1
|
Biswal S, Sahoo SK, Biswal BK. Shikonin a potent phytotherapeutic: a comprehensive review on metabolic reprogramming to overcome drug resistance in cancer. Mol Biol Rep 2025; 52:347. [PMID: 40156720 DOI: 10.1007/s11033-025-10459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Drug resistance remains a major challenge in cancer therapy, often leading to treatment failure. Metabolic reprogramming, a hallmark of cancer, plays a pivotal role in drug resistance. Phytocompounds, particularly shikonin, a naphthoquinone derived from Lithospermum erythrorhizon, have garnered significant interest as potential alternatives for cancer prevention and treatment. This review focuses on the anticancer properties of shikonin, particularly its ability to modulate metabolic reprogramming and overcome drug resistance. This review, based on extensive searches in databases like PubMed, Web of Science, Google Scholar, and Scopus, highlights shikonin's potential as a therapeutic agent. Shikonin exhibits a wide range of anticancer activities, including induction of apoptosis, autophagy, necroptosis, inhibition of angiogenesis, invasion, and migration, as well as disruption of the cell cycle and promotion of DNA damage. It targets altered cancer cell metabolism to inhibit proliferation and reverse drug resistance, making it a promising candidate for therapeutic development. Preliminary clinical trials suggest that shikonin can enhance the efficacy of established chemotherapeutic agents, immunotherapies, and radiation through additive and synergistic interactions. Despite its promise, further research is needed to elucidate the precise mechanisms underlying shikonin's metabolic reprogramming effects in cancer. A comprehensive understanding could pave the way for its integration into standard oncological treatments. With its capacity to act on multiple cancer pathways and enhance conventional treatments, shikonin stands out as a viable candidate for combating drug-resistant cancers and advancing clinical oncology.
Collapse
Affiliation(s)
- Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | | | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Gupta DS, Suares D. Uncovering the Emerging Prospects of Lipid-based Nanoparticulate Vehicles in Lung Cancer Management: A Recent Perspective. Pharm Nanotechnol 2025; 13:155-170. [PMID: 38468532 DOI: 10.2174/0122117385286781240228060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Divya Suares
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
3
|
Chipón C, Riffo P, Ojeda L, Salas M, Burgos RA, Ehrenfeld P, López-Muñoz R, Zambrano A. Impact of Nordihydroguaiaretic Acid on Proliferation, Energy Metabolism, and Chemosensitization in Non-Small-Cell Lung Cancer (NSCLC) Cell Lines. Int J Mol Sci 2024; 25:11601. [PMID: 39519155 PMCID: PMC11546251 DOI: 10.3390/ijms252111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. LC can be classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), with the last subtype accounting for approximately 85% of all diagnosed lung cancer cases. Despite the existence of different types of treatment for this disease, the development of resistance to therapies and tumor recurrence in patients have maintained the need to find new therapeutic options to combat this pathology, where natural products stand out as an attractive source for this search. Nordihydroguaiaretic acid (NDGA) is the main metabolite extracted from the Larrea tridentata plant and has been shown to have different biological activities, including anticancer activity. In this study, H1975, H1299, and A549 cell lines were treated with NDGA, and its effect on cell viability, proliferation, and metabolism was evaluated using a resazurin reduction assay, incorporation of BrdU, and ki-67 gene expression and glucose uptake measurement, respectively. In addition, the combination of NDGA with clinical chemotherapeutics was investigated using an MTT assay and Combenefit software (version 2.02). The results showed that NDGA decreases the viability and proliferation of NSCLC cells and differentially modulates the expression of genes associated with different metabolic pathways. For example, the LDH gene expression decreased in all cell lines analyzed. However, GLUT3 gene expression increased after 24 h of treatment. The expression of the HIF-1 gene decreased early in the H1299 and A549 cell lines. In addition, the combination of NDGA with three chemotherapeutics (carboplatin, gemcitabine, and taxol) shows a synergic pattern in the decrease of cell viability on the H1299 cell line. In summary, this research provides new evidence about the role of NDGA in lung cancer. Interestingly, using NDGA to enhance the anticancer activity of antitumoral drugs could be an improved therapeutic resource against lung cancer.
