1
|
Melo LFMD, Aquino-Martins VGDQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem 2023; 414:135645. [PMID: 36821920 DOI: 10.1016/j.foodchem.2023.135645] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Secondary metabolites are divided into three classes: phenolic, terpenoid, and nitrogenous compounds. Phenolic compounds are also known as polyphenols and include tannins, classified as hydrolysable or condensed. Herein, we explored tannins for their ROS reduction characteristics and role in homeostasis. These activities are associated with the numbers and degree of polymerisation of reactive hydroxyl groups present in the phenolic rings of tannins. These characteristics are associated with anti-inflammatory, anti-aging, and anti-proliferative health benefits. Tannins can reduce the risk of cancer and neurodegenerative diseases, such as cardiovascular diseases and Alzheimer's, respectively. These biomolecules may be used as nutraceuticals to maintain good gut microbiota. Industrial applications include providing durability to leather, anti-corrosive properties to metals, and substrates for 3D printing and in bio-based foam manufacture. This review updates regarding tannin-based research and highlights its biological and pharmacological relevance and potential applications.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Ariana Pereira da Silva
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil; Departamento de Bioquímica - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Katia Castanho Scortecci
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil.
| |
Collapse
|
2
|
Palencia-Argel M, Rodríguez-Villamil H, Bernal-Castro C, Díaz-Moreno C, Fuenmayor CA. Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products. Crit Rev Food Sci Nutr 2022; 64:110-126. [PMID: 35880471 DOI: 10.1080/10408398.2022.2104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin-rich fruit beverages are of special interest as functional products due to their antioxidant activity, antimicrobial properties against pathogens, and, more recently, evidence of prebiotic potential. The stability and bioactivity of anthocyanins, probiotics, prebiotics, and synbiotics have been extensively documented in beverage models and reviewed separately. This review summarizes the most recent works and methodologies used for the development of probiotic and synbiotic beverages based on anthocyanin-rich fruits with a synergistic perspective. Emphasis is made on key optimization factors and strategies that have allowed probiotic cultures to reach the minimum recommended doses to obtain health benefits at the end of the shelf life. The development of these beverages is limited by the high acidity and high content of phenolic compounds in anthocyanin-rich fruits. However, a proper selection of probiotic strains and strategies for their media adaptation may improve their viability in the beverages. Fermentation increases the viability of the probiotic cultures, improves the safety and stability of the product, and may increase its antioxidant capacity. Moreover, fermentation metabolites may synergistically enhance probiotic health benefits. On the other hand, the inoculation of probiotics without fermentation allows for synbiotic beverages with milder changes in terms of physicochemical and sensory attributes.
Collapse
Affiliation(s)
- Marcela Palencia-Argel
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hawer Rodríguez-Villamil
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
3
|
Li BY, Li HY, Zhou DD, Huang SY, Luo M, Gan RY, Mao QQ, Saimaiti A, Shang A, Li HB. Effects of Different Green Tea Extracts on Chronic Alcohol Induced-Fatty Liver Disease by Ameliorating Oxidative Stress and Inflammation in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188205. [PMID: 35003517 PMCID: PMC8731271 DOI: 10.1155/2021/5188205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is a common chronic liver disease and has become a critical global public health problem. Green tea is a popular drink worldwide and contains several bioactive compounds. Different green teas could contain diverse compounds and possess distinct bioactivities. In the present study, the effects of 10 green teas on chronic alcohol induced-fatty liver disease in mice were explored and compared. The results showed that several green teas significantly reduced triacylglycerol levels in serum and liver as well as the aminotransferase activities in mice at a dose of 200 mg/kg, suggesting that they possess hepatoprotective effects. Moreover, several green teas remarkably decreased the expression of