1
|
Cai J, Zhang W, Zhu S, Lin T, Mao R, Wu N, Zhang P, Kang M. Gut and Intratumoral microbiota: Key to lung Cancer development and immunotherapy. Int Immunopharmacol 2025; 156:114677. [PMID: 40279944 DOI: 10.1016/j.intimp.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Lung cancer is a common malignant tumor worldwide with high incidence and mortality rates. Previous studies have claimed that the microbial community plays an integral role in the development and progression of lung cancer. Emerging evidence reveals that gut flora plays a key role in cancer formation and evolution by participating in mechanisms such as metabolism, regulation of inflammation and immune response. Not only the gut flora, but also the presence of intratumoral microbiota may influence lung cancer progression through multiple mechanisms. These research advances suggest that intestinal flora and intratumoral microbiota may not only serve as potential biomarkers for lung cancer, but may also be targets for therapy. However, current studies on both in lung cancer are still limited. Given this, this study aimed to systematically review the latest findings on the major bacterial species of the intestinal flora and their possible protective or harmful roles in the formation, progression, and metastasis of lung cancer. In addition, we analyzed the potential mechanisms by which the intratumoral microbiota affected lung cancer and elaborated on the potential roles of the gut flora and its metabolites, as well as the intratumoral microbiota, in modulating the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ningzi Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
2
|
Hamed NS, Khateeb S, Elfouly SA, Tolba AMA, Hassan AI. Mitigation of radiation-induced jejunum injuries in rats through modulation of the p53-miR34a axis using etoricoxib-loaded nanostructured lipid carriers. Sci Rep 2024; 14:23728. [PMID: 39390040 PMCID: PMC11467169 DOI: 10.1038/s41598-024-73469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The most widely used cancer therapy is radiation therapy, but radiation damage to healthy tissues, particularly the gastrointestinal (GI) system, frequently reduces its effectiveness. This study investigates whether etoricoxib-loaded nanostructured lipid carriers (Et-NLC) could help shield the rat jejunum from radiation damage. Gamma irradiation (6 Gy) was used to damage the jejunum of Wistar albino rats, and then Et or Et-NLC (10 mg/kg b.w.) was administered orally for 14 days. It was found that the amounts of glutathione S-transferase (GST), superoxide dismutase (SOD), and nitric oxide (NO) decreased after irradiation but increased after Et-NLC therapy. Molecular analysis showed radiation-induced expression of microRNA-34a (miR34a), which may be involved in cellular stress response. Et-NLC treatments modulated the expression of miR34a, suggesting possible regulatory roles. Western blot analysis revealed changes in P53, interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and cyclooxygenase-2 (COX-2) levels. Et-NLC treatments decreased TNF-α, IL-6, IL-10, and COX-2 levels, indicating anti-inflammatory actions. DNA fragmentation analysis revealed a decrease in apoptotic activity after Et-NLC treatments. A histopathological examination confirmed that Et-NLC treatments had attenuated radiation damage, which had improved vascularization and reduced inflammation. The findings show that Et-NLC is more effective than Et-alone at reducing damage to the jejunum caused by radiation by controlling inflammation, oxidative stress, and apoptotic activity.
Collapse
Affiliation(s)
- Noha Sayed Hamed
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Shady A Elfouly
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Amina M A Tolba
- Anatomy Department, Faculty of Medicine, Al-Azhar University, Girl's Branch, Cairo, Egypt
| | - Amal I Hassan
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| |
Collapse
|
3
|
Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, Wang R, Zhang D, Lin J, Zheng C. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117733. [PMID: 38218504 DOI: 10.1016/j.jep.2024.117733] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS Ginger has potential for daily prevention and clinical treatment of CRC.
