C, Ye J, Xin Y, Zhang W, Ren Y. Irisin reverses insulin resistance in C2C12 cells via the p38-MAPK-PGC-1α pathway. Peptides 2019; 119:170120. [PMID: 31351089 DOI: 10.1016/j.peptides.2019.170120] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Insulin resistance (IR) is a fundamental pathogenic factor shared by a myriad of metabolic disorders, including obesity and type 2 diabetes. The mechanism of IR is usually accompanied by mitochondrial dysfunction. Irisin has been proposed to act as a hormone in the regulation of energy homeostasis and metabolism. However, the effects of irisin on IR and mitochondrial function have not yet been fully investigated. Here, our research shows that irisin increases glucose uptake in C2C12 myoblast cells via the p38-mitogen-activated protein kinase (MAPK)-PGC-1α pathway. Irisin can also enhance mitochondrial function and mitochondrial respiration. Moreover, irisin stimulates autophagy via PGC-1α. Collectively, these data provide basic evidence to support the therapeutic potential of irisin for IR, which may rely on p38-MAPK-PGC-1α pathway activation and enhance mitochondrial function.
Collapse
Affiliation(s)
- Xiao Ye
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - YiMin Shen
- Department of Endocrinology, Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310003, China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Jun Ye
- Department of Gastroenterology, Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310003, China
| | - Yubo Xin
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China
| | - Wei Zhang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310003, China.
| | - YueZhong Ren
- Department of Endocrinology, Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
14
|
Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L. Coriolus versicolor
alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother Res 2019; 33:2737-2748. [PMID: 31338905 DOI: 10.1002/ptr.6448] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yueqiu Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yang Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yihan Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Fangfei Xiong
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yining Liu
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hongru Xue
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Zhenyu Yang
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Sha Ni
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Abbas Sahil
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Che
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| | - Lihong Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| |
Collapse
|
15
|
Bian C, Bai B, Gao Q, Li S, Zhao Y. 17β-Estradiol Regulates Glucose Metabolism and Insulin Secretion in Rat Islet β Cells Through GPER and Akt/mTOR/GLUT2 Pathway. Front Endocrinol (Lausanne) 2019; 10:531. [PMID: 31447779 PMCID: PMC6691154 DOI: 10.3389/fendo.2019.00531] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Aims: To explore the molecular mechanism by which 17β-estradiol (estrogen 2, E2) regulates glucose transporter 2 (GLUT2) and insulin secretion in islet β cells through G protein-coupled estrogen receptor (GPER) via Akt/mTOR pathway. Methods: SPF-grade SD male rats were used to establish an in vivo type 2 diabetes model treated with E2. Rat insulinoma cells (INS-1) were cultured in normal or high glucose media with or without E2. Immunofluorescence double staining was used to detect GPER, GLUT2, insulin, and glucagon immunolocalization in rat islet tissues. Western blot was used to detect GPER, Akt, mTOR, and GLUT2 protein immunocontent. Real-time PCR detected Slc2a2 and glucose kinase (GK) content, and ELISA was used to detect insulin levels. Glucose uptake, GK activity and pyruvate dehydrogenase (PDH) activity were analyzed with glucose detection, GK activity and PDH activity assay kit. Results: Immunofluorescence double staining confocal indicated that E2 treatment up-regulated expression levels of GPER, GLUT2, and insulin, while down-regulated glucagon. Western blot results revealed E2 increased GPER, Akt/mTOR pathway, and GLUT2 protein immunocontent. Real-time PCR showed E2 elevated Slc2a2, GK content. Moreover, E2 improved insulin secretion, glucose uptake, GK activity, and PDH activity. Conclusion: Our findings indicated that exogenous E2 up-regulated GPER via the Akt/mTOR pathway to increase GLUT2 protein content and insulin secretion in islet β cells.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Bai
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qian Gao
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyi Li
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuyan Zhao
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yuyan Zhao
| |
Collapse
|
16
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
17
|
Yang S, Zhang Y, Shen F, Ma X, Zhang M, Hou Y, Bai G. The flavonoid baicalin improves glucose metabolism by targeting the PH domain of AKT and activating AKT/GSK3β phosphorylation. FEBS Lett 2018; 593:175-186. [PMID: 30489635 DOI: 10.1002/1873-3468.13305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023]
Abstract
Baicalin is one of the main flavonoids of the dried root of Scutellaria baicalensis Georgi and is reported to exert beneficial effects on the regulation of glucose/lipid metabolism. However, understanding its specific target and unique mechanism for improving glucose utilization is a challenge. In this paper, target fishing with a baicalin probe reveals that baicalin interacts with AKT. An immunofluorescence assay further demonstrates the colocalization of baicalin with AKT in the cytoplasm. A competitive test and virtual docking show that baicalin might bind to the pleckstrin homology domain of AKT. This specific binding hampers AKT membrane translocation, activates the phosphorylation of AKT on Ser473, induces the downstream glycogen synthase kinase 3β activation, and affects glycogen synthesis.
Collapse
Affiliation(s)
- Shengnan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|