1
|
Li X, Li S, Li N. Research Progress on Natural Products Alleviating Liver Inflammation and Fibrosis via NF-κB Pathway. Chem Biodivers 2025; 22:e202402248. [PMID: 39576739 DOI: 10.1002/cbdv.202402248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Liver fibrosis is a key pathological process in chronic liver diseases, regulated by various cytokines and signaling pathways. Among these, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway plays a significant role in the initiation and progression of liver fibrosis. Recently, natural products have garnered attention as potential anti-fibrotic agents. This review highlights recent studies on how natural products, including flavonoids, terpenoids, polysaccharides, phenols, alkaloids, quinones, phenylpropanoids, steroids, and nitrogen compounds, mitigate liver fibrosis by modulating the NF-κB signaling pathway. Specifically, it examines how these natural products influence NF-κB activation, nuclear translocation, and downstream signaling, thereby inhibiting inflammatory responses, reducing apoptosis, and regulating hepatic stellate cell (HSC) activity, ultimately achieving therapeutic effects against liver fibrosis. A deeper understanding of the mechanisms by which natural products regulate the NF-κB signaling pathway can provide crucial theoretical foundations and valuable insights for the development of novel anti-fibrotic drugs.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Saifei Li
- Department of Pharmacy, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Abdul‐Aziz Ahmed K, Jabbar AAJ, Raouf MMHM, M. Al‐Qaaneh A, Rizgar Hassan R, Ismael Salih M, Mothana RA, Abdulaziz Al‐Hamoud G, Ameen Abdulla M, Hasson S, Abdul‐samad Ismail P. Phytochemical Profiling, Acute Toxicity, and Hepatoprotective Effects of Anchusa Limbata in Thioacetamide-Induced Liver Cirrhosis in Rats. Food Sci Nutr 2024; 12:10628-10645. [PMID: 39723071 PMCID: PMC11666841 DOI: 10.1002/fsn3.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024] Open
Abstract
Evaluation of Anchusa species of the family Boraginaceae during previous investigations determined numerous therapeutic potentials against inflammatory-related diseases. The present study evaluates the phytochemical, acute toxicity, and hepatoprotective effects of methanolic extracts of Anchusa limbata (MEAL) against thioacetamide (TAA)-induced liver injury in rats. The phytochemical profiling of MEAL followed a Folin-Ciocalteu and 10% AlCl3 procedure using a spectrophotometer. Thirty rats were divided into 5 groups: Normal (A) and TAA control rats (B) treated orally with daily 10% tween 20; reference rats (C) received daily oral dose of 50 mg/kg silymarin; (D and E) rats received daily doses of 250 and 500 mg/kg MEAL, respectively. In addition, group B-E received 3 injections of 200 mg/kg TAA weekly for 60 days. The phytochemical profiling showed increased polyphenolic (129.2 mg gallic acid equivalent/g) and flavonoid (105.3 mg quercetin equivalent/g extract) contents in MEAL. The TAA intraperitoneal injection caused significant hepatic dysfunctionality (lowered total protein, 54.7 g/L; albumin levels, 7.8 g/L), hepatotoxicity, and necrotized cell proliferation. TAA hepatotoxicity resulted in an increased expression of proliferating cell nuclear antigen (PCNA), TGF-β1 tissue expression, liver enzymatic leakage, and oxidative stress biomarkers, while it reduced pro-apoptotic Bcl-2-associated X protein (Bax) proteins and inflammatory mediators (TNF-α and IL-6) and increased IL-10. Conversely, MEAL treatment ameliorated the TAA-induced hepatotoxicity and restored liver functions. The present hepatoprotectives of MEAL could be attributed to its increased polyphenolic and flavonoid contents, which require further isolation and identification of molecules underlying such therapeutic actions.