Collapse
Affiliation(s)
- Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rongrong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
5
|
Li D, Huang Z, Xu X, Li Y. Promising derivatives of rutaecarpine with diverse pharmacological activities. Front Chem 2023; 11:1199799. [PMID: 38025082 PMCID: PMC10646507 DOI: 10.3389/fchem.2023.1199799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Rutaecarpine (RUT) is a natural pentacyclic indolopyridoquinazolinone alkaloid first isolated from one of the most famous traditional Chinese herbs, Evodia rutaecarpa, which is used for treating a variety of ailments, including headaches, gastrointestinal disorders, postpartum hemorrhage, amenorrhea, difficult menstruation, and other diseases. Accumulating pharmacological studies showed that RUT possesses a wide range of pharmacological effects through different mechanisms. However, its poor physicochemical properties and moderate biological activities have hampered its clinical application. In this regard, the modification of RUT aimed at seeking its derivatives with better physicochemical properties and more potency has been extensively studied. These derivatives exhibit diverse pharmacological activities, including anti-inflammatory, anti-atherogenic, anti-Alzheimer's disease, antitumor, and antifungal activities via a variety of mechanisms, such as inhibiting cyclooxygenase-2 (COX-2), acetylcholine (AChE), phosphodiesterase 4B (PDE4B), phosphodiesterase 5 (PDE5), or topoisomerases (Topos). From this perspective, this paper provides a comprehensive description of RUT derivatives by focusing on their diverse biological activities. This review aims to give an insight into the biological activities of RUT derivatives and encourage further exploration of RUT.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaojun Xu
- Department of Party and Government Office, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Şahin TÖ, Yılmaz B, Yeşilyurt N, Cicia D, Szymanowska A, Amero P, Ağagündüz D, Capasso R. Recent insights into the nutritional immunomodulation of cancer-related microRNAs. Phytother Res 2023; 37:4375-4397. [PMID: 37434291 DOI: 10.1002/ptr.7937] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Cancer is the most common cause of death worldwide, following cardiovascular diseases. Cancer is a multifactorial disease and many reasons such as physical, chemical, biological, and lifestyle-related factors. Nutrition, which is one of the various factors that play a role in the prevention, development, and treatment of many types of cancer, affects the immune system, which is characterized by disproportionate pro-inflammatory signaling in cancer. Studies investigating the molecular mechanisms of this effect have shown that foods rich in bioactive compounds, such as green tea, olive oil, turmeric, and soybean play a significant role in positively changing the expression of miRNAs involved in the regulation of genes associated with oncogenic/tumor-suppressing pathways. In addition to these foods, some diet models may change the expression of specific cancer-related miRNAs in different ways. While Mediterranean diet has been associated with anticancer effects, a high-fat diet, and a methyl-restricted diet are considered to have negative effects. This review aims to discuss the effects of specific foods called "immune foods," diet models, and bioactive components on cancer by changing the expression of miRNAs in the prevention and treatment of cancer.
Collapse
Affiliation(s)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | | | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
7
|
Campaniello D, Bevilacqua A, Speranza B, Racioppo A, Sinigaglia M, Corbo MR. A narrative review on the use of probiotics in several diseases. Evidence and perspectives. Front Nutr 2023; 10:1209238. [PMID: 37497058 PMCID: PMC10368401 DOI: 10.3389/fnut.2023.1209238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gut microbiota is a complex ecosystem, strictly linked to health and disease, as a balanced composition (referred as eubiosis) is necessary for several physiological functions, while an unbalanced composition (dysbiosis) is often associated to pathological conditions and/or diseases. An altered microbiota could be positively affected and partially restored through probiotic supplementation, among others. This review addresses the effects of probiotics in several conditions, used as case-studies (colorectal cancer, neuro-psychiatric diseases, intestinal diseases, obesity, diabetes, metabolic syndrome, immune system, and musculoskeletal system disorders) by pointing out the clinical outcomes, the mode of action, mainly related to the production of short chain fatty acids (SCFA), the impact of probiotic dose and mode of supplementation, as well as trying to highlight a hit of the most used genera.
