1
|
Chen H, Zhu T, Huang X, Xu W, Di Z, Ma Y, Xue M, Bi S, Shen Y, Yu Y, Shen Y, Feng L. Xanthatin suppresses proliferation and tumorigenicity of glioma cells through autophagy inhibition via activation of the PI3K-Akt-mTOR pathway. Pharmacol Res Perspect 2023; 11:e01041. [PMID: 36572650 PMCID: PMC9792428 DOI: 10.1002/prp2.1041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022] Open
Abstract
Glioma is the most common and aggressive primary brain tumor in adults with high morbidity and mortality. Rapid proliferation and diffuse migration are the main obstacles to successful glioma treatment. Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses a significant antitumor role in several malignant tumors. In this study, we report that xanthatin suppressed glioma cells proliferation and induced apoptosis in a time- and concentration-dependent manner, and was accompanied by autophagy inhibition displaying a significantly reduced LC3 punctate fluorescence and LC3II/I ratio, decreased level of Beclin 1, while increased accumulation of p62. Notably, treating glioma cells with xanthatin resulted in obvious activation of the PI3K-Akt-mTOR signaling pathway, as indicated by increased mTOR and Akt phosphorylation, decreased ULK1 phosphorylation, which is important in modulating autophagy. Furthermore, xanthatin-mediated pro-apoptosis in glioma cells was significantly reversed by autophagy inducers (rapamycin or Torin1), or PI3K-mTOR inhibitor NVP-BEZ235. Taken together, these findings indicate that anti-proliferation and pro-apoptosis effects of xanthatin in glioma are most likely by inhibiting autophagy via activation of PI3K-Akt-mTOR pathway, suggesting a potential therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Huaqing Chen
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Tong Zhu
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Xiaojie Huang
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Wenshuang Xu
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Zemin Di
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Yuyang Ma
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Min Xue
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Sixing Bi
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
- The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yujun Shen
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Yongqiang Yu
- The First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yuxian Shen
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| | - Lijie Feng
- School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Institute of BiopharmaceuticalsAnhui Medical UniversityHefeiChina
| |
Collapse
|
2
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Tang WJ, Yao W, Jin Z, Kong QC, Hu WK, Liang YS, Chen LX, Chen SY, Zhang QQ, Wei XH, Xu XD, Guo Y, Jiang XQ. Evaluation of the Effects of Anti-PD-1 Therapy on Triple-Negative Breast Cancer in Mice by Diffusion Kurtosis Imaging and Dynamic Contrast-Enhanced Imaging. J Magn Reson Imaging 2022; 56:1912-1923. [PMID: 35499275 DOI: 10.1002/jmri.28215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The monitoring of immunotherapies is still based on changes in the tumor size in imaging, with a long evaluation period and low sensitivity. PURPOSE To investigate the effectiveness of diffusion kurtosis imaging (DKI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the therapeutic efficacy of anti-programmed death-1 (PD-1) therapy in a mouse triple negative breast cancer (TNBC) model. STUDY TYPE Prospective. ANIMAL MODEL A total of 54 BALB/c mouse subcutaneous 4 T1 transplantation models of TNBC. FIELD STRENGTH/SEQUENCE A 3.0-T; turbo spin echo (TSE) T2-weighted imaging, DKI with seven b values (0, 500, 1000, 1500, 2000, 2500, and 3000 sec/mm2 ) and T1-twist DCE acquisition series. ASSESSMENT DKI and DCE-MRI parameters were evaluated by two radiologists independently. Regions of interest (ROIs) were drawn manually on the maximum cross-sectional area of the lesion; care was taken to avoid necrotic areas. The tumor cell density, the CD45 and CD31 levels were analyzed by two pathologists. STATISTICAL TESTS The two-tailed unpaired t-test, Mann-Whitney U test, Fisher's exact test and Pearson correlation coefficient were performed. A P < 0.05 was considered statistically significant. RESULTS The apparent diffusion coefficient (ADC), mean diffusivity (MD), Ktrans and Kep values were significantly different between the two groups at each time point after treatment. There were significant differences in the mean kurtosis (MK) and Ve values between the two groups at 5 and 10 days after treatment but no significant differences at 15 days (P = 0.317 and 0.183, respectively). The ADC and MD values were significantly correlated with tumor cell density (ADC, r = -0.833; MD, r = 0.890) and the CD45 level (ADC, r = 0.720; MD, r = 0.718). The Ktrans and Kep values were significantly correlated with the CD31 level (Ktrans , r = 0.820; Kep , r = 0.683). DATA CONCLUSION DKI and DCE-MRI could reflect the changes in tumor microstructure and tumor tissue vasculature after anti-PD-1 therapy, respectively. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Wen-Jie Tang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Wang Yao