Collapse
Affiliation(s)
- Khaled Abdul‐Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ahmed A. J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical CollegeErbil Polytechnic UniversityErbilIraq
| | | | - Ayman M. Al‐Qaaneh
- Department of Allied Health SciencesAl‐Balqa Applied University (BAU)Al‐SaltJordan
- Department of Pharmaceutical TechnologyFaculty of Pharmacy, Jordan University of Science and Technology (JUST)IrbidJordan
| | - Rawaz Rizgar Hassan
- Department of Medical microbiology, College of ScienceKnowledge UniversityErbilIraq
| | - Musher Ismael Salih
- Department of Chemistry, Faculty of Science and HealthKoya UniversityKoyaIraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | | | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied ScienceTishk International UniversityErbilIraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | | |
Collapse
|
3
|
Cebeci E, Katirci E, Karhan M, Korgun ET. The immunomodulator effect of Stevia rebaudiana Bertoni mediated by TNF-α and IL-1β in peripheral blood in diabetic rats. Food Sci Nutr 2024; 12:7581-7590. [PMID: 39479688 PMCID: PMC11521730 DOI: 10.1002/fsn3.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Stevia rebaudiana Bertoni, which is a medicinal plant used in the treatment of diabetes, was the focus of this study aiming to investigate its immunomodulatory properties in diabetes. To form the diabetes group, rats were injected intraperitoneally with STZ and rats with blood glucose levels above 200 mg/dL 2 days after STZ injection were included in the diabetes group. To form the stevia and diabetes + stevia groups, stevia was administered daily by gavage to both healthy and diabetic rats for 28 days. At the end of 28 days, the levels of interleukin-1 beta and tumor necrosis factor-alpha in the blood were measured by ELISA. CD3, CD4, and CD8 protein levels in the blood were determined by flow cytometry. Rat body weight increased in the diabetes +25 mg/kg bW stevia group compared with the diabetes group. Blood glucose levels were significantly decreased in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). IL-1β cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). TNF-α cytokine levels decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (**p < .01). The amount of CD8 + T cells decreased significantly in the diabetes +25 mg/kg bW stevia group compared to the diabetes group (*p < .05). The stevia diet leads to a reduction in peripheral circulating cytotoxic T cells and proinflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha under hyperglycemic conditions.
Collapse
Affiliation(s)
- Erhan Cebeci
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| | - Ertan Katirci
- Faculty of Medicine, Department of Histology and EmbryologyAhi Evran UniversityKirsehirTurkey
| | - Mustafa Karhan
- Faculty of Engineering, Department of Food EngineeringAkdeniz UniversityAntalyaTurkey
| | - Emin Turkay Korgun
- Faculty of Medicine, Department of Histology and EmbryologyAkdeniz UniversityAntalyaTurkey
| |
Collapse
|
4
|
Vargas-Pozada EE, Ramos-Tovar E, Muriel P. The importance of fundamental pharmacology in fighting liver diseases. Ann Hepatol 2024; 29:101286. [PMID: 38266675 DOI: 10.1016/j.aohep.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Affiliation(s)
- Eduardo E Vargas-Pozada
- Eduardo Enrique Vargas-Pozada, Pablo Muriel, Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico
| | - Erika Ramos-Tovar
- Erika Ramos-Tovar, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Eduardo Enrique Vargas-Pozada, Pablo Muriel, Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado 14-740 Mexico City, Mexico.