Collapse
|
8
|
Chopra H, Goyal R, Baig AA, Arora S, Dua K, Gautam RK. Synbiotics in Colon Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:115-133. [DOI: 10.1007/978-981-19-7550-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Gumbarewicz E, Jarząb A, Stepulak A, Kukula-Koch W. Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders-A Review of In Vivo Studies. Int J Mol Sci 2022; 23:15545. [PMID: 36555184 PMCID: PMC9779757 DOI: 10.3390/ijms232415545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a protective reaction of the innate immune system as a response to imbalances caused by a specific stimulus, a disease or a pathogen. A prolonged inflammatory condition may lead to the development of metabolic syndrome, which affects more than one-fourth of the world's population. This condition leads to the development of multi-organ disorders based on disrupted blood lipid and sugar levels, hypertension and oxidative stress. The review aims to present Zingiber officinale Rosc. as a plant that exhibits a variety of healing properties and restores the organism's equilibrium. Ginger (GI) rhizomes have been commonly used in traditional medicine to treat arthritis, stomach ache, nonalcoholic fatty liver disease, rheumatism, nervous system syndromes, asthma, diabetes and nausea caused by pregnancy or chemotherapy. This review gathers together data from in vivo experiments related to the application of ginger for the treatment of inflammatory conditions, obesity, diabetes and other related disorders as a consequence of metabolic syndrome, including the confirmed molecular mechanisms of action.
Collapse
Affiliation(s)
- Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Patra S, Sahu N, Saxena S, Pradhan B, Nayak SK, Roychowdhury A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front Microbiol 2022; 13:878297. [PMID: 35711771 PMCID: PMC9195627 DOI: 10.3389/fmicb.2022.878297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysbiosis/imbalance in the gut microbial composition triggers chronic inflammation and promotes colorectal cancer (CRC). Modulation of the gut microbiome by the administration of probiotics is a promising strategy to reduce carcinogenic inflammation. However, the mechanism remains unclear. Methods In this study, we presented a systematic network, meta-analysis, and molecular docking studies to determine the plausible mechanism of probiotic intervention in diminishing CRC-causing inflammations. Results We selected 77 clinical, preclinical, in vitro, and in vivo articles (PRISMA guidelines) and identified 36 probiotics and 135 training genes connected to patients with CRC with probiotic application. The meta-analysis rationalizes the application of probiotics in the prevention and treatment of CRC. An association network is generated with 540 nodes and 1,423 edges. MCODE cluster analysis identifies 43 densely interconnected modules from the network. Gene ontology (GO) and pathway enrichment analysis of the top scoring and functionally significant modules reveal stress-induced metabolic pathways (JNK, MAPK), immunomodulatory pathways, intrinsic apoptotic pathways, and autophagy as contributors for CRC where probiotics could offer major benefits. Based on the enrichment analyses, 23 CRC-associated proteins and 7 probiotic-derived bacteriocins were selected for molecular docking studies. Results indicate that the key CRC-associated proteins (e.g., COX-2, CASP9, PI3K, and IL18R) significantly interact with the probiotic-derived bacteriocins (e.g., plantaricin JLA-9, lactococcin A, and lactococcin mmfii). Finally, a model for probiotic intervention to reduce CRC-associated inflammation has been proposed. Conclusion Probiotics and/or probiotic-derived bacteriocins could directly interact with CRC-promoting COX2. They could modulate inflammatory NLRP3 and NFkB pathways to reduce CRC-associated inflammation. Probiotics could also activate autophagy and apoptosis by regulating PI3K/AKT and caspase pathways in CRC. In summary, the potential mechanisms of probiotic-mediated CRC prevention include multiple signaling cascades, yet pathways related to metabolism and immunity are the crucial ones.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shivam Saxena
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Saroj Kumar Nayak
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
- *Correspondence: Anasuya Roychowdhury /0000-0003-3735-3021
| |
Collapse
|
11
|
