1
|
Sokoli L, Takáč P, Budovská M, Michalková R, Kello M, Nosálová N, Balážová Ľ, Salanci Š, Mojžiš J. The Proapoptotic Effect of MB-653 Is Associated with the Modulation of Metastasis and Invasiveness-Related Signalling Pathways in Human Colorectal Cancer Cells. Biomolecules 2025; 15:72. [PMID: 39858466 PMCID: PMC11762530 DOI: 10.3390/biom15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide and has a high mortality rate. In this study, we investigated the cytotoxic, proapoptotic, and anti-invasive effects of the synthetic indole phytoalexin MB-653. The antiproliferative effect was determined using an MTT assay, showing IC50 values of 5.8 ± 0.3 μmol/L for HCT116 cells and 6.1 ± 2.1 μmol/L for Caco2 cells. Flow cytometry and Western blot analysis were employed to investigate the molecular mechanisms underlying cytotoxicity, proapoptotic action, and anti-invasion effects. The proapoptotic activity was evidenced by the activation of caspases 3 and 7, mitochondrial dysfunction, and an increased number of apoptotic cells, confirmed by annexin V/PI and AO/PI staining. Additionally, MB-653 induces dose-dependent G2/M phase cell cycle arrest, the cause of which could be cyclin B1/CDC2 complex dysfunction and/or a decrease in α-tubulin protein expression. Another important observation was that MB-653 modulated several signalling pathways associated with various cellular activities, including survival, proliferation, tumour invasiveness, metastasis, and epithelial-mesenchymal transition (EMT). We further demonstrated its safety for topical and parenteral application. To sum up, our results indicate the real potential of MB-653 in treating colorectal cancer.
Collapse
Affiliation(s)
- Libor Sokoli
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Peter Takáč
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Mariana Budovská
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia;
| | - Šimon Salanci
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (R.M.); (M.K.)
| |
Collapse
|
2
|
Manoharan S, Perumal E. Chemotherapeutic potential of radotinib against blood and solid tumors: A beacon of hope in drug repurposing. Bioorg Chem 2025; 154:108017. [PMID: 39647393 DOI: 10.1016/j.bioorg.2024.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) represent a pivotal class of targeted therapies in oncology, with multiple generations developed to address diverse molecular targets. Imatinib is the first TKI developed to target the BCR-ABL1 chimeric protein, which is the key driver oncogene implicated in Philadelphia chromosome-positive chronic myeloid leukemia (CML). Several second-generation tyrosine kinase inhibitors (2GTKIs), such as nilotinib, dasatinib, bosutinib, and radotinib (RTB), followed the groundbreaking introduction of imatinib. RTB occupies the unique position of being the least explored member of this class. While nilotinib, dasatinib, and bosutinib have garnered significant attention and extensive research focus, RTB remains relatively uncharted in comparison to its counterparts. Fundamental drug characteristics, such as the pharmacokinetic and pharmacodynamic properties of RTB, remain unavailable in existing sources. Compared to other 2GTKIs, RTB has been less utilized in combinatorial drug studies, and no investigations have been reported on its effects on solid tumors to date. However, the effects of RTB have been studied in acute myeloid leukemia (AML), multiple myeloma (MM), Parkinson's disease, and idiopathic pulmonary fibrosis (IPF). Although RTB has been investigated in some conditions, these studies are still in their preliminary stages and are comparatively lesser than studies on other 2GTKIs. This review is the first attempt that extensively presents a compilation of data on RTB and describes its therapeutic potential against blood and solid tumors. Further investigations on RTB could expand its chemotherapeutic usage in various solid tumors and enhance the possibility of drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
3
|
Shoari A, Ashja Ardalan A, Dimesa AM, Coban MA. Targeting Invasion: The Role of MMP-2 and MMP-9 Inhibition in Colorectal Cancer Therapy. Biomolecules 2024; 15:35. [PMID: 39858430 PMCID: PMC11762759 DOI: 10.3390/biom15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and lethal cancers worldwide, prompting ongoing research into innovative therapeutic strategies. This review aims to systematically evaluate the role of gelatinases, specifically MMP-2 and MMP-9, as therapeutic targets in CRC, providing a critical analysis of their potential to improve patient outcomes. Gelatinases, specifically MMP-2 and MMP-9, play critical roles in the processes of tumor growth, invasion, and metastasis. Their expression and activity are significantly elevated in CRC, correlating with poor prognosis and lower survival rates. This review provides a