1
|
Tao H, Li X, Wang Q, Yu L, Yang P, Chen W, Yang X, Zhou J, Geng D. Redox signaling and antioxidant defense in osteoclasts. Free Radic Biol Med 2024; 212:403-414. [PMID: 38171408 DOI: 10.1016/j.freeradbiomed.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Bone remodeling is essential for the repair and replacement of damaged or aging bones. Continuous remodeling is necessary to prevent the accumulation of bone damage and to maintain bone strength and calcium balance. As bones age, the coupling mechanism between bone formation and absorption becomes dysregulated, and bone loss becomes dominant. Bone development and repair rely on interaction and communication between osteoclasts and surrounding cells. Osteoclasts are specialized cells that are accountable for bone resorption and degradation, and any abnormalities in their activity can result in notable alterations in bone structure and worsen disease symptoms. Recent findings from transgenic mouse models and bone analysis have greatly enhanced our understanding of the origin, differentiation pathway, and activation stages of osteoclasts. In this review, we explore osteoclasts and discuss the cellular and molecular events that drive their generation, focusing on intracellular oxidative and antioxidant signaling. This knowledge can help develop targeted therapies for diseases associated with osteoclast activation.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Ko JS, Chang BY, Choi YJ, Choi JS, Kwon HY, Lee JY, Kim SY, Choung SY. Ashwagandha Ethanol Extract Attenuates Sarcopenia-Related Muscle Atrophy in Aged Mice. Nutrients 2024; 16:157. [PMID: 38201986 PMCID: PMC10781061 DOI: 10.3390/nu16010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The investigation focused on the impact of Withania somnifera (ashwagandha) extract (WSE) on age-related mechanisms affecting skeletal muscle sarcopenia-related muscle atrophy in aged mice. Beyond evaluating muscular aspects, the study explored chronic low-grade inflammation, muscle regeneration, and mitochondrial biogenesis. WSE administration, in comparison to the control group, demonstrated no significant differences in body weight, diet, or water intake, affirming its safety profile. Notably, WSE exhibited a propensity to reduce epidermal and abdominal fat while significantly increasing muscle mass at a dosage of 200 mg/kg. The muscle-to-fat ratio, adjusted for body weight, increased across all treatment groups. WSE administration led to a reduction in the pro-inflammatory cytokines TNF-α and IL-1β, mitigating inflammation-associated muscle atrophy. In a 12-month-old mouse model equivalent to a 50-year-old human, WSE effectively preserved muscle strength, stabilized grip strength, and increased muscle tissue weight. Positive effects were observed in running performance and endurance. Mechanistically, WSE balanced muscle protein synthesis/degradation, promoted fiber differentiation, and enhanced mitochondrial biogenesis through the IGF-1/Akt/mTOR pathway. This study provides compelling evidence for the anti-sarcopenic effects of WSE, positioning it as a promising candidate for preventing sarcopenia pending further clinical validation.
Collapse
Affiliation(s)
- Jin-Sung Ko
- Department of Biomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea; (J.-S.K.); (Y.-J.C.)
| | - Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (B.-Y.C.); (S.-Y.K.)
| | - Young-Ju Choi
- Department of Biomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea; (J.-S.K.); (Y.-J.C.)
| | - Ji-Soo Choi
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Hee-Yeon Kwon
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Jae-Yeon Lee
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (B.-Y.C.); (S.-Y.K.)