| |
Collapse
|
5
|
Ezhilarasan D, Shree Harini K, Karthick M, Selvaraj C. Ethyl gallate concurrent administration protects against acetaminophen-induced acute liver injury in mice: An in vivo and in silico approach. Chem Biol Drug Des 2024; 103:e14369. [PMID: 37817304 DOI: 10.1111/cbdd.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
Acetaminophen (APAP) in high doses causes acute liver injury and acute liver failure. Ethyl gallate (EG) is a natural polyphenol, possessing antioxidant, anti-inflammatory, and anti-microbial properties. Therefore, in this study, we evaluated the protective role of EG against APAP-induced acute liver injury in mice. Acute liver injury was induced by a single dose of APAP (400 mg/kg., i.p.). In separate groups, EG (10 mg/kg), EG (20 mg/kg), and N-acetylcysteine (NAC; 1200 mg/kg., i.p.) were administered concurrently with APAP. The mice were sacrificed after 24 h of treatment. Liver marker enzymes of hepatotoxicity, antioxidant markers, inflammatory markers, and histopathological studies were done. APAP administration caused a significant elevation of marker enzymes of hepatotoxicity and lipid peroxidation. APAP administration also decreased enzymic and nonenzymic antioxidants. Acute APAP intoxication induced nuclear factor κ B, tumor necrosis factor-α, interleukin-1, p65, and p52 and downregulated IκB gene expressions. Our histopathological studies have confirmed the presence of centrilobular necrosis, 24 h after APAP intoxication. All the above abnormalities were significantly inhibited in groups of mice that were concurrently administered with APAP + EG and APAP + NAC. Our in silico analysis further confirms that hydroxyl groups of EG interact with the above inflammatory proteins at the 3,4,5-trihydroxybenzoic acid region. These effects of EG against APAP-induced acute liver injury could be attributed to its antioxidative, free radical scavenging, and anti-inflammatory potentials. Therefore, this study suggests that EG can be an efficient therapeutic approach to protect the liver from APAP intoxication.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Chandrabose Selvaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Laboratory for Artificial Intelligence and Molecular Modelling, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
6
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3325. [PMID: 37571265 PMCID: PMC10420666 DOI: 10.3390/nu15153325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is an aromatic plant known for its high sweetening power ascribed to its glycosides. Stevia also contains several bioactive compounds showing antioxidant, antiproliferative, antimicrobial, and anti-inflammatory activities. Since inflammation and oxidative stress play critical roles in the pathogenesis of many diseases, stevia emerges as a promising natural product that could support human health. In this study we set out to investigate the way stevia affects oxidative stress markers (e.g., SOD, CAT, GPx, GSH, MDA) in diseased rats administered stevia leaf extracts or glycosides. To this end, we performed an inclusive literature search, following PRISMA guidelines, and recruited multivariate meta-analysis and meta-regression to synthesize all available data on experimental animal models encountering (a) healthy, (b) diseased, and (c) stevia-treated diseased rats. From the 184 articles initially retrieved, 24 satisfied the eligibility criteria, containing 104 studies. Our results demonstrate that regardless of the assay employed, stevia leaf extracts restored all oxidative stress markers to a higher extent compared to pure glycosides. Meta-regression analysis revealed that results from SOD, CAT, GSH, and TAC assays are not statistically significantly different (p = 0.184) and can be combined in meta-analysis. Organic extracts from stevia leaves showed more robust antioxidant properties compared to aqueous or hydroalcoholic ones. The restoration of oxidative markers ranged from 65% to 85% and was exhibited in all tested tissues. Rats with diabetes mellitus were found to have the highest restorative response to stevia leaf extract administration. Our results suggest that stevia leaf extract can act protectively against various diseases through its antioxidant properties. However, which of each of the multitude of stevia compounds contribute to this effect, and to what extent, awaits further investigation.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
7
|
Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P. The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Can J Physiol Pharmacol 2023; 101:147-159. [PMID: 36744700 DOI: 10.1139/cjpp-2022-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant effect of caffeine, associated with its ability to upregulate the nuclear factor-E2-related factor-2 (Nrf2)-signaling pathway, was explored as a possible mechanism for the attenuation of liver damage. Nonalcoholic steatohepatitis (NASH) was induced in rats by the administration of a high-fat, high-sucrose, high-cholesterol diet (HFSCD) for 15 weeks. Liver damage was induced in rats by intraperitoneal administration of thioacetamide (TAA) for six weeks. Caffeine was administered orally at a daily dose of 50 mg/kg body weight during the period of NASH induction to evaluate its ability to prevent disease development. Meanwhile, rats received TAA for three weeks, after which 50 mg/kg caffeine was administered daily for three weeks with TAA to evaluate its capacity to interfere with the progression of hepatic injury. HFSCD administration induced hepatic steatosis, decreased Nrf2 levels, increased oxidative stress, induced the activation of nuclear factor-κB (NF-κB), and elevated proinflammatory cytokine levels, leading to hepatic damage. TAA administration produced similar effects, excluding steatosis. Caffeine increased Nrf2 levels; attenuated oxidative stress markers, including malondialdehyde and 4-hydroxynonenal; restored normal, reduced glutathione levels; and reduced NF-κB activation, inflammatory cytokine levels, and damage. Our findings suggest that caffeine may be useful in the treatment of human liver diseases.