Shen CL, Wang R, Ji G, Elmassry MM, Zabet-Moghaddam M, Vellers H, Hamood AN, Gong X, Mirzaei P, Sang S, Neugebauer V. Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. J Nutr Biochem 2022; 100:108904. [PMID: 34748918 PMCID: PMC8794052 DOI: 10.1016/j.jnutbio.2021.108904] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Neuroinflammation is a central factor in neuropathic pain (NP). Ginger is a promising bioactive compound in NP management due to its anti-inflammatory property. Emerging evidence suggests that gut microbiome and gut-derived metabolites play a key role in NP. We evaluated the effects of two ginger root extracts rich in gingerols (GEG) and shogaols (SEG) on pain sensitivity, anxiety-like behaviors, circulating cell-free mitochondrial DNA (ccf-mtDNA), gut microbiome composition, and fecal metabolites in rats with NP. Sixteen male rats were divided into four groups: sham, spinal nerve ligation (SNL), SNL+0.75%GEG in diet, and SNL+0.75%SEG in diet groups for 30 days. Compared to SNL group, both SNL+GEG and SNL+SEG groups showed a significant reduction in pain- and anxiety-like behaviors, and ccf-mtDNA level. Relative to the SNL group, both SNL+GEG and SNL+SEG groups increased the relative abundance of Lactococcus, Sellimonas, Blautia, Erysipelatoclostridiaceae, and Anaerovoracaceae, but decreased that of Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, Mucispirillum and Desulfovibrio, Desulfovibrio, Anaerofilum, Eubacterium siraeum group, RF39, UCG-005, Lachnospiraceae NK4A136 group, Acetatifactor, Eubacterium ruminantium group, Clostridia UCG-014, and an uncultured Anaerovoracaceae. GEG and SEG had differential effects on gut-derived metabolites. Compared to SNL group, SNL+GEG group had higher level of 1'-acetoxychavicol acetate, (4E)-1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one, NP-000629, 7,8-Dimethoxy-3-(2-methyl-3-buten-2-yl)-2H-chromen-2-one, 3-{[4-(2-Pyrimidinyl)piperazino]carbonyl}-2-pyrazinecarboxylic acid, 920863, and (1R,3R,7R,13S)-13-Methyl-6-methylene-4,14,16-trioxatetracyclo[11.2.1.0∼1,10∼.0∼3,7∼]hexadec-9-en-5-one, while SNL+SEG group had higher level for (±)-5-[(tert-Butylamino)-2'-hydroxypropoxy]-1_2_3_4-tetrahydro-1-naphthol and dehydroepiandrosteronesulfate. In conclusion, ginger is a promising functional food in the management of NP, and further investigations are necessary to assess the role of ginger on gut-brain axis in pain management.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas.
| | - Rui Wang
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Technical University, Lubbock, Texas
| | | | - Heather Vellers
- Department of Kinesiology and Sport Management, Texas Technical University, Lubbock, Texas
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Surgery, Texas Technical University Health Sciences Center, Lubbock, Teaxs
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, North Carolina
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
12
|
Deoxycholic Acid Modulates Cell-Junction Gene Expression and Increases Intestinal Barrier Dysfunction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030723. [PMID: 35163990 PMCID: PMC8839472 DOI: 10.3390/molecules27030723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Diet-related obesity is associated with increased intestinal hyperpermeability. High dietary fat intake causes an increase in colonic bile acids (BAs), particularly deoxycholic acid (DCA). We hypothesize that DCA modulates the gene expression of multiple cell junction pathways and increases intestinal permeability. With a human Caco-2 cell intestinal model, we used cell proliferation, PCR array, biochemical, and immunofluorescent assays to examine the impact of DCA on the integrity of the intestinal barrier and gene expression. The Caco-2 cells were grown in monolayers and challenged with DCA at physiological, sub-mM, concentrations. DCA increased transcellular and paracellular permeability (>20%). Similarly, DCA increased intracellular reactive oxidative species production (>100%) and accompanied a decrease (>40%) in extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. Moreover, the mRNA levels of 23 genes related to the epithelial barrier (tight junction, focal adhesion, gap junction, and adherens junction pathways) were decreased (>40%) in (0.25 mM) DCA-treated Caco-2 cells compared to untreated cells. Finally, we demonstrated that DCA decreased (>58%) the protein content of occludin present at the cellular tight junctions and the nucleus of epithelial cells. Collectively, DCA decreases the gene expression of multiple pathways related to cell junctions and increases permeability in a human intestinal barrier model.
Collapse
|
13
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
16
|
Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression. Microorganisms 2021; 9:microorganisms9051021. [PMID: 34068653 PMCID: PMC8151957 DOI: 10.3390/microorganisms9051021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis in the human body, and the disruption of these communities can lead to compromised host health and the onset of disease. Current research on probiotics is quite promising and, in particular, these microorganisms have demonstrated their potential for use as adjuvants for the treatment of colorectal cancer. This review addresses the possible applications of probiotics, postbiotics, synbiotics, and next-generation probiotics in colorectal cancer research.