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Zhe Jin
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qing-Cong Kong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Wen-Ke Hu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yun-Shi Liang
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Lei-Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Si-Yi Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qiong-Qiong Zhang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xin-Hua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xiang-Dong Xu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xin-Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
4
|
Sanati M, Afshari AR, Amini J, Mollazadeh H, Jamialahmadi T, Sahebkar A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J Funct Foods 2022; 96:105192. [DOI: 10.1016/j.jff.2022.105192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Dynamic Contrast-Enhanced MRI in the Abdomen of Mice with High Temporal and Spatial Resolution Using Stack-of-Stars Sampling and KWIC Reconstruction. Tomography 2022; 8:2113-2128. [PMID: 36136874 PMCID: PMC9498490 DOI: 10.3390/tomography8050178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Application of quantitative dynamic contrast-enhanced (DCE) MRI in mouse models of abdominal cancer is challenging due to the effects of RF inhomogeneity, image corruption from rapid respiratory motion and the need for high spatial and temporal resolutions. Here we demonstrate a DCE protocol optimized for such applications. The method consists of three acquisitions: (1) actual flip-angle B1 mapping, (2) variable flip-angle T1 mapping and (3) acquisition of the DCE series using a motion-robust radial strategy with k-space weighted image contrast (KWIC) reconstruction. All three acquisitions employ spoiled radial imaging with stack-of-stars sampling (SoS) and golden-angle increments between the views. This scheme is shown to minimize artifacts due to respiratory motion while simultaneously facilitating view-sharing image reconstruction for the dynamic series. The method is demonstrated in a genetically engineered mouse model of pancreatic ductal adenocarcinoma and yielded mean perfusion parameters of Ktrans = 0.23 ± 0.14 min−1 and ve = 0.31 ± 0.17 (n = 22) over a wide range of tumor sizes. The SoS-sampled DCE method is shown to produce artifact-free images with good SNR leading to robust estimation of DCE parameters.
Collapse
|
6
|
The Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in the Differentiation of Pseudoprogression and Recurrence of Intracranial Gliomas. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5680522. [PMID: 35935318 PMCID: PMC9337951 DOI: 10.1155/2022/5680522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Objective The objective of this study was to determine the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing postoperative changes in intracranial gliomas. Method A total of fifty-one patients who had new enhanced lesions after surgical resection followed by standard radiotherapy and chemotherapy were collected retrospectively from October 2014 to June 2021. The patients were divided into a pseudoprogression group (15 cases) and a recurrence group (36 cases) according to the pathological results of the second operation or a follow-up of more than six months. The follow-up data of all patients were complete, and DCE-MRI was performed. The images were processed to obtain the quantitative parameters Ktrans, Ve, and Kep and the semiquantitative parameter iAUC, which were analysed with relevant statistical software. Results First, the difference in Ktrans and iAUC values between the two groups was statistically significant (P < 0.05), and the difference in Ve and Kep values was not statistically significant (P > 0.05). Second, by comparing the area under the curve, threshold, sensitivity and specificity of Ktrans, and iAUC, it was found that the iAUC threshold value was slightly higher than that of Ktrans, and the specificity of Ktrans was equal to that of iAUC, while the area under the curve and sensitivity of Ktrans were higher than those of iAUC. Third, Ktrans and iAUC had high accuracy in diagnosing recurrence and pseudoprogression, and Ktrans had higher accuracy than iAUC. Conclusion In this study, DCE-MRI has a certain diagnostic value in the early differentiation of recurrence and pseudoprogression, offering a new method for the diagnosis and assessment of gliomas after surgery.