| | - Se-Young Choung
- Department of Preventive Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
3
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
4
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
5
|
Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice. Biomed Pharmacother 2022; 153:113406. [DOI: 10.1016/j.biopha.2022.113406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
|
6
|
Yoo A, Ahn J, Kim MJ, Seo HD, Hahm JH, Jung CH, Ha TY. Fruit of Schisandra chinensis and its bioactive component schizandrin B ameliorate obesity-induced skeletal muscle atrophy. Food Res Int 2022; 157:111439. [PMID: 35761679 DOI: 10.1016/j.foodres.2022.111439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Schisandra chinensis fruit (Omiza in Korean), used for the production tea or liquor, and is known to enhance skeletal muscle function. However, the effect of Omiza extract (OM) on obesity-induced skeletal muscle atrophy remains unclear. This study investigated the effect of OM on skeletal muscle mass and performance in obese mice. OM increased skeletal muscle weight, size and improved skeletal muscle performance. Further, it also suppressed obesity-induced increases in proinflammatory cytokines, MuRF1, and Atrogin1 in mouse skeletal muscle and enhanced the expression of MHC and the phosphorylation of AKT/mTOR signaling molecules, thereby suppressing myostatin expression and regulating Smad-FOXO signaling. Schizandrin B, a major component of OM inhibited palmitic acid induced atrophy in C2C12 cells via Smad-FOXO regulation, suggesting that it partially contributed to the effects of OM against obesity-induced muscle atrophy. Taken together, OM may have the potential to prevent and treat obesity-induced muscle atrophy.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Hyo-Deok Seo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Jeong-Hoon Hahm
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Lian WS, Wang FS, Chen YS, Tsai MH, Chao HR, Jahr H, Wu RW, Ko JY. Gut Microbiota Ecosystem Governance of Host Inflammation, Mitochondrial Respiration and Skeletal Homeostasis. Biomedicines 2022; 10:biomedicines10040860. [PMID: 35453611 PMCID: PMC9030723 DOI: 10.3390/biomedicines10040860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and osteoarthritis account for the leading causes of musculoskeletal dysfunction in older adults. Senescent chondrocyte overburden, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability are prominent features of these age-mediated skeletal diseases. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Dysregulation of gut microflora correlates with development of osteoarthritis and osteoporosis in humans and rodents. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes and bone cells to regulate joint and bone tissue homeostasis. Modulating the abundance of Lactobacillus and Bifidobacterium, or the ratio of Firmicutes and Bacteroidetes, in the gut microenvironment by probiotics or fecal microbiota transplantation is advantageous to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue. Supplementation with gut microbiota-derived metabolites potentially slows down development of osteoarthritis and osteoporosis. This review provides latest molecular and cellular insights into the biological significance of gut microorganisms and primary and secondary metabolites important to cartilage and bone integrity. It further highlights treatment options with probiotics or metabolites for modulating the progression of these two common skeletal disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
| | - How-Ran Chao
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: ; Tel.: +88-67-731-7123
| |
Collapse
|
8
|
Yang K, Qiu J, Huang Z, Yu Z, Wang W, Hu H, You Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114759. [PMID: 34678416 DOI: 10.1016/j.jep.2021.114759] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (called bei-wuweizi in Chinese, S. chinensis) and Schisandra sphenanthera (called nan-wuweizi in Chinese, S. sphenanthera) are two highly similar plants in the Magnoliaceae family. Their dried ripe fruits are commonly used as traditional Chinese medicine in the treatment of coughs, palpitation, spermatorrhea, and insomnia. They also are traditionally used as tonics in Russia, Japan, and Korea. AIM OF THE REVIEW S. chinensis and S. sphenanthera are similar in appearance, traditional applications, ingredient compositions, and therapeutic effects. This review, therefore, aims to provide a systematic insight into the botanical background, ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicology of S. chinensis and S. sphenanthera, and to explore and present the similarities and differences between S. chinensis and S. sphenanthera. MATERIALS AND METHODS A comprehensive literature search regarding S. chinensis and S. sphenanthera was collected by using electronic databases including PubMed, SciFinder, Science Direct, Web of Science, CNKI, and the online ethnobotanical database. RESULTS In the 2020 Edition of Chinese Pharmacopoeia (ChP), there were 100 prescriptions containing S. chinensis, while only 11 contained S. sphenanthera. Totally, 306 and 238 compounds have been isolated and identified from S. chinensis and S. sphenanthera, respectively. Among these compounds, lignans, triterpenoids, essential oils, phenolic acid, flavonoids, phytosterols are the major composition. Through investigation of pharmacological activities, S. chinensis and S. sphenanthera have similar therapeutic effects including hepatoprotection, neuroprotection, cardioprotection, anticancer, antioxidation, anti-inflammation, and hypoglycemic effect. Besides, S. chinensis turns out to have more effects including reproductive regulation and immunomodulatory, antimicrobial, antitussive and antiasthmatic, anti-fatigue, antiarthritic, and bone remodeling effects. Both S. chinensis and S. sphenanthera have inhibitory effects on CYP3A and P-gp, which can mediate metabolism or efflux of substrates, and therefore interact with many drugs. CONCLUSIONS S. chinensis and S. sphenanthera have great similarities. Dibenzocyclooctadiene lignans are regarded to contribute to most of the bioactivities. Schisandrin A-C, schisandrol A-B, and schisantherin A, existing in both S. chinensis and S. sphenanthera but differing in the amount, are the main active components, which may contribute to the similarities and differences. Study corresponding to the traditional use is needed to reveal the deep connotation of the use of S. chinensis and S. sphenanthera as traditional Chinese medicine. In addition, a joint study of S. chinensis and S. sphenanthera can better show the difference between them, which can provide a reference for clinical application. It is worth mentioning that the inhibition of S. chinensis and S. sphenanthera on CYP3A and P-gp may lead to undesirable drug-drug interactions.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Jing Qiu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Wenjun Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
9
|
Hong CP, Kim CK, Lee DJ, Jeong HJ, Lee Y, Park SG, Kim HJ, Kang JN, Ryu H, Kwon SJ, Kang SH. Long-read transcriptome sequencing provides insight into lignan biosynthesis during fruit development in Schisandra chinensis. BMC Genomics 2022; 23:17. [PMID: 34996357 PMCID: PMC8742460 DOI: 10.1186/s12864-021-08253-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. RESULTS To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. CONCLUSIONS Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea.