comprehensive overview of the pathophysiological roles of gelatinases in CRC, highlighting their contribution to tumor microenvironment modulation, angiogenesis, and the metastatic cascade. We also critically evaluate recent advancements in the development of gelatinase inhibitors, including small molecule inhibitors, natural compounds, and novel therapeutic approaches like gene silencing techniques. Challenges such as nonspecificity, adverse side effects, and resistance mechanisms are discussed. We explore the potential of gelatinase inhibition in combination therapies, particularly with conventional chemotherapy and emerging targeted treatments, to enhance therapeutic efficacy and overcome resistance. The novelty of this review lies in its integration of recent findings on diverse inhibition strategies with insights into their clinical relevance, offering a roadmap for future research. By addressing the limitations of current approaches and proposing novel strategies, this review underscores the potential of gelatinase inhibitors in CRC prevention and therapy, inspiring further exploration in this promising area of oncological treatment.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Arghavan Ashja Ardalan
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | | | - Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
4
|
Rouzi K, Altay A, Bouatia M, Yeniçeri E, Islam MS, Oulmidi A, El Karbane M, Karrouchi K. Novel isoniazid-hydrazone derivatives induce cell growth inhibition, cell cycle arrest and apoptosis via mitochondria-dependent caspase activation and PI3K/AKT inhibition. Bioorg Chem 2024; 150:107563. [PMID: 38885547 DOI: 10.1016/j.bioorg.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, seven isoniazid-hydrazone derivatives (3a-g) were synthesized and their structures elucidated by chromatographic techniques, and then the antiproliferative effects of these compounds on various cancer cells were tested. The advanced anticancer mechanism of the most potent compound was then investigated. Antiproliferative activities of the synthesized compounds were evaluated on human breast cancer MCF-7, lung cancer A-549, colon cancer HT-29, and non-cancerous mouse fibroblast 3T3-L1 cell lines by XTT assay. Flow cytometry analysis were carried out to determine cell cycle distribution, apoptosis, mitochondrial membrane potential, multi-caspase activity, and expression of PI3K/AKT signaling pathway. The XTT results showed that all the title molecules displayed cytotoxic activity at varying strengths in different dose ranges, and among them, the strongest cytotoxic effect and high selectivity were exerted by 3d against MCF-7 cells with the IC50 value of 11.35 µM and selectivity index of 8.65. Flow cytometry results revealed that compound 3d induced apoptosis through mitochondrial membrane disruption and multi-caspase activation in MCF-7 cells. It also inhibited the cell proliferation via inhibition of expression of PI3K/AKT and arrested the cell cycle at G0/G1 phase. In conclusion, all these data disclosed that among the synthesized compounds, 3d is notable for in vivo anticancer studies.
Collapse
Affiliation(s)
- Khouloud Rouzi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey.
| | - Mustapha Bouatia
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Esma Yeniçeri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Mohammad Shahidul Islam
- College of Science, Chemistry Department, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Oulmidi
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Miloud El Karbane
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
5
|
Zigová M, Michalková R, Mojžiš J. Anticancer Potential of Indole Phytoalexins and Their Analogues. Molecules 2024; 29:2388. [PMID: 38792249 PMCID: PMC11124384 DOI: 10.3390/molecules29102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Indole phytoalexins, found in economically significant Cruciferae family plants, are synthesized in response to pathogen attacks or stress, serving as crucial components of plant defense mechanisms against bacterial and fungal infections. Furthermore, recent research indicates that these compounds hold promise for improving human health, particularly in terms of potential anticancer effects that have been observed in various studies. Since our last comprehensive overview in 2016 focusing on the antiproliferative effects of these substances, brassinin and camalexin have been the most extensively studied. This review analyses the multifaceted pharmacological effects of brassinin and camalexin, highlighting their anticancer potential. In this article, we also provide an overview of the antiproliferative activity of new synthetic analogs of indole phytoalexins, which were synthesized and tested at our university with the aim of enhancing efficacy compared to the parent compound.