cytochrome P450 2E1, the levels of malondialdehyde and 4-hydroxynonenoic acid, and the contents of proinflammatory cytokines, indicating that they could alleviate oxidation damage and inflammation induced by chronic alcohol exposure. In addition, Seven Star Matcha Tea and Selenium-Enriched Matcha Tea could increase glutathione level. Furthermore, the main phytochemical components in green teas were determined and quantified by high-performance liquid chromatography, and the correlation analysis showed that gallic acid, gallocatechin, catechin, chlorogenic acid, and epigallocatechin gallate might at least partially contribute to protective effects on AFLD. In conclusion, Selenium-Enriched Chaoqing Green Tea, Xihu Longjing Tea, Taiping Houkui Tea, and Selenium-Enriched Matcha Tea showed the strongest preventive effects on AFLD. This research also provides the public with new insights about the effects of different green teas on AFLD.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Bagyi J, Sripada V, Aidone AM, Lin HY, Ruder EH, Crawford DR. Dietary rational targeting of redox-regulated genes. Free Radic Biol Med 2021; 173:19-28. [PMID: 34274490 DOI: 10.1016/j.freeradbiomed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Nutrigenomics is the study of how food and associated nutrients affect gene expression. This field sits at the intersection of diet, the genome and health with the ultimate goal of exploiting its understanding to design a precision nutrition strategy for humans. We have studied diet and nutrigenomics in the context of something we call "dietary rational gene targeting." Here, healthy diet is used to alter disease-causing gene expression back toward the normal to treat various diseases and conditions while lowering treatment cost and toxicity. In this paper, we discuss the use of this strategy to modulate the expression of redox-associated genes to improve human health. Most human disorders are associated, at least to some extent, with oxidative stress and so treatments (including diet) that target redox-related genes have major potential clinical significance. Healthy dietary options here are wide-ranging and include whole foods and botanical-based beverages. In some cases, botanical supplements may also be useful gene modulators although their health benefits are less clear. Key redox gene targets for these dietary agents include antioxidant genes, related transcription factors, detoxification genes, and DNA repair genes. Other important considerations include bioavailability, the contribution of the microbiome, and advancing technologies. In this review, specific examples of redox associated genes and pathologies and their potential treatment with healthy diet are presented to illustrate our approach. This will also serve as a foundation for the design of future clinical studies to improve diet-related health.
Collapse
Affiliation(s)
- Joyce Bagyi
- Clinical Nutrition, Albany Medical Center, Albany, NY, 12208, USA
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Andrea M Aidone
- Clinical Nutrition, Albany Medical Center, Albany, NY, 12208, USA
| | - H-Y Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Wan Fang Hospital, Cancer Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Elizabeth H Ruder
- Wegmans School of Health and Nutrition, College of Health Science and Technology, Rochester Institute of Technology, Rochester, NY, 14620, USA
| | - Dana R Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
5
|
Tardugno R, Gervasi T, Nava V, Cammilleri G, Ferrantelli V, Cicero N. Nutritional and mineral composition of persimmon fruits ( Diospyros kaki L.) from Central and Southern Italy. Nat Prod Res 2021; 36:5168-5173. [PMID: 33960220 DOI: 10.1080/14786419.2021.1921768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, the nutritional and mineral composition of Diospyros kaki fruits from Apulia, Campania, Lazio, Sardinia and Sicily regions was evaluated. Dietary fiber, mineral, pectin, polyphenol, and protein contents were evaluated. Particularly high are the contents of the dietary fiber and pectins. The mineral elements profile was interesting due to its modest content of sodium and high potassium concentration. Protein amounts were in line with the quantities for this fruit. The total polyphenol content of the fruits analysed was very variable, interesting for the quantities found both total and gallic acid. The results obtained confirmed the nutritional value of this fruit even for special dietary regimens such as hypertension and heart diseases and the genuineness of its cultivation in Central-Southern Italy.