Collapse
Affiliation(s)
- Eduardo E Vargas-Pozada
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Consuelo Acero-Hernández
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Irina Cardoso-Lezama
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Mexico City 14-740, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 14-740, Mexico
| |
Collapse
|
8
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. VITAMINS AND HORMONES 2022; 121:271-292. [PMID: 36707137 DOI: 10.1016/bs.vh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The liver performs various biochemical and molecular functions. Its location as a portal to blood arriving from the intestines makes it susceptible to several insults, leading to diverse pathologies, including alcoholic liver disease, viral infections, nonalcoholic steatohepatitis, and hepatocellular carcinoma, which are causes of death worldwide. Illuminating the molecular mechanism underlying hepatic injury will provide targets to develop new therapeutic strategies to fight liver maladies. In this regard, reactive oxygen species (ROS) are well-recognized mediators of liver damage. ROS induce nuclear factor-κB and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 inflammasome, which are the main proinflammatory signaling pathways that upregulate several proinflammatory and profibrogenic mediators. Additionally, oxygen-derived free radicals induce hepatic stellate cell activation to produce exacerbated quantities of extracellular matrix proteins, leading to fibrosis, cirrhosis and eventually hepatocellular carcinoma. Exogenous and endogenous antioxidants counteract the harmful effects of ROS, preventing liver necroinflammation and fibrogenesis. Therefore, several researchers have demonstrated that the administration of antioxidants, mainly derived from plants, affords beneficial effects on the liver. Notably, nuclear factor-E2-related factor-2 (Nrf2) is a major factor against oxidative stress in the liver. Increasing evidence has demonstrated that Nrf2 plays an important role in liver necroinflammation and fibrogenesis via the induction of antioxidant response element genes. The use of Nrf2 inducers seems to be an interesting approach to prevent/attenuate hepatic disorders, particularly under conditions where ROS play a causative role.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Mexico City, Mexico.
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
9
|
Kopytina V, Pascual-Antón L, Toggweiler N, Arriero-País EM, Strahl L, Albar-Vizcaíno P, Sucunza D, Vaquero JJ, Steppan S, Piecha D, López-Cabrera M, González-Mateo GT. Steviol glycosides as an alternative osmotic agent for peritoneal dialysis fluid. Front Pharmacol 2022; 13:868374. [PMID: 36052133 PMCID: PMC9424724 DOI: 10.3389/fphar.2022.868374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Peritoneal dialysis (PD) is a renal replacement technique that requires repeated exposure of the peritoneum to hyperosmolar PD fluids (PDFs). Unfortunately, it promotes alterations of the peritoneal membrane (PM) that affects its functionality, including mesothelial-mesenchymal transition (MMT) of mesothelial cells (MCs), inflammation, angiogenesis, and fibrosis. Glucose is the most used osmotic agent, but it is known to be at least partially responsible, together with its degradation products (GDP), for those changes. Therefore, there is a need for more biocompatible osmotic agents to better maintain the PM. Herein we evaluated the biocompatibility of Steviol glycosides (SG)-based fluids. Methods: The ultrafiltration and transport capacities of SG-containing and glucose-based fluids were analyzed using artificial membranes and an in vivo mouse model, respectively. To investigate the biocompatibility of the fluids, Met-5A and human omental peritoneal MCs (HOMCs) were exposed in vitro to different types of glucose-based PDFs (conventional 4.25% glucose solution with high-GDP level and biocompatible 2.3% glucose solution with low-GDP level), SG-based fluids or treated with TGF-β1. Mice submitted to surgery of intraperitoneal catheter insertion were treated for 40 days with SG- or glucose-based fluids. Peritoneal tissues were collected to determine thickness, MMT, angiogenesis, as well as peritoneal washings to analyze inflammation. Results: Dialysis membrane experiments demonstrated that SG-based fluids at 1.5%, 1%, and 0.75% had a similar trend in weight gain, based on curve slope, as glucose-based fluids. Analyzing transport capacity in vivo, 1% and 0.75% SG-based fluid-exposed nephrectomized mice extracted a similar amount of urea as the glucose 2.3% group. In vitro, PDF with high-glucose (4.25%) and high-GDP content induced mesenchymal markers and angiogenic factors (Snail1, Fibronectin, VEGF-A, FGF-2) and downregulates the epithelial marker E-Cadherin. In contrast, exposition to low-glucose-based fluids with low-GDP content or SG-based fluids showed higher viability and had less MMT. In vivo, SG-based fluids preserved MC monolayer, induced less PM thickness, angiogenesis, leukocyte infiltration, inflammatory cytokines release, and MMT compared with glucose-based fluids. Conclusion: SG showed better biocompatibility as an osmotic agent than glucose in vitro and in vivo, therefore, it could alternatively substitute glucose in PDF.