Collapse
Affiliation(s)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| |
Collapse
|
6
|
Sierosławska A, Rymuszka A. Combined effects of two phytoalexins, brassinin and camalexin, on the cells of colorectal origin. Toxicon 2023; 234:107283. [PMID: 37683699 DOI: 10.1016/j.toxicon.2023.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/07/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Brassinin and camalexin belong to phytoalexins, plant compounds generated in the response to stress. Both compounds are known to be cytotoxic to several cancer cell lines, mainly by inducing oxidative stress and subsequent apoptosis. In the presented study, cytotoxic effects of brassinin and camalexin, individually and, for the first time, after combined exposure, on the cells of normal (CCD-Co18) and cancer (Caco-2) lines originated from colorectal tissues and their proapoptotic impact on Caco-2 cells were studied. The determined IC50 values indicate a clearly higher sensitivity of cancer cells to the tested substances, as well as a stronger cytotoxic effect of camalexin than brassinin. The synergistic effect of both phytoalexins was also demonstrated. Caspase-dependent and independent mechanisms were involved in the final effects. Both tested phytoalexins caused evident, concentration-dependent symptoms of oxidative stress in cancer cells, leading to apoptosis, but in the highest concentrations, also to necrosis. In case of camalexin, signs of pyroptosis were additionally detected.
Collapse
Affiliation(s)
- Anna Sierosławska
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland.
| | - Anna Rymuszka
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland
| |
Collapse
|
7
|
Brassinin Induces Apoptosis, Autophagy, and Paraptosis via MAPK Signaling Pathway Activation in Chronic Myelogenous Leukemia Cells. BIOLOGY 2023; 12:biology12020307. [PMID: 36829581 PMCID: PMC9953140 DOI: 10.3390/biology12020307] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Brassinin (BSN), a potent phytoalexin found in cruciferous vegetables, has been found to exhibit diverse anti-neoplastic effects on different cancers. However, the impact of BSN on chronic myelogenous leukemia (CML) cells and the possible mode of its actions have not been described earlier. We investigated the anti-cytotoxic effects of BSN on the KBM5, KCL22, K562, and LAMA84 CML cells and its underlying mechanisms of action in inducing programmed cell death. We noted that BSN could induce apoptosis, autophagy, and paraptosis in CML cells. BSN induced PARP cleavage, subG1 peak increase, and early apoptosis. The potential action of BSN on autophagy activation was confirmed by an LC3 expression and acridine orange assay. In addition, BSN induced paraptosis through increasing the reactive oxygen species (ROS) production, mitochondria damage, and endoplasmic reticulum (ER) stress. Moreover, BSN promoted the activation of the MAPK signaling pathway, and pharmacological inhibitors of this signaling pathway could alleviate all three forms of cell death induced by BSN. Our data indicated that BSN could initiate the activation of apoptosis, autophagy, and paraptosis through modulating the MAPK signaling pathway.