Collapse
Affiliation(s)
- Roberta Tardugno
- Science4life, Spin company University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia 'A. Mirri', Palermo, Italy
| | | | - Nicola Cicero
- Science4life, Spin company University of Messina, Messina, Italy.,Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Arthur RS, Kirsh VA, Mossavar-Rahmani Y, Xue X, Rohan TE. Sugar-containing beverages and their association with risk of breast, endometrial, ovarian and colorectal cancers among Canadian women. Cancer Epidemiol 2020; 70:101855. [PMID: 33220638 DOI: 10.1016/j.canep.2020.101855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The association of sugar containing beverages (SCBs) with risk of breast, endometrial, ovarian and colorectal cancers is unclear. Therefore, we investigated these associations in the Canadian Study of Diet, Lifestyle, and Health. METHODS The study population comprised an age-stratified subcohort of 3185 women and 848, 161, 91 and 243 breast, endometrial, ovarian and colorectal cancer cases, respectively. We used Cox proportional hazards regression models modified for the case-cohort design to assess the associations of SCBs with risk of the aforementioned cancers. RESULTS Compared to SCB intake in the lowest tertile, SCB intake in the highest tertile was positively associated with endometrial cancer risk (HRT3 vs T1 = 1.58, 95 % CI = 1.08-2.33 and 1.78, 95 % CI = 1.12-2.81 for overall and Type 1 endometrial cancer, respectively) and ovarian cancer (HRT3 vs T1 = 1.76, 95 % CI: 1.09-2.83). Fruit juice intake was also positively associated with risk of Type 1endometrial (HRT3 vs T1 = 1.63, 95 % CI = 1.03-2.60). After excluding women with diabetes or cardiovascular diseases, we also observed sugar-sweetened beverages (SSBs) intake in the highest tertile was associated with higher risk of Type 1 endometrial cancer (HR T3 vs T1 = 1.65; 95 % CI: 1.03-2.64). None of the beverages was associated with risk of breast or colorectal cancer. CONCLUSION We conclude that, in this cohort, relatively high SCB intake was associated with higher risk of endometrial and ovarian cancers, but not of breast or colorectal cancers. Our findings also suggest that relatively high SSB and fruit juice intake are associated with higher risk of Type 1 endometrial cancer.
Collapse
Affiliation(s)
- Rhonda S Arthur
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, United States.
| | - Victoria A Kirsh
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| |
Collapse
|
7
|
Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods 2020; 9:foods9040433. [PMID: 32260398 PMCID: PMC7230466 DOI: 10.3390/foods9040433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, nutraceuticals based on antimicrobial ingredients (Artemisia absinthium water extract and essential oil (EO), Lactobacillus uvarum LUHS245 strain cultivated in a whey media, and blackcurrants juice (BCJ) preparation by-products were developed. In addition, two texture forming agents for nutraceutical preparations were tested (gelatin and agar). The developed nutraceutical ingredients showed antimicrobial properties: Artemisia absinthium EO (concentration 0.1%) inhibited methicillin-resistant Staphylococcus aureus, Enterococcus faecium, Bacillus cereus, Streptococcus mutans, Staphylococcus epidermidis, and Pasteurella multocida; LUHS245 strain inhibited 14 from the 15 tested pathogenic strains; and BCP inhibited 13 from the 15 tested pathogenic strains. The best formulation consisted of the Artemisia absinthium EO, LUHS245, and BCP immobilised in agar and this formulation showed higher TPC content (by 2.1% higher), as well as higher overall acceptability (by 17.7% higher), compared with the formulation prepared using gelatin.