Collapse
Affiliation(s)
- Valeria Kopytina
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lucía Pascual-Antón
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
| | - Nora Toggweiler
- Fresenius Medical Care Deutschland GmbH, Frankfurter, St. Wendel, Germany
| | - Eva-María Arriero-País
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lisa Strahl
- Fresenius Medical Care Deutschland GmbH, Frankfurter, St. Wendel, Germany
| | - Patricia Albar-Vizcaíno
- Department of Nephrology, IdiPAZ Research Institute, La Paz University Hospital, Madrid, Spain
| | - David Sucunza
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, University of Alcalá (IRYCIS), Madrid, Spain
| | - Juan J. Vaquero
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, University of Alcalá (IRYCIS), Madrid, Spain
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, St. Wendel, Germany
| | - Dorothea Piecha
- Fresenius Medical Care Deutschland GmbH, St. Wendel, Germany
| | - Manuel López-Cabrera
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Manuel López-Cabrera, ; Guadalupe-Tirma González-Mateo,
| | - Guadalupe-Tirma González-Mateo
- Department of Immunology, Molecular Biology Research Center Severo Ochoa (CBMSO), Spanish National Research Council (CSIC), Madrid, Spain
- Department of Nephrology, IdiPAZ Research Institute, La Paz University Hospital, Madrid, Spain
- *Correspondence: Manuel López-Cabrera, ; Guadalupe-Tirma González-Mateo,
| |
Collapse
|
10
|
Panieri E, Pinho SA, Afonso GJM, Oliveira PJ, Cunha-Oliveira T, Saso L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022; 11:cells11152401. [PMID: 35954245 PMCID: PMC9367715 DOI: 10.3390/cells11152401] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/21/2022] Open
Abstract
The NRF2–KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells’ resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells’ biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Sónia A. Pinho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Hurtado-Navarro L, Angosto-Bazarra D, Pelegrín P, Baroja-Mazo A, Cuevas S. NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers. Antioxidants (Basel) 2022; 11:antiox11050870. [PMID: 35624734 PMCID: PMC9137763 DOI: 10.3390/antiox11050870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and induction of pro-inflammatory cytokines and pyroptotic cell death. Pyroptosis is a type of programmed cell death mediated by Caspase-1 cleavage of Gasdermin D and the insertion of its N-terminal fragment into the plasma membrane, where it forms pores, enabling the release of different pro-inflammatory mediators. Pyroptosis is considered not only a pro-inflammatory pathway involved in liver pathophysiology but also an important pro-fibrotic mediator. Diverse molecular mechanisms linking oxidative stress, inflammasome activation, pyroptosis, and the progression of liver pathologies have been documented. Numerous studies have indicated the protective effects of several antioxidants, with the ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2) activity on liver inflammation and fibrosis. In this review, we have summarised recent studies addressing the role of the NLRP3 inflammasome and pyroptosis in the pathogenesis of various hepatic diseases, highlighting the potential application of Nrf2 inducers in the prevention of pyroptosis as liver protective compounds.
Collapse
Affiliation(s)
- Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Diego Angosto-Bazarra
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (L.H.-N.); (D.A.-B.); (P.P.)