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Dong Jin Lee
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hee Jeong Jeong
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Sin-Gi Park
- Theragen Bio Co., Ltd., Suwon, 16229, Republic of Korea
| | - Hyo-Jin Kim
- Jeollabukdo ARES Medicinal Resource Research Institute, Jinan, 55440, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
10
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
11
|
Lee DY, Chun YS, Kim JK, Lee JO, Lee YJ, Ku SK, Shim SM. Curcumin Ameliorated Oxidative Stress and Inflammation-Related Muscle Disorders in C2C12 Myoblast Cells. Antioxidants (Basel) 2021; 10:476. [PMID: 33802935 PMCID: PMC8002759 DOI: 10.3390/antiox10030476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of the current study was to investigate antioxidant and anti-inflammatory effects of spray dry powder containing 40% curcumin (CM-SD) in C2C12 myoblast cells. CM-SD increased DPPH radical scavenging activity in a dose-dependent manner, and up to 30 μg/mL of CM-SD did not express cytotoxicity in C2C12 cells. Exposure to hydrogen peroxide (H2O2) drastically decreased the viability of C2C12 cells, but pre-treatment of CM-SD significantly increased the cell viability (p < 0.01). CM-SD significantly transactivated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent luciferase activity in a dose-dependent manner and enhanced the levels of heme oxygenase (HO)-1, glutamate cysteine ligase catalytic subunit (GCLC), and NAD(P)H-dependent quinone oxidoreductase (NQO)-1. CM-SD also significantly reduced reactive oxygen species (ROS) production and lipid peroxidation and restored glutathione (GSH) depletion in H2O2-treated C2C12 cells. Moreover, CM-SD significantly reduced lipopolysaccharides (LPS)-mediated interleukin (IL)-6 production in the conditioned medium. Results from the current study suggest that CM-SD could be a useful candidate against oxidative stress and inflammation-related muscle disorders.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Yoon-Seok Chun
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Jong-Kyu Kim
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Jeong-Ok Lee
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Young-Joon Lee
- Department of Preventive Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| |
Collapse
|
12
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
13
|
Leis K, Baska A, Mazur E, Kaczor P, Racinowski M, Gałązka P. Schisandrins impact on the efficiency of human body: A review. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Takanche JS, Kim JE, Han SH, Yi HK. Effect of gomisin A on osteoblast differentiation in high glucose-mediated oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153107. [PMID: 31790903 DOI: 10.1016/j.phymed.2019.153107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gomisin A is a lignan isolated from the hexane of Schisandra chinensis fruit extract with antioxidant properties. Oxidative stress mediated by high glucose is one of the major complications of diabetes mellitus. PURPOSE This study investigates the role of gomisin A in osteoblast differentiation under high glucose-induced oxidative stress in MC3T3 E1 cells and determines its relationship with heme oxygenase-1 (HO-1) and mitochondrial biogenesis. METHODS MC3T3 E1 cells were treated by gomisin A following induced by high glucose levels and glucose oxidase to investigate the inhibitory effect of gomisin A against high glucose oxidative stress. Western blot analysis, alizarin red staining, alkaline phosphatase (ALP) activity, analysis of reactive oxygen species (ROS) and confocal microscopy were used to determine mitochondrial biogenesis, oxidative stress, osteoblast differentiation and mineralization. To analyze the role of HO-1, the MC3T3 E1 cells were treated with the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). RESULTS Gomisin A enhanced the expression of HO-1, increased mitochondrial biogenesis factors (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A), antioxidant enzymes (copper-zinc superoxide dismutases and manganese superoxide dismutase), osteoblast differentiation molecules (bone morphogenic protein-2/7, osteoprotegerin and Runt-related transcription factor-2) and mineralization by upregulation of ALP and alizarin red staining, which were decreased by ZnPP and high glucose oxidative stress. Similarly, gomisin A inhibited ROS which was increased by ZnPP and the high glucose-mediated oxidative stress. CONCLUSIONS The findings demonstrated the antioxidative effects of gomisin A, and its role in mitochondrial biogenesis and osteoblast differentiation. It potentially regulated osteoblast differentiation under high glucose-induced oxidative stress via upregulation of HO-1 and maintenance of mitochondrial homeostasis. Thus, gomisin A may represent a potential therapeutic agent for prevention of bone fragility fractures and implant failure triggered by diabetes.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, 634-18, Deokjin-dong, Deokjin-gu, Jeonju, Jeonbuk, 561-712, South Korea.