Collapse
Affiliation(s)
- Carina Chipón
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Paula Riffo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Loreto Ojeda
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Mónica Salas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Rafael A. Burgos
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Angara Zambrano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| |
Collapse
|
4
|
Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
|
5
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|
6
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
7
|
Ahmed KR, Rahman MM, Islam MN, Fahim MMH, Rahman MA, Kim B. Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. Biomed Pharmacother 2024; 174:116497. [PMID: 38552443 DOI: 10.1016/j.biopha.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
The study of chemicals extracted from natural sources should be encouraged due to the significant number of cancer deaths each year and the financial burden imposed by this disease on society. The causes of almost all cancers involve a combination of lifestyle, environmental factors, and genetic and inherited factors. Modern medicine researchers are increasingly interested in traditional phytochemicals as they hold potential for new bioactive compounds with medical applications. Recent publications have provided evidence of the antitumor properties of phytochemicals, a key component of traditional Chinese medicine, thereby opening new avenues for their use in modern medicine. Various studies have demonstrated a strong correlation between apoptosis and autophagy, two critical mechanisms involved in cancer formation and regulation, indicating diverse forms of crosstalk between them. Phytochemicals have the ability to activate both pro-apoptotic and pro-autophagic pathways. Therefore, understanding how phytochemicals influence the relationship between apoptosis and autophagy is crucial for developing a new cancer treatment strategy that targets these molecular mechanisms. This review aims to explore natural phytochemicals that have demonstrated anticancer effects, focusing on their role in regulating the crosstalk between apoptosis and autophagy, which contributes to uncontrolled tumor cell growth. Additionally, the review highlights the limitations and challenges of current research methodologies while suggesting potential avenues for future research in this field.
Collapse
Affiliation(s)
- Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Md Masudur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Nahidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
8
|
Yarahmadi G, Tavakoli Ataabadi S, Dashti Z, Dehghanian M. A review on expression and regulatory mechanisms of miR-337-3p in cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38500239 DOI: 10.1080/07391102.2024.2329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A group of diseases generally referred to as cancer represents a serious threat to people's health all over the world and has a significant negative influence on every aspect of the lives of patients. The development of cancer is influenced by several environmental, genetic, and epigenetic factors. MicroRNAs (miRNAs), a class of non-coding RNAs, can alter the expression of genes involved in cell proliferation, migration, metastasis, and apoptosis, lead to the pathogenesis of cancer. Additionally, several effectors modify miRNAs directly, including methylation, circular RNAs, and long non-coding RNAs (lncRNAs). In this review, we have explained the role of mir-337-3p in the pathways related to the pathogenesis of different cancers. Studying the functional role of miR-337-3p is necessary for detecting novel molecules as tumor markers and discovering novel targets for cancer treatment.
Collapse
Affiliation(s)
- Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Tavakoli Ataabadi
- Department of Medical Genetics School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dashti
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Campus, Yazd, Iran
| | - Mehran Dehghanian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Golestani A, Rahimi A, Najafzadeh M, Sayadi M, Sajjadi SM. "Combination treatments of imatinib with astaxanthin and crocin efficiently ameliorate antioxidant status, inflammation and cell death progression in imatinib-resistant chronic myeloid leukemia cells". Mol Biol Rep 2024; 51:108. [PMID: 38227060 DOI: 10.1007/s11033-023-09135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Imatinib resistance remains a major obstacle in the treatment of chronic myelogenous leukemia (CML). Crocin (CRC) and astaxanthin (ATX) are phytochemicals with anti-cancer properties. AIMS This study aimed to explore the effects of combination treatment of Imatinib with CRC and ATX on Imatinib-resistant K562 (IR-K562) cells. METHODS AND RESULTS After the establishment of IR-K562 cells, growth inhibitory activity was determined by the MTT assay. To test the regeneration potential, a colony formation assay was performed. Cell cycle analyses were examined by flow cytometry. Cell injury was evaluated by lactate dehydrogenase (LDH) leakage. Real-time PCR was applied to assess the expression of IL6, TNF-α, STAT3, BAD, CASP3, TP53, and Bcl-2 genes. Caspase-3 activity was determined by a colorimetric assay. Antioxidant activity was measured using a diphenylpicrylhydrazyl (DPPH) assay. After 48 h of treatment, ATX (IC50 = 30µM) and CRC (IC50 = 190µM) significantly inhibited cell proliferation and colony formation ability, induced G1 cell cycle arrest and cell injury, upregulated the expression of apoptosis-associated genes, and downregulated the expression of anti-apoptotic and inflammatory genes. The combination of IM with ATX and/or CRC synergistically reduced cell viability (combination index [CI] < 1). CONCLUSION Our data suggest that IM shows better therapeutic efficacy at lower doses when combined with ATX and/or CRC.