Collapse
|
17
|
3-B-RUT, a derivative of RUT, protected against alcohol-induced liver injury by attenuating inflammation and oxidative stress. Int Immunopharmacol 2021; 95:107471. [PMID: 33756231 DOI: 10.1016/j.intimp.2021.107471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
Alcoholic liver disease (ALD) is the most common chronic liver disease worldwide. Currently, there is no definitive treatment for alcohol-induced liver injury (ALI). Inflammatory response and oxidative stress play a crucial role in ALI. Cyclooxygenase 2 (COX-2) can be induced by inflammation and it has been reported that the enhanced expression of COX-2 in alcoholic liver injury. Rutaecarpine (RUT) was extracted from evodia rutaecarpa. RUT has a wide range of pharmacological activities. In order to increase its anti-inflammatory activity, our group introduced sulfonyl group to synthesized the 3-[2-(trifluoromethoxy)benzenesulfonamide]-rutaecarpine (3-B-RUT). In this study, we explored the protective effect of 3-B-RUT on alcoholic liver injury in vivo and in vitro and preliminarily explore its mechanism. Mice ALI model was established according to the chronic-plus-binge ethanol model. Results showed that 3-B-RUT (20 μg/kg) attenuated alcohol-induced liver injury and suppressed liver inflammation and oxidative stress, and the effect was comparable to RUT (20 mg/kg). In vitro results are consistent with in vivo results. Mechanistically, the 3-B-RUT might suppress inflammatory response and oxidative stress by regulating activation of NF-κB/COX-2 pathway. In summary, 3-B-RUT, a derivative of RUT, may be a promising clinical candidate for ALI treatment.
Collapse
|
18
|
The Potential of Lactobacillus spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants (Basel) 2020; 9:antiox9070610. [PMID: 32664392 PMCID: PMC7402165 DOI: 10.3390/antiox9070610] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is crucial for food digestion and nutrient absorption in humans. However, the GI tract is usually challenged with oxidative stress that can be induced by various factors, such as exogenous pathogenic microorganisms and dietary alterations. As a part of gut microbiota, Lactobacillus spp. play an important role in modulating oxidative stress in cells and tissues, especially in the GI tract. Oxidative stress is linked with excessive reactive oxygen species (ROS) that can be formed by a few enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). The redox mechanisms of Lactobacillus spp. may contribute to the downregulation of these ROS-forming enzymes. In addition, nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2) and nuclear factor kappa B (NF-κB) are two common transcription factors, through which Lactobacillus spp. modulate oxidative stress as well. As oxidative stress is closely associated with inflammation and certain diseases, Lactobacillus spp. could potentially be applied for early treatment and amelioration of these diseases, either individually or together with prebiotics. However, further research is required for revealing their mechanisms of action as well as their extensive application in the future.
Collapse
|
19
|
Kim DH, Kim DH, Heck BE, Shaffer M, Hur J, Yoo KH. A natural supplement formula reduces anti-oxidative stress and enhances osteo-chondrogenic differentiation potential in mesenchymal stem cells. J Clin Biochem Nutr 2020. [PMID: 32523247 DOI: 10.3164/jcbn.19.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is great interest in using natural supplements to treat various medical conditions. In this study, we evaluated the anti-oxidative and stem cell differentiation effects of a mixture of vitamin D, Lactobacillus rhamnosus, ginger, curcumin, and Boswellia extract. The calcein acetoxymethyl assay after H2O2 treatment showed that combined natural supplement had an anti-oxidative effect. NS-J also increased calcium deposition, as shown by Alizarin Red S staining, indicating bone formation activity. The contents of type II collagen and glycosaminoglycans, which are biomarkers of cartilage, were higher in mesenchymal stem cells treated with combined natural supplement than in cells treated with individual ingredients of the formula. In mesenchymal stem cells treated with human osteoarthritis synovial fluids, combined natural supplement enhanced the expression of type II collagen and PPAR-δ, overcoming the anti-chondrogenic effect of inflammatory conditions. Combined natural supplement also inhibited Oil Red O staining in cells, which indicates inhibited adipogenesis. Thus, combined natural supplement, a formula comprising vitamin D, Lactobacillus rhamnosus, ginger, curcumin and Boswellia extract, reduced oxidative stress, enhanced osteogenesis and chondrogenesis, and inhibited adipogenesis in mesenchymal stem cells to a greater extent than the individual ingredients, indicating synergistic interaction. In addition, combined natural supplement increased the expression PPAR-δ, suggesting that these effects correlate with the PPAR-δ pathway.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea.,NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | - Dong Hwan Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-ku, Seoul 03080, Republic of Korea