Collapse
|
7
|
Zhang J, Yang S, Guan H, Zhou J, Gao Y. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells. J Cell Mol Med 2021; 25:1688-1699. [PMID: 33439503 PMCID: PMC7875932 DOI: 10.1111/jcmm.16271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Xanthatin (Xa) is a bicyclic sesquiterpene lactone identified from the plant Xanthium L. with impressive antitumor activity, but the role of Xa in non‐small cell lung cancer (NSCLC) is not known. Here we found that Xa inhibits proliferation, migration, invasion and induces apoptosis in NSCLC cells. RNA sequencing and Gene set enrichment analysis revealed that Xa significantly activates p53 pathway and suppresses E2F targets, G2M checkpoint and MYC targets in A549 cells. Among these changed genes, the down‐regulated gene BARD1 triggered by Xa was identified as a candidate involved in Xa’s antitumor effect because of its vital role in homologous recombination (HR). Further studies demonstrated that Xa inhibits HR through the BARD1/BRCA1/RAD51 axis, which enhances cell sensitivity to cisplatin. Mechanistic studies showed that Xa inhibits BARD1 through the JAK2/STAT4 pathway. Our study revealed that Xa is a promising drug to treat NSCLC, especially in combination with conventional chemotherapy.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongmei Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jueyu Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Han L, Huang X, Liu X, Deng Y, Ke X, Zhou Q, Zhou J. Evaluation of the anti-angiogenic effect of bevacizumab on rat C6 glioma by spectral computed tomography. Acta Radiol 2021; 62:120-128. [PMID: 32290677 DOI: 10.1177/0284185120916200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Anti-angiogenic drugs have become a research hotspot in recent years. However, dynamically observing their therapeutic effect at different time points during treatment is a clinical problem. PURPOSE To explore the feasibility of the quantitative parameters of spectral computed tomography (CT) in evaluating the anti-angiogenic effect of bevacizumab on rat C6 glioma. MATERIAL AND METHODS Twenty-six male Sprague-Dawley rats were used to establish the C6 glioma model. The rats were randomly divided into the experimental group (n = 13) and control group (n = 13). The experimental group was intraperitoneally injected with 0.2 µL/g bevacizumab every day, whereas the control group was injected with the same dose of normal saline every day for one week. Spectral CT scanning was performed on the 4th and 8th days after treatment; meanwhile, the brain tissues were collected by heart perfusion for H&E staining, and VEGF and HIF-1α immunohistochemical staining. RESULTS On the 4th and 8th days, significant differences in the 70-keV single-energy CT value, slope of the energy spectrum curve, and iodine concentration were found between the experimental group and the control group. Correlation analysis between immunohistochemistry and quantitative parameters of spectral CT showed that the single energy CT value of 70 keV, slope of the energy spectrum curve, and concentration of iodine were positively correlated with VEGF and HIF-1α at different time points in the experimental group and the control group. CONCLUSION Spectral CT multi-parameter imaging can be employed as a new method to evaluate the anti-angiogenic effect of bevacizumab on rat C6 glioma.
Collapse
Affiliation(s)
- Lei Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, PR China
| | - Xiaoyu Huang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, PR China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, PR China
| | - Yajun Deng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, PR China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, PR China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, PR China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, PR China
| |
Collapse
|
9
|
Jing H, Yan X, Yang G, Qin D, Zhang H, Wirginia J. Medical Monitoring Data of Dynamic Contrast Enhanced Intelligent Information Image with MR in Postoperative Infection of Intracranial Gliomas (Preprint). JMIR Med Inform 2020. [DOI: 10.2196/21407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Ma YY, Di ZM, Cao Q, Xu WS, Bi SX, Yu JS, Shen YJ, Yu YQ, Shen YX, Feng LJ. Xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating endoplasmic reticulum stress-dependent CHOP pathway. Acta Pharmacol Sin 2020; 41:404-414. [PMID: 31700088 PMCID: PMC7468336 DOI: 10.1038/s41401-019-0318-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023]
Abstract
Xanthatin is a natural sesquiterpene lactone purified from Xanthium strumarium L., which has shown prominent antitumor activity against a variety of cancer cells. In the current study, we investigated the effect of xanthatin on the growth of glioma cells in vitro and in vivo, and elucidated the underlying mechanisms. In both rat glioma C6 and human glioma U251 cell lines, xanthatin (1–15 μM) dose-dependently inhibited cell viability without apparent effect on the cell cycle. Furthermore, xanthatin treatment dose-dependently induced glioma cell apoptosis. In nude mice bearing C6 glioma tumor xenografts, administration of xanthatin (10, 20, 40 mg·kg−1·d−1, ip, for 2 weeks) dose-dependently inhibited the tumor growth, but did not affect the body weight. More importantly, xanthatin treatment markedly increased the expression levels of the endoplasmic reticulum (ER) stress-related markers in both the glioma cell lines as well as in C6 xenografts, including glucose-regulated protein 78, C/EBP-homologous protein (CHOP), activating factor 4, activating transcription factor 6, spliced X-box binding protein-1, phosphorylated protein kinase R-like endoplasmic reticulum kinase, and phosphorylated eukaryotic initiation factor 2a. Pretreatment of C6 glioma cells with the ER stress inhibitor 4-phenylbutyric acid (4-PBA, 7 mM) or knockdown of CHOP using small interfering RNA significantly attenuated xanthatin-induced cell apoptosis and increase of proapoptotic caspase-3. These results demonstrate that xanthatin induces glioma cell apoptosis and inhibits tumor growth via activating the ER stress-related unfolded protein response pathway involving CHOP induction. Xanthatin may serve as a promising agent in the treatment of human glioma.
Collapse
|