Collapse
Affiliation(s)
- Amin Golestani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefeh Rahimi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Najafzadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Alshwyeh HA, Al-Sheikh WMS, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Mangifera indica L. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung cancer cells. Mol Cell Oncol 2024; 11:2299046. [PMID: 38196561 PMCID: PMC10773660 DOI: 10.1080/23723556.2023.2299046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
In this study, we investigated the effects of an ethanolic extract of Mangifera indica L. kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of M. indica L. kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.
Collapse
Affiliation(s)
- Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
12
|
Thongsom S, Racha S, Petsri K, Ei ZZ, Visuttijai K, Moriue S, Yokoya M, Chanvorachote P. Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway. BMC Complement Med Ther 2023; 23:183. [PMID: 37270520 DOI: 10.1186/s12906-023-04016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Compound with cancer stem cell (CSC)-suppressing activity is promising for the improvement of lung cancer clinical outcomes. Toward this goal, we discovered the CSC-targeting activity of resveratrol (RES) analog moscatilin (MOS). With slight structural modification from RES, MOS shows dominant cytotoxicity and CSC-suppressive effect. METHODS Three human lung cancer cell lines, namely H23, H292, and A549, were used to compare the effects of RES and MOS. Cell viability and apoptosis were determined by the MTT assay and Hoechst33342/PI double staining. Anti-proliferative activity was determined by colony formation assay and cell cycle analysis. Intracellular reactive oxygen species (ROS) were measured by fluorescence microscopy using DCFH2-DA staining. CSC-rich populations of A549 cells were generated, and CSC markers, and Akt signaling were determined by Western blot analysis and immunofluorescence. Molecular docking and molecular dynamics (MD) simulations were used to predict the possible binding of the compound to Akt protein. RESULTS In this study, we evaluated the effects of RES and MOS on lung cancer and its anti-CSC potential. Compared with RES, its analog MOS more effectively inhibited cell viability, colony formation, and induced apoptosis in all lung cancer cell lines (H23, H292, and A549). We further investigated the anti-CSC effects on A549 CSC-rich populations and cancer adherent cells (A549 and H23). MOS possesses the ability to suppress CSC-like phenotype of lung cancer cells more potent than RES. Both MOS and RES repressed lung CSCs by inhibiting the viability, proliferation, and lung CSC-related marker CD133. However, only MOS inhibits the CSC marker CD133 in both CSC-rich population and adherent cells. Mechanistically, MOS exerted its anti-CSC effects by inhibiting Akt and consequently restored the activation of glycogen synthase kinase 3β (GSK-3β) and decreased the pluripotent transcription factors (Sox2 and c-Myc). Thus, MOS inhibits CSC-like properties through the repression of the Akt/GSK-3β/c-Myc pathway. Moreover, the superior inhibitory effects of MOS compared to RES were associated with the improved activation of various mechanism, such as cell cycle arrest at G2/M phase, production of ROS-mediated apoptosis, and inhibition of Akt activation. Notably, the computational analysis confirmed the strong interaction between MOS and Akt protein. MD simulations revealed that the binding between MOS and Akt1 was more stable than RES, with MM/GBSA binding free energy of - 32.8245 kcal/mol at its allosteric site. In addition, MOS interacts with Trp80 and Tyr272, which was a key residue in allosteric inhibitor binding and can potentially alter Akt activity. CONCLUSIONS Knowledge about the effect of MOS as a CSC-targeting compound and its interaction with Akt is important for the development of drugs for the treatment of CSC-driven cancer including lung cancer.