| | - Bruce E Heck
- NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | | | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, 49 Busandaehak-ro, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
20
|
Kim DH, Kim DH, Heck BE, Shaffer M, Hur J, Yoo KH. A natural supplement formula reduces anti-oxidative stress and enhances osteo-chondrogenic differentiation potential in mesenchymal stem cells. J Clin Biochem Nutr 2020; 66:206-212. [PMID: 32523247 DOI: 10.3164/jcbn.19-97] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 11/22/2022] Open
Abstract
There is great interest in using natural supplements to treat various medical conditions. In this study, we evaluated the anti-oxidative and stem cell differentiation effects of a mixture of vitamin D, Lactobacillus rhamnosus, ginger, curcumin, and Boswellia extract. The calcein acetoxymethyl assay after H2O2 treatment showed that combined natural supplement had an anti-oxidative effect. NS-J also increased calcium deposition, as shown by Alizarin Red S staining, indicating bone formation activity. The contents of type II collagen and glycosaminoglycans, which are biomarkers of cartilage, were higher in mesenchymal stem cells treated with combined natural supplement than in cells treated with individual ingredients of the formula. In mesenchymal stem cells treated with human osteoarthritis synovial fluids, combined natural supplement enhanced the expression of type II collagen and PPAR-δ, overcoming the anti-chondrogenic effect of inflammatory conditions. Combined natural supplement also inhibited Oil Red O staining in cells, which indicates inhibited adipogenesis. Thus, combined natural supplement, a formula comprising vitamin D, Lactobacillus rhamnosus, ginger, curcumin and Boswellia extract, reduced oxidative stress, enhanced osteogenesis and chondrogenesis, and inhibited adipogenesis in mesenchymal stem cells to a greater extent than the individual ingredients, indicating synergistic interaction. In addition, combined natural supplement increased the expression PPAR-δ, suggesting that these effects correlate with the PPAR-δ pathway.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea.,NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | - Dong Hwan Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-ku, Seoul 03080, Republic of Korea
| | - Bruce E Heck
- NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | | | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, 49 Busandaehak-ro, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
21
|
Sireswar S, Biswas S, Dey G. Adhesion and anti-inflammatory potential of Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 2020; 11:2555-2572. [DOI: 10.1039/c9fo02249j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A seabuckthorn based beverage matrix retains the functionality of L. rhamnosus GG and exhibits enhanced anti-inflammatory effects against LPS-induced inflammation in zebrafish.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| | | | - Gargi Dey
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|
22
|
Isoflurane preconditioning protects hepatocytes from oxygen glucose deprivation injury by regulating FoxO6. J Biosci 2019. [DOI: 10.1007/s12038-019-9967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Geravand M, Fallah P, Yaghoobi MH, Soleimanifar F, Farid M, Zinatizadeh N, Yaslianifard S. INVESTIGATION OF ENTEROCOCCUS FAECALIS POPULATION IN PATIENTS WITH POLYP AND COLORECTAL CANCER IN COMPARISON OF HEALTHY INDIVIDUALS. ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:141-145. [PMID: 31460576 DOI: 10.1590/s0004-2803.201900000-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/05/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most commonly diagnosed cancers around the world. One of the factors involved in the development of colorectal cancer is the changes in the normal flora of the intestine. OBJECTIVE In this study, the mean copy number of Enterococcus faecalis in people with polyps and people with colorectal cancer has been evaluated in comparison with healthy controls. METHODS In this study, 25 patients with colorectal cancer and 28 patients with intestinal polyps were selected and stool specimens were taken. In addition, 24 healthy individuals were selected as control group. Extraction of bacterial DNA from the stool sample were performed. The molecular methods of PCR for confirmation of standard strain and absolute Real Time PCR (qRT-PCR) method were used to evaluate the number of Enterococcus faecalis in the studied groups. RESULTS The results of this study indicate that the mean copy number of Enterococcus faecalis in patients with colorectal cancer was 11.2x109 per gram of stool, and in patients with polyps was 9.4x108 per gram of stool. In healthy people, this number was 9x108 per gram of stool. There was a significant difference between the implicit copy numbers in the three groups. (P<0.05). CONCLUSION Enterococcus faecalis in faecal flora of people with colorectal cancer was significantly higher than those with polyps and healthy people. This could potentially signify the ability of this bacterium to induce colorectal cancer. More studies are needed to prove this theory.