Collapse
|
8
|
Atorvastatin induces downregulation of matrix metalloproteinase-2/9 in MDA-MB-231 triple negative breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:22. [PMID: 36445561 DOI: 10.1007/s12032-022-01880-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/29/2022] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases, mainly responsible of extracellular tissue remodeling. Abundant expression of MMPs leads to a number of tumorigenic processes including proliferation, angiogenesis, metastasis and invasion. Therefore, suppressing MMP expression is particularly important in cancer. Atorvastatin is a member of statin family, with cholesterol-lowering properties. Recently, it has emerged as a potential anticancer agent. Multiple researchers have reported promising results of atorvastatin use in cancer therapies. However, its effect on the expression of matrix metalloproteinases in breast cancer is unknown. In the present study, we have confirmed the apoptotic activity of atorvastatin on highly metastatic MDA-MB-231 triple negative breast cancer cells and investigated the gene expression of MMP-2/9. In this regard, MTT analysis was performed to evaluate cytotoxicity. Apoptotic activity was assessed by Annexin V binding and multicaspase assays. Western blot analysis was used to detect the apoptosis-related proteins. RT-PCR analysis was performed to evaluate the mRNA expression levels of MMP-2/9. Results indicated that atorvastatin reduces cell viability significantly at 5 µM after 48 h of treatment (p < 0.0001). It also induces caspase-dependent apoptosis, alters the expression of Bax and Bcl-2 in favour of apoptosis and stimulates cell cycle arrest at S phase (p < 0.05). Moreover, atorvastatin downregulates the mRNA expression of MMP-2 and MMP-9 significantly (p < 0.05). In conclusion, these results demonstrate for the first time that atorvastatin inhibits MMP-2 and MMP-9 gene expression in MDA-MB-231 cells, in addition to inducing caspase-dependent apoptosis.
Collapse
|
9
|
Bakar-Ates F, Sengel-Turk CT. Lonidamine loaded Poly(ethylene glycol)–block–poly(ε-caprolacton) nanocarriers inhibited the proliferation of colorectal cancer cells through G0/G1 cell cycle arrest. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Box-Behnken Design Optimization and In Vitro Cell Based Evaluation of Piroxicam Loaded Core-Shell Type Hybrid Nanocarriers for Prostate Cancer. J Pharm Biomed Anal 2022; 216:114799. [DOI: 10.1016/j.jpba.2022.114799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
|
11
|
Budovská M, Krochtová K, Kuba M, Tischlerová V, Mojžiš J. Synthesis and cytotoxicity evaluation of novel 5-fluorinated indoles. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Chen X. An Update on the Potential Roles of E2F Family Members in Colorectal Cancer. Cancer Manag Res 2021; 13:5509-5521. [PMID: 34276228 PMCID: PMC8277564 DOI: 10.2147/cmar.s320193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of transcription factors consisting of eight genes, contributing to the oncogenesis and development of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senescence, DNA damage response, and drug resistance by interacting with multiple signaling pathways. However, the specific functions and intricate machinery of these eight E2Fs in human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs (ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to clinical application. Herein, we have systemically reviewed the current literature on the roles of various E2Fs in CRC with the purpose of providing possible clinical implications for patient diagnosis and prognosis and future treatment strategy design, thereby furthering the understanding of the E2Fs.
Collapse
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
13
|
Yang MH, Baek SH, Ha IJ, Um JY, Ahn KS. Brassinin enhances the anticancer actions of paclitaxel by targeting multiple signaling pathways in colorectal cancer cells. Phytother Res 2021; 35:3875-3885. [PMID: 33792984 DOI: 10.1002/ptr.7095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Brassinin (BSN), a precursor of phytoalexins, extracted from Chinese cabbage has been reported to act as a promising anti-neoplastic agent. However, the effects of BSN on colon cancer cells and its underlying mechanisms have not been fully elucidated. This study aimed at investigating the anti-neoplastic impact of BSN and its possible synergistic effect with paclitaxel on colon cancer cells. The effect of BSN on Janus-activated kinases (JAKs)/signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways and its downstream functions was deciphered using diverse assays in colon carcinoma cells. We found that BSN displayed significant cytotoxic effect and suppressed cell proliferation on colon carcinoma cells. Additionally, it was noted that BSN modulated oncogenic gene expression and induced apoptosis through down regulating multiple oncogenic signaling cascades such as JAKs/STAT3 and PI3K/Akt/mTOR simultaneously. Besides, BSN-paclitaxel combination significantly increased cytotoxicity and induced apoptosis synergistically as compared with individual treatment of both the agents. Overall, our findings indicate that BSN may be a novel candidate for anti-colon cancer targeted therapy.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
14
|
Budovská M, Selešová I, Tischlerová V, Michalková R, Mojžiš J. Design, synthesis, and biological evaluation of novel 5-bromo derivatives of indole phytoalexins. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|