- Correspondence: (A.B.-M.); (S.C.); Tel.: +34-868-885-039 (A.B.-M.); +34-868-885-031 (S.C.)
| |
Collapse
|
12
|
El-Tantawy WH, Temraz A. Anti-fibrotic activity of natural products, herbal extracts and nutritional components for prevention of liver fibrosis: review. Arch Physiol Biochem 2022; 128:382-393. [PMID: 31711319 DOI: 10.1080/13813455.2019.1684952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a grave problem worldwide, and the development of this condition is the first step towards cirrhosis. In fact, when lesions of different aetiologies chronically affect the liver, it triggers fibrogenesis, the resulting damage and the progression of fibrosis cause serious clinical influences including severe complications, expensive treatments, and death in end-stage liver disease. Although impressive progress has been reported in understanding the pathogenesis of liver fibrosis, no effective agent has been developed to prevent or reverse the fibrotic process directly. This article reviews natural products, herbal medicines and nutritional components that exhibited an anti-fibrotic activity through different mechanisms of action, including suppressing of cytokine production, inhibition of hepatic stellate cells "HSCs" propagation, modulation of the molecular mechanisms leading to hepatic fibrosis, free radical scavenging and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy For Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Gundert‐Remy U, Husøy T, Manco M, Mennes W, Passamonti S, Moldeus P, Shah R, Waalkens‐Berendsen I, Wölfle D, Wright M, Barat Baviera JM, Degen G, Leblanc J, Herman L, Giarola A, Aguilera J, Vianello G, Castle L. Safety evaluation of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts. EFSA J 2021; 19:e06691. [PMID: 34377189 PMCID: PMC8329987 DOI: 10.2903/j.efsa.2021.6691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on the safety of steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts. These steviol glycoside preparations are produced via enzymatic bioconversion of highly purified stevioside and/or rebaudioside A extracts obtained from stevia plant using two UDP-glucosyltransferases and one sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12 that facilitate the transfer of glucose to purified stevia leaf extracts via glycosidic bonds. The Panel considered that the parental strain is a derivative of E. coli K-12 which is well characterised and its safety has been documented; therefore, it is considered to be safe for production purposes. The Panel concluded that there is no safety concern for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts using UDP-glucosyltransferases and sucrose synthase enzymes produced by the genetically modified strains of E. coli K-12, to be used as a food additive. The Panel recommends the European Commission to consider the proposal of establishing separate specifications for steviol glycoside preparations, including rebaudioside AM, obtained by enzymatic bioconversion of highly purified stevioside and/or rebaudioside A stevia leaf extracts in Commission Regulation (EU) No 231/2012.
Collapse
|
14
|
Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel) 2020; 9:E1279. [PMID: 33333846 PMCID: PMC7765317 DOI: 10.3390/antiox9121279] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) and myofibroblasts are the main producers of extracellular matrix (ECM) proteins that form the fibrotic tissue that leads to hepatic fibrosis. Reactive oxygen species (ROS) can directly activate HSCs or induce inflammation or programmed cell death, especially pyroptosis, in hepatocytes, which in turn activates HSCs and fibroblasts to produce ECM proteins. Therefore, antioxidants and the nuclear factor E2-related factor-2 signaling pathway play critical roles in modulating the profibrogenic response. The master proinflammatory factors nuclear factor-κB (NF-κB) and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome may coordinate to produce and activate profibrogenic molecules such as interleukins 1β and 18, which effectively activate HSCs, to produce large amounts of fibrotic proteins. Furthermore, the NLRP3 inflammasome activates pro-caspase 1, which is upregulated by NF-κB, to produce caspase 1, which induces pyroptosis via gasdermin and the activation of HSCs. ROS play central roles in the activation of the NF-κB and NLRP3 signaling pathways via IκB (an inhibitor of NF-κB) and thioredoxin-interacting protein, respectively, thereby linking the molecular mechanisms of oxidative stress, inflammation and fibrosis. Elucidating these molecular pathways may pave the way for the development of therapeutic tools to interfere with specific targets.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Apartado Postal 14-740, Mexico City 07000, Mexico
| |
Collapse
|
15
|