Collapse
|
8
|
Chemical Composition and Antioxidant Activity of Steam-Distilled Essential Oil and Glycosidically Bound Volatiles from Maclura Tricuspidata Fruit. Foods 2019; 8:foods8120659. [PMID: 31835417 PMCID: PMC6963948 DOI: 10.3390/foods8120659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Essential oil obtained from Maclura triscuspidata fruit has been reported to have functional properties. This study aimed at determining chemical compositions and antioxidant activities of steam-distilled essential oil (SDEO) and glycosidically bound aglycone fraction (GBAF) isolated from fully ripe M. triscuspidata fruit. SDEO was isolated by simultaneous steam distillation and extraction (SDE). GBAF was prepared by Amberlite XAD-2 adsorption of methanol extract, followed by methanol elution and enzymatic hydrolysis. Both fractions were analyzed by gas chromatography–mass spectrometry (GC–MS). A total of 76 constituents were identified from both oils. Apart from fatty acids and their esters, the SDEO contained p-cresol in the highest concentration (383.5 ± 17.7), followed by δ-cadinene (147.7 ± 7.7), β-caryophyllene (145.7 ± 10.5), β-ionone (141.0 ± 4.5), n-nonanal (140.3 ± 20.5), theaspirane A (121.3 ± 4.5) and theaspirane B (99.67 ± 9.05 µg/g). Thirteen carotenoid-derived compounds identified in the SDEO are being isolated from M. triscuspidata fruit for the first time. Out of the 22 components identified in GBAF, 14 were present only in the glycosidically bound volatiles. Antioxidant activity of the GBAF was higher than that of SDEO. These results suggest that glycosidically bound volatiles of M. triscuspidata fruit have a good potential as natural antioxidants.
Collapse
|
9
|
Xu XY, Zheng J, Meng JM, Gan RY, Mao QQ, Shang A, Li BY, Wei XL, Li HB. Effects of Food Processing on In Vivo Antioxidant and Hepatoprotective Properties of Green Tea Extracts. Antioxidants (Basel) 2019; 8:572. [PMID: 31766414 PMCID: PMC6943518 DOI: 10.3390/antiox8120572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Food processing can affect the nutrition and safety of foods. A previous study showed that tannase and ultrasound treatment could significantly increase the antioxidant activities of green tea extracts according to in vitro evaluation methods. Since the results from in vitro and in vivo experiments may be inconsistent, the in vivo antioxidant activities of the extracts were studied using a mouse model of alcohol-induced acute liver injury in this study. Results showed that all the extracts decreased the levels of aspartate transaminase and alanine aminotransferase in serum, reduced the levels of malondialdehyde and triacylglycerol in the liver, and increased the levels of catalase and glutathione in the liver, which can alleviate hepatic oxidative injury. In addition, the differences between treated and original extracts were not significant in vivo. In some cases, the food processing can have a negative effect on in vivo antioxidant activities. That is, although tannase and ultrasound treatment can significantly increase the antioxidant activities of green tea extracts in vitro, it cannot improve the in vivo antioxidant activities, which indicates that some food processing might not always have positive effects on products for human benefits.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.-Y.X.); (J.Z.); (J.-M.M.); (Q.-Q.M.); (A.S.); (B.-Y.L.)
| |
Collapse
|
10
|
Thermo-Ultrasound-Based Sterilization Approach for the Quality Improvement of Wheat Plantlets Juice. Processes (Basel) 2019. [DOI: 10.3390/pr7080518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The impact of thermo–ultrasound (TU) on the quality of fresh wheat plantlets juice is described in this study. Fresh wheat plantlets juice was treated with TU using ultrasound (US) bath cleaner with different treatment variables, including power (70%, 420 W), frequency (40 kHz), processing time (20 and 40 min) and temperature (30, 45 and 60 °C) for the determination of free amino acids, minerals, microbial loads and bioactive compounds. The treatments have non-significant effects in ºBrix, pH, and titratable acidity while a significant increase in non-enzymatic browning, viscosity, and cloud value. The TU treatment at 30 °C for 20 and 40 min has achieved the highest value of total phenolics, flavonoids, total antioxidant capacity, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), carotenoids, anthocyanin contents, chlorophyll (a + b), minerals and free amino acids than other treatments as well as untreated sample. A lightly visible variation in the color was observed among all treatments. TU treatments also showed a significant impact on the reduction of microbial loads at 60 °C for 40 min. The verdicts revealed that TU at low temperature a viable option to improve the quality of wheat plantlets juice at an industrial scale as compared to alone.
Collapse
|