Collapse
Affiliation(s)
- Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Sohsuke Moriue
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Petsri K, Yokoya M, Racha S, Thongsom S, Thepthanee C, Innets B, Ei ZZ, Hotta D, Zou H, Chanvorachote P. Novel Synthetic Derivative of Renieramycin T Right-Half Analog Induces Apoptosis and Inhibits Cancer Stem Cells via Targeting the Akt Signal in Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24065345. [PMID: 36982418 PMCID: PMC10049402 DOI: 10.3390/ijms24065345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Akt is a key regulatory protein of cancer stem cells (CSCs) and is responsible for cancer aggressiveness and metastasis. Targeting Akt is beneficial for the development of cancer drugs. renieramycin T (RT) has been reported to have Mcl-1 targeting activity, and the study of the structure-activity relationships (SARs) demonstrated that cyanide and the benzene ring are essential for its effects. In this study, novel derivatives of the RT right-half analog with cyanide and the modified ring were synthesized to further investigate the SARs for improving the anticancer effects of RT analogs and evaluate CSC-suppressing activity through Akt inhibition. Among the five derivatives, a compound with a substituted thiazole structure (DH_25) exerts the most potent anticancer activity in lung cancer cells. It has the ability to induce apoptosis, which is accompanied by an increase in PARP cleavage, a decrease in Bcl-2, and a diminishment of Mcl-1, suggesting that residual Mcl-1 inhibitory effects exist even after modifying the benzene ring to thiazole. Furthermore, DH_25 is found to induce CSC death, as well as a decrease in CSC marker CD133, CSC transcription factor Nanog, and CSC-related oncoprotein c-Myc. Notably, an upstream member of these proteins, Akt and p-Akt, are also downregulated, indicating that Akt can be a potential target of action. Computational molecular docking showing a high-affinity interaction between DH_25 and an Akt at the allosteric binding site supports that DH_25 can bind and inhibit Akt. This study has revealed a novel SAR and CSC inhibitory effect of DH_25 via Akt inhibition, which may encourage further development of RT compounds for cancer therapy.
Collapse
Affiliation(s)
- Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chorpaka Thepthanee
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Daiki Hotta
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-2188-344
| |
Collapse
|
14
|
Effect of isolated grandivittin from Ferulago trifida Boiss. (Apiaceae) on the proliferation and apoptosis of human lung cancer A549 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02419-3. [PMID: 36786818 DOI: 10.1007/s00210-023-02419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Lung cancer is one of the deadliest cancers in the world. Introducing new promising agents can help the chemotherapeutic management of cancer. In the knowledge of oncology, plants are of special interest as a rich source of new antineoplastic and chemotherapeutic agents. Grandivittin (GRA) is one of the main constituents of Ferulago trifida Boiss. with established medicinal, phytochemical, and pharmacological properties. This study aimed to isolate and evaluate the antineoplastic potential of grandivittin and its underlying mechanisms in human lung cancer A549 cells. The viability of the A549 cells after being treated with 0.1, 0.4, 0.7, 1, and 1.3 mM of GRA for three following days was measured using the MTT method. The early apoptosis and late apoptosis were assessed by fluorescence-activated cell sorter analysis through annexin V/PI staining. The expression of apoptotic agents' genes (caspase 3, caspase 9, Bcl2, Bax, and P53) was evaluated by the RT-PCR method. GRA increased apoptotic cells and decreased cell viability in a dose- and time-dependent manner, in which only 50% of cells survived at a dose of 0.7 mM. The expression of Bax, P53, caspase 3, and caspase 9 genes in the A549 cells was significantly upregulated after GRA treatment compared to control cells (P < 0.05). On the other hand, Bcl2 was significantly downregulated after GRA treatment (P < 0.05). The results indicated that GRA can activate cell death in A549 lung carcinoma cells by inducing both DNA toxicity p53 and cascade-dependent pathways. Therefore, GRA may be a potential new therapeutic agent for the treatment of lung cancer.