| |
Collapse
|
15
|
Karna KK, Choi BR, Kim MJ, Kim HK, Park JK. The Effect of Schisandra chinensis Baillon on Cross-Talk between Oxidative Stress, Endoplasmic Reticulum Stress, and Mitochondrial Signaling Pathway in Testes of Varicocele-Induced SD Rat. Int J Mol Sci 2019; 20:ijms20225785. [PMID: 31744253 PMCID: PMC6888522 DOI: 10.3390/ijms20225785] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Schisandra chinensis Baillon (SC) has been utilized for its antioxidants and anti-inflammatory activities in a broad variety of medical applications. However; SC uses for improving fertility in males and related disorders with proper scientific validation remain obscure. The present study aimed to investigate the effects of SC on varicocele (VC)-induced testicular dysfunction and the potential molecular mechanism associated with VC-induced germ cell apoptosis. The male Sprague–Dawley rats were equally divided into four groups consisting of 10 rats in a normal control group (CTR), a control group administered SC 200 mg/kg (SC 200), a varicocele-induced control group (VC), and a varicocele-induced group administered SC 200 mg/kg (VC + SC 200). Rats were administrated 200 mg/kg SC once daily for 28 days after induction of varicocele rats and sham controls. At the end of the treatment period, body and reproductive organ weight, sperm parameters, histopathological damages, proinflammatory cytokines, apoptosis markers, biomarkers of oxidative stress, endoplasmic reticulum (ER) stress, and steroidogenic acute regulatory protein (StAR) were evaluated. The effects of SC extract on human sperm motility were also analyzed. SC treatment reduces VC-induced testicular dysfunction by significantly increasing testicular weight, sperm count and sperm motility, serum testosterone level, Johnsen score, spermatogenic cell density, testicular superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase level, and steroidogenic acute regulatory protein (StAR) level. Furthermore, the effects of SC on malondialdehyde (MDA) level, reactive oxygen species (ROS)/reactive nitrogen species (RNS) level, apoptotic index, serum luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels, Glucose-regulated protein-78 (Grp 78), phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated inositol-requiring transmembrane kinase/endoribonuclease 1α (p-IRE1α), cleaved caspase 3, and Bax:Bcl2 in VC-induced rats were significantly decreased. Treatment with SC extracts also increased sperm motility in human sperm. Our findings suggest that the SC ameliorate testicular dysfunction in VC-induced rats via crosstalk between oxidative stress, ER stress, and mitochondrial-mediated testicular germ cell apoptosis signaling pathways. SC promotes spermatogenesis by upregulating abnormal sex hormones and decreasing proinflammatory cytokines (interleukin-6; TNF-α).
Collapse
Affiliation(s)
- Keshab Kumar Karna
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School-Biomedical Research Institute and Clinical Trial Center of Medical Device, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Bo Ram Choi
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea;
| | - Min-Ji Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
- Correspondence: (H.K.K.); (J.K.P.); Tel.: +82-51-663-4883 (H.K.K.); +82-63-250-1510 (J.K.P.); Fax: +82-51-663-4809 (H.K.K.); +82-63-250-1564 (J.K.P.)
| | - Jong Kwan Park
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School-Biomedical Research Institute and Clinical Trial Center of Medical Device, Chonbuk National University Hospital, Jeonju 54907, Korea;
- Correspondence: (H.K.K.); (J.K.P.); Tel.: +82-51-663-4883 (H.K.K.); +82-63-250-1510 (J.K.P.); Fax: +82-51-663-4809 (H.K.K.); +82-63-250-1564 (J.K.P.)
| |
Collapse
|