Zou X, Tan Q, Goh BH, Lee LH, Tan KL, Ser HL. ‘Sweeter’ than its name: anti-inflammatory activities of Stevia rebaudiana. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1771434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Xiaomin Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
| | - QiWen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
| | - Bey-Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Kai-Leng Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
| | - Hooi-Leng Ser
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
16
|
Abstract
The liver is one of the most complex organs of the human body and is involved in various metabolic processes. Due to its anatomical proximity to the digestive tract, its blood flow, and its contribution to the detoxification process, the liver is susceptible to a wide variety of disorders. Hepatic diseases can be caused by alcoholism, viral infections, malnutrition and xenobiotics, which result in a high frequency of patients with liver disease and subsequent increase in the number of deaths from these diseases, for which adequate treatments are not yet available. Therefore, the search for new alternatives to treat these liver conditions is mandatory. In recent decades, there has been an increase in interest in medicinal herbs due to their safety and hepatoprotective properties that arise from their anti-inflammatory, antioxidant, antifibrotic, antiviral, immunomodulatory and anticancer properties. Epidemiological and clinical studies have shown that the consumption of these compounds is associated with a decrease in the risk of developing liver diseases; thus, medicinal herbs have emerged as a viable option for the treatment of these hepatic pathologies. However, more basic and clinical studies are needed before reaching a final recommendation to treat human liver diseases. This review provides molecular and clinical information on some natural compounds and medicinal herbs that have hepatoprotective effects and could be useful for the treatment of hepatic disorders.
Collapse
|
17
|
Zhang YZ, Yao JN, Zhang LF, Wang CF, Zhang XX, Gao B. Effect of NLRC5 on activation and reversion of hepatic stellate cells by regulating the nuclear factor-κB signaling pathway. World J Gastroenterol 2019; 25:3044-3055. [PMID: 31293340 PMCID: PMC6603813 DOI: 10.3748/wjg.v25.i24.3044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/27/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The formation of liver fibrosis is mainly caused by the activation of hepatic stellate cells (HSCs) and the imbalance of extracellular matrix (ECM) production and degradation. The treatment of liver fibrosis mainly includes removing the cause, inhibiting the activation of HSCs, and inhibiting inflammation. NOD-like receptor (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5/NOD27/CLR16.1 (NLRC5) is a highly conserved member of the NLR family and is involved in inflammation and immune responses by regulating various signaling pathways such as nuclear factor-κB (NF-κB) signaling. It has been found that NLRC5 plays an important role in liver fibrosis, but its specific effect and possible mechanism remain to be fully elucidated.
AIM To investigate the role of NLRC5 in the activation and reversion of HSCs induced with transforming growth factor-β (TGF-β) and MDI, and to explore its relationship with liver fibrosis.
METHODS A total of 24 male C57BL/6 mice were randomly divided into three groups, including normal, fibrosis, and recovery groups. Twenty-four hours after a liver fibrosis and spontaneous reversion model was established, the mice were sacrificed and pathological examination of liver tissue was performed to observe the degree of liver fibrosis in each group. LX-2 cells were cultured in vitro and treated with TGF-β1 and MDI. Real-time quantitative PCR (qPCR) and Western blot were used to analyze the expression levels of NLRC5, α-smooth muscle actin (α-SMA), and collagen type I alpha1 (Col1a1) in each group. The activity of NF-κB in each group of cells transfected with NLRC5-siRNA was detected.
RESULTS Compared with the normal mice, the expression level of NLRC5 increased significantly (P < 0.01) in the fibrosis group, but decreased significantly in the recovery group (P < 0.01). In in vitro experiments, the content of NLRC5 was enhanced after TGF-β1 stimulation and decreased to a lower level when treated with MDI (P < 0.01). The expression of α-SMA and Col1a1 proteins and mRNAs in TGF-β1-mediated cells was suppressed by transfection with NLRC5-siRNA (P < 0.01). Western blot analysis showed that the expression of NF-κB p65 protein and phosphorylated IκBα (p-IκBα) was increased in the liver of mice in the fibrosis group but decreased in the recovery group (P < 0.01), and the protein level of nuclear p65 and p-IκBα was significantly increased after treatment with NLRC5-siRNA (P < 0.01).