Collapse
|
15
|
N,N'-Diarylurea Derivatives (CTPPU) Inhibited NSCLC Cell Growth and Induced Cell Cycle Arrest through Akt/GSK-3β/c-Myc Signaling Pathway. Int J Mol Sci 2023; 24:ijms24021357. [PMID: 36674871 PMCID: PMC9866857 DOI: 10.3390/ijms24021357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is one of the most common malignancies worldwide. Non-small-cell lung cancer (NSCLC) accounts for more than 80% of lung cancers, shows chemotherapy resistance, metastasis, and relapse. The phosphatidylinositol-3 kinase (PI3K)/Akt pathway has been implicated in the carcinogenesis and disease progression of NSCLC, suggesting that it may be a promising therapeutic target for cancer therapy. Although phenylurea derivatives have been reported as potent multiple kinase inhibitors, novel unsymmetrical N,N'-diarylurea derivatives targeting the PI3K/Akt pathway in NSCLC cells remain unknown. METHODS N,N'-substituted phenylurea derivatives CTPPU and CT-(4-OH)-PU were investigated for their anticancer proliferative activity against three NSCLC cell lines (H460, A549, and H292) by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, colony formation, Hoechst33342/PI staining assays, and apoptosis analysis. The protein expressions of Akt pathway-related proteins in response to CTPPU or CT-(4-OH)-PU were detected by Western blot analysis. The Kyoto Encyclopedia of Genes and Genomes mapper was used to identify the possible signaling pathways in NSCLC treated with CTPPU. The cell cycle was analyzed by flow cytometry. Molecular docking was used to investigate the possible binding interaction of CTPPU with Akt, the mammalian target of rapamycin complex 2 (mTORC2), and PI3Ks. Immunofluorescence and Western blot analysis were used to validate our prediction. RESULTS The cytotoxicity of CTPPU was two-fold higher than that of CT-(4-OH)-PU for all NSCLC cell lines. Similarly, the non-cytotoxic concentration of CTPPU (25 µM) dramatically inhibited the colony formation of NSCLC cells, whereas its relative analog CT-(4-OH)-PU had no effect. Protein analysis revealed that Akt and its downstream effectors, namely, phosphorylated glycogen synthase kinase (GSK)-3β (Ser9), β-catenin, and c-Myc, were reduced in response to CTPPU treatment, which suggested the targeting of Akt-dependent pathway, whereas CT-(4-OH)-PU had no effect on such cell growth regulatory signals. CTPPU induced G1/S cell cycle arrest in lung cancer cells. Immunofluorescence revealed that CTPPU decreased p-Akt and total Akt protein levels, which implied the effect of the compound on protein activity and stability. Next, we utilized in silico molecular docking analysis to reveal the potential molecular targets of CTPPU, and the results showed that the compound could specifically bind to the allosteric pocket of Akt and three sites of mTORC2 (catalytic site, A-site, and I-site), with a binding affinity greater than that of reference compounds. The compound cannot bind to PI3K, an upstream regulator of the Akt pathway. The effect of CTPPU on PI3K and Akt was confirmed. This finding indicated that the compound could decrease p-Akt but caused no effect on p-PI3K. CONCLUSIONS The results indicate that CTPPU significantly inhibits NSCLC cell proliferation by inducing G1/S cell cycle arrest via the Akt/GSK-3β/c-Myc signaling pathway. Molecular docking revealed that CTPPU could interact with Akt and mTORC2 molecules with a high binding affinity. These data indicate that CTPPU is a potential novel alternative therapeutic approach for NSCLC.
Collapse
|
16
|
Zhou Y, Hu Z. Anoikis-related genes combined with single cell sequencing: Insights into model specification of lung adenocarcinoma and applicability for prognosis and therapy. Front Cell Dev Biol 2023; 11:1125782. [PMID: 37169018 PMCID: PMC10165631 DOI: 10.3389/fcell.2023.1125782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Anoikis has therapeutic potential against different malignancies including lung adenocarcinoma. This study used anoikis and bioinformatics to construct a prognostic model for lung adenocarcinoma and explore new therapeutic strategies. Methods: Several bioinformatic algorithms (co-expression analysis, univariate Cox analysis, multivariate Cox analysis, and cross-validation) were used to screen anoikis-related genes (ARGs) to construct a risk model. Lung adenocarcinoma patients were divided into training and testing groups at a ratio of 1:1. The prognostic model was validated by risk score comparison between high- and low-risk groups using receiver operating characteristic curve (ROC), nomograms, independent prognostic analysis and principal component analysis. In addition, two anoikis-related genes patterns were classified utilizing consensus clustering method and were compared with each other in survival time, immune microenvironment, and regulation in pathway. Single cell sequencing was applied to analyze anoikis-related genes constructed the model. Results: This study demonstrated the feasibility of the model based on seven anoikis-related genes, as well as identifying axitinib, nibtinib and sorafenib as potential therapeutic strategies for LUAD. Risk score based on this model had could be used as an independent prognostic factor for lung adenocarcinoma (HR > 1; p < 0.001) and had the highest accuracy to predict survival compared with the clinical characteristics. Single cell sequencing analysis discovered Keratin 14 (KRT14, one of the seven anoikis-related genes) was mainly expressed in malignant cells in various cancers. Conclusion: We identified seven anoikis-related genes and constructed an accurate risk model based on bioinformatics analysis that can be used for prognostic prediction and for the design of therapeutic strategies in clinical practice.