Collapse
Affiliation(s)
- Maryam Geravand
- Alborz University of Medical Sciences, School of Medicine, Student Research Committee, Karaj, Iran
| | - Parviz Fallah
- Alborz University of Medical Sciences, School of Paramedical Sciences, Department of Hematology, Karaj, Iran
| | - Mojtaba Hedayat Yaghoobi
- Alborz University of Medical Sciences, School of Medicine, Department of Infectious Disease, Karaj, Iran
| | - Fatemeh Soleimanifar
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran
| | - Malihe Farid
- Alborz University of Medical Sciences, Social Determinants of Health Research Center, Karaj, IR Iran.,Alborz University of Medical Sciences, Faculty of Medicine, Karaj, IR Iran
| | - Nazi Zinatizadeh
- Alborz University of Medical Sciences, School of Medicine, Student Research Committee, Karaj, Iran
| | - Somayeh Yaslianifard
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran.,Alborz University of Medical Sciences, School of Medicine, Department of Microbiology, Karaj, Iran
| |
Collapse
|
24
|
Zare Javid A, Bazyar H, Gholinezhad H, Rahimlou M, Rashidi H, Salehi P, Haghighi-zadeh MH. The effects of ginger supplementation on inflammatory, antioxidant, and periodontal parameters in type 2 diabetes mellitus patients with chronic periodontitis under non-surgical periodontal therapy. A double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes 2019; 12:1751-1761. [PMID: 32021341 PMCID: PMC6737165 DOI: 10.2147/dmso.s214333] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the effects of ginger supplementation on inflammatory, antioxidant, and periodontal parameters in type 2 diabetes mellitus (T2DM) patients with chronic periodontitis (CP) under non-surgical periodontal therapy (NSPT). MATERIAL AND METHODS In this double-blind clinical trial study, 46 T2DM patients with CP were randomly allocated to intervention and control groups and received either 4 tablets 500 mg (2 g) ginger or placebo twice a day for 8 weeks. All patients were treated with NSPT during the intervention period. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), hs-C-reactive protein (hs-CRP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), periodontal indices including clinical attachment loss (CAL), bleeding on probing (BOP), pocket depth (PD), and plaque index were evaluated in all subjects pre- and post-intervention. RESULTS Following 8 weeks of ginger treatment with NSPT, significant reductions were observed in the mean levels of IL-6 (p=0.001), hs-CRP (p=0.03), TNF-α (p=0.007), CAL, and PD (p<0.001) in the intervention group. The mean serum levels of SOD and GPx were significantly increased in the intervention group after the intervention (p=0.001 and 0.002, respectively). At the end of the study, the mean changes of GPx were significantly higher in the intervention group compared with the control group (p=0.04). Also, after the administration of the ginger with NSPT, significant decrease occurred in the mean change of IL-6 (p=0.009), hs-CRP (p=0.049), TNF-α (p=0.049), CAL (p=0.003), and PD (p=0.04) compared with the control group. CONCLUSION It is recommended that ginger supplementation along with NSPT may be effective in the improvement of inflammation, oxidative, and periodontal status in T2DM with CP.
Collapse
Affiliation(s)
- Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Bazyar
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Correspondence: Hadi Bazyar Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, Iran, 78531-67465Tel +98 9136659629 Email
| | - Hasan Gholinezhad
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Homeira Rashidi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvin Salehi
- Department of Periodontology, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|