CONCLUSION NLRC5 may play a key role in the development and reversal of hepatic fibrosis through the NF-κB signaling pathway, and it is expected to be one of the clinical therapeutic targets.
Collapse
Affiliation(s)
- Yan-Zhen Zhang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian-Ning Yao
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Lian-Feng Zhang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chun-Feng Wang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xue-Xiu Zhang
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing Gao
- Department of Second Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
18
|
Casas-Grajales S, Reyes-Gordillo K, Cerda-García-Rojas CM, Tsutsumi V, Lakshman MR, Muriel P. Rebaudioside A administration prevents experimental liver fibrosis: an in vivo and in vitro study of the mechanisms of action involved. J Appl Toxicol 2019; 39:1118-1131. [PMID: 30883860 DOI: 10.1002/jat.3797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Rebaudioside A (Reb A) is a diterpenoid isolated from the leaves of Stevia rebaudiana (Bertoni) that has been shown to possess pharmacological activity, including anti-inflammatory and antioxidant properties. However, the ability of Reb A to prevent liver injury has not been evaluated. Therefore, we aimed to study the potential of Reb A (20 mg/kg; two times daily intraperitoneally) to prevent liver injury induced by thioacetamide (TAA) administration (200 mg/kg; three times per week intraperitoneally). In addition, cocultures were incubated with either lipopolysaccharide or ethanol. Antifibrotic, antioxidant and immunological responses were evaluated. Chronic TAA administration produced considerable liver damage and distorted the liver parenchyma with the presence of prominent thick bands of collagen. In addition, TAA upregulated the expression of α-smooth muscle actin, transforming growth factor-β1, metalloproteinases 9, 2 and 13, and nuclear factor kappaB and downregulated nuclear erythroid factor 2. Reb A administration prevented all of these changes. In cocultured cells, Reb A prevented the upregulation of genes implicated in fibrotic and inflammatory processes when cells were exposed to ethanol and lipopolysaccharide. Altogether, our results suggest that Reb A prevents liver damage by blocking oxidative processes via upregulation of nuclear erythroid factor 2, exerts immunomodulatory effects by downregulating the nuclear factor-κB system and acts as an antifibrotic agent by maintaining collagen content.
Collapse
Affiliation(s)
- Sael Casas-Grajales
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Karina Reyes-Gordillo
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, 2300 I St. NW, Washington, DC, 20052, USA.,Lipid Research Laboratory, VA Medical Center, 50 Irving St., Washington, DC, 20422, USA
| | - Carlos M Cerda-García-Rojas
- Department of Chemistry, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| | - M Raj Lakshman
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, The George Washington University Medical Center, 2300 I St. NW, Washington, DC, 20052, USA.,Lipid Research Laboratory, VA Medical Center, 50 Irving St., Washington, DC, 20422, USA
| | - Pablo Muriel
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico
| |
Collapse
|
19
|
Bioactivity Profile of the Diterpene Isosteviol and its Derivatives. Molecules 2019; 24:molecules24040678. [PMID: 30769819 PMCID: PMC6412665 DOI: 10.3390/molecules24040678] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Steviosides, rebaudiosides and their analogues constitute a major class of naturally occurring biologically active diterpene compounds. The wide spectrum of pharmacological activity of this group of compounds has developed an interest among medicinal chemists to synthesize, purify, and analyze more selective and potent isosteviol derivatives. It has potential biological applications and improves the field of medicinal chemistry by designing novel drugs with the ability to cope against resistance developing diseases. The outstanding advancement in the design and synthesis of isosteviol and its derivative has proved its effectiveness and importance in the field of medicinal chemical research. The present review is an effort to integrate recently developed novel drugs syntheses from isosteviol and potentially active pharmacological importance of the isosteviol derivatives covering the recent advances.
Collapse
|
20
|
Muriel P. Fighting liver fibrosis to reduce mortality associated with chronic liver diseases: The importance of new molecular targets and biomarkers. EBioMedicine 2019; 40:35-36. [PMID: 30745133 PMCID: PMC6413581 DOI: 10.1016/j.ebiom.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, 07360, Apartado Postal 14-740, Mexico City, Mexico.
| |
Collapse
|