Collapse
|
17
|
Zhang X, Gao M, Rao Z, Lei Z, Zeng J, Huang Z, Shen C, Zeng N. The antitumour activity of C 21 steroidal glycosides and their derivatives of Baishouwu: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115300. [PMID: 35430288 DOI: 10.1016/j.jep.2022.115300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baishouwu has been used in China for thousands of years since it was first discovered in the late Tang Dynasty and flourished in the Song and Ming Dynasties. The Chinese herbal medicines named Baishouwu include Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii Hemsl. It is described in the Sign of Materia Medica as "sweet, bitter, reinforce liver and kidney, and non-toxic". It is widely used for nourishing the blood to expel wind, reinforcing liver and kidney, strengthening bones and muscles. AIM OF THE REVIEW In this review, the current research status of the C21 steroidal glycosides and their derivatives of Baishouwu for malignant tumours and their anti-tumour mechanisms are discussed. This may lay the ground for potential application of Baishouwu and its active ingredients in the treatment of tumours. MATERIALS AND METHODS Scientific databases, including PubMed, Elsevier, Science Direct, Google Scholar, CNKI, WANFANG DATA and VIP were searched to gather data about Baishouwu and its C21 steroidal glycosides and their derivatives. RESULTS Prior literature indicates that Baishouwu has important biological activities such as anti-tumour, anti-epileptic, reducing cholesterol, protection of liver and kidney and immunomodulatory, which are of increasing interest, especially its anti-tumour activity. Recent studies demonstrate that the C21 steroidal glycosides of Baishouwu, which have prominent antitumour efficacy, are one of its main active ingredients. Presently, a variety of C21 steroidal glycosides have been isolated from Baishouwu medicinal part, the tuberous root. This review summarizes the various antitumour activities of the C21 steroidal glycosides and their derivatives of Baishouwu. CONCLUSIONS In this review, the antitumour effects and mechanisms of total C21 steroidal glycosides and monomers and derivatives of Baishouwu in vitro and in vivo were summarized. Baishouwu can inhibit tumourigenesis by blocking tumour cell cycle progression, regulating numerous signaling pathways, promoting apoptosis, inhibiting tumour cells proliferation and metastasis, improving immunity and so on. This review provides a theoretical basis for inheriting and developing the medical heritage of the motherland, exploring the resources of traditional Chinese medicine for ethnic minorities and clinical rational drug use.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ming Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ziqin Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Zhangjun Huang
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, Sichuan, 646000, PR China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, Sichuan, 646000, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
18
|
Yang FR, Li SY, Hu XW, Li XR, Li HJ. Identifying the Antitumor Effects of Curcumin on Lung Adenocarcinoma Using Comprehensive Bioinformatics Analysis. Drug Des Devel Ther 2022; 16:2365-2382. [PMID: 35910781 PMCID: PMC9329682 DOI: 10.2147/dddt.s371420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background As the main component of turmeric (Curcuma longa L.), curcumin is widely used in the treatment of various diseases. Previous studies have demonstrated that curcumin has great potential as a therapeutic agent, but the lack of understanding of the functional mechanism of the drug has hindered the widespread use of the natural product. In the present study, we used comprehensive bioinformatics analysis and in vitro experiments to explore the anti-tumor mechanism of curcumin. Materials and Methods LUAD mRNA expression data were obtained from TCGA database and differentially expressed genes (DEGs) were identified using R software. Functional enrichment analysis was conducted to further clarify its biological properties and hub genes were identified by a protein–protein interaction (PPI) network analysis. Survival analysis and molecular docking were used to analyze the effectiveness of the hub genes. By an in vitro study, we evaluated whether curcumin could influence the proliferation, migration, and invasion activities of LUAD cells. Results In this study, 1783 DEGs from LUAD tissue samples compared to normal samples were evaluated. Functional enrichment analysis and the PPI network revealed the characteristics of the DEGs. We performed a topological analysis and identified 10 hub genes. Of these, six genes (INS, GCG, SST, F2, AHSG, and NPY) were identified as potentially effective biomarkers of LUAD. The molecular docking results indicated that curcumin targets in regulating lung cancer may be INS and GCG. We found that curcumin significantly inhibited the proliferation, migration, and invasion of LUAD cells and significantly decreased the expression of the INS and GCG genes. Conclusion The results of this study suggest that the therapeutic effects of curcumin on LUAD may be achieved through the intervention of INS and GCG, which may act as potential biomarkers for LUAD prevention and treatment.
Collapse
Affiliation(s)
- Fei-Ran Yang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Si-Yi Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xi-Wen Hu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiu-Rong Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hui-Jie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Correspondence: Hui-Jie Li; Xiu-Rong Li, Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road, Jinan, Shandong, 250014, People’s Republic of China, Email ;
| |
Collapse
|
19
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
20
|
Tabnak P, Masrouri S, Mafakheri A. Natural products in suppressing glioma progression: A focus on the role of microRNAs. Phytother Res 2022; 36:1576-1599. [PMID: 35174549 DOI: 10.1002/ptr.7414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Abstract
Glioma is one of the most common malignancies of the central nervous system. Due to inadequate response to the current treatments available, glioma has been at the center of recent cancer studies searching for novel treatment strategies. This has prompted an intensive search using linkage studies and preliminary evidence to gain efficient insight into the mechanisms involved in the alleviation of the pathogenesis of glioma mediated by miRNAs, a group of noncoding RNAs that affect gene expression posttranscriptionally. Dysregulated expression of miRNAs can exacerbate the malignant features of tumor cells in glioma and other cancers. Natural products can exert anticancer effects on glioma cells by stimulating the expression levels of tumor suppressor miRNAs and repressing the expression levels of oncogenic miRNAs. In this review, we aimed to collect and analyze the literature addressing the roles of natural products in the treatment of glioma, with an emphasis on their involvement in the regulation of miRNAs.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Masrouri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asrin Mafakheri
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
21
|
CWHM-1008 Induces Apoptosis and Protective Autophagy through the Akt/mTOR Axis in LUAD Cells. JOURNAL OF ONCOLOGY 2022; 2021:5548128. [PMID: 35096055 PMCID: PMC8799368 DOI: 10.1155/2021/5548128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Recent studies have revealed that antiparasitic agents showed promising inhibitory effects on tumors, raising a possibility that repositioning this class of drugs may shed new light on clinical therapy against tumors. CWHM-1008 is a novel class of antimalarial drug; however, the inhibitory impact of CWHM-1008 on lung adenocarcinoma (LUAD) cells remains unclear. This study aimed to explore the anticancer effect and underlying mechanisms of CWHM-1008 on LUAD cells in vitro and in vivo. Human LUAD cells, H358 and A549, were treated with varying concentrations of CWHM-1008 at different lengths of time. Cell viability, colony formation, cell count, flow cytometry findings, microtubule-associated protein-1 light chain 3-green- (LC3-) GFP/RFP adenovirus infection status, and the expression of apoptosis and autophagy-related proteins were examined. Potential effects of an autophagy inhibitor (LY294002) and constitutively active Akt plasmid (CA-Akt) on CWHM-1008-induced apoptosis were also examined. Our results showed that CWHM-1008 significantly inhibited proliferation, induced apoptosis, and enhanced autophagy flux by blocking the RAC-alpha serine/threonine-protein kinase/the mammalian target of rapamycin (Akt/mTOR) axis in two LUAD cells. In addition, autophagy inhibited by LY294002 or CA-Akt transfection accelerated CWHM-1008-induced apoptosis in those LUAD cells. Moreover, CWHM-1008 significantly inhibited the growth and induced apoptosis of A549 cell in nude mice in vivo. The present findings provide new insights into anticancer properties of CWHM-1008, suggesting that it may be an adjuvant treatment for LUAD treatment, warranting further study.
Collapse
|
22
|
Quercetin Enhances the Suppressive Effects of Doxorubicin on the Migration of MDA-MB-231 Breast Cancer Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.119049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Cancer cell metastasis is facilitated by matrix-metalloproteinases through degradation of extracellular matrix (ECM) proteins and is a major cause of mortality. One of the most common remedies for cancer is chemotherapy, which has many side effects. Therefore, it seems necessary to find a way to reduce the side effects of these drugs while maintaining their anticancer effects. Quercetin (que) is a natural substance that has been reported to have anticancer activities. Objectives: This study aims at evaluating the effect of que in combination with doxorubicin (dox) on the migration of the MDA-MB-231 breast cancer cell line. Methods: The effects of que and dox on cell viability in 24h and 48 h was assessed by MTT assay. Also, the effects of the same drugs on the cancer cells migration were evaluated, using the wound healing assay. Lastly, the effects of que and dox were assessed on the expression of MMP-2 and MMP-9 genes. Results: The combination of 50 µM of que with 32 nM of dox was selected by CI comparison. The viability and migration of cancer cells and the gelatinases genes expression were decreased after treatment with individual drugs. The migration and the expression of MMP-2 and MMP-9 genes after treatment with the combination of que and dox was significantly reduced compared to the treatment with que and dox alone. Conclusions: Que inhibits the viability and migration of MDA-MB-231 cancer cells and synergistically enhances the effects of dox on the survival and migration of these cells. Hence, we propose this drug combination as a path for further research on breast cancer therapy.
Collapse
|
23
|
Malla RR, Padmaraju V, Marni R, Kamal MA. Natural products: Potential targets of TME related long non-coding RNAs in lung cancer. PHYTOMEDICINE 2021; 93:153782. [PMID: 34627097 DOI: 10.1016/j.phymed.2021.153782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions. PURPOSE OF STUDY To establish lncRNAs of TME as novel targets of natural compounds for lung cancer management. STUDY DESIGN Current study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME. RESULTS This review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer. CONCLUSION By critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India.
| | - Vasudevaraju Padmaraju
- Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rakshmitha Marni
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
24
|
Mansour GH, El-Magd MA, Mahfouz DH, Abdelhamid IA, Mohamed MF, Ibrahim NS, Hady A Abdel Wahab A, Elzayat EM. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorg Chem 2021; 116:105329. [PMID: 34544028 DOI: 10.1016/j.bioorg.2021.105329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
There are current attempts to find a safe substitute or adjuvant for Sorafenib (Sorf), the standard treatment for advanced hepatocellular carcinoma (HCC), as it triggers very harsh side effects and drug-resistance. The therapeutic properties of Bee Venom (BV) and its active component, Melittin (Mel), make them suitable candidates as potential anti-cancer agents per-se or as adjuvants for cancer chemotherapy. Hence, this study aimed to evaluate the combining effect of BV and Mel with Sorf on HepG2 cells and to investigate their molecular mechanisms of action. Docking between Mel and different tumor-markers was performed. The cytotoxicity of BV, Mel and Sorf on HepG2 and THLE-2 cells was conducted. Combinations of BV/Sorf and Mel/Sorf were performed in non-constant ratios on HepG2. Expression of major cancer-related genes and oxidative stress status was evaluated and the cell cycle was analyzed. The computational analysis showed that Mel can bind to and inhibit XIAP, Bcl2, MDM2, CDK2 and MMP12. Single treatments of BV, Mel and Sorf on HepG2 showed lower IC50than on THLE-2. All combinations revealed a synergistic effect at a combination index (CI) < 1. Significant upregulation (p < 0.05) of p53, Bax, Cas3, Cas7 and PTEN and significant downregulation (p < 0.05) of Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF and MMP9 were observed. The oxidative stress markers including MDA, SOD, CAT and GPx showed insignificant changes, while the cell cycle was arrested at G2/M phase. In conclusion, BV and Mel have a synergistic anticancer effect with Sorf on HepG2 that may represent a new enhancing strategy for HCC treatment.
Collapse
Affiliation(s)
- Ghada H Mansour
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Mohammed A El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Dalia H Mahfouz
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Magda F Mohamed
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Chemistry Department, College of Science and Arts, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Nada S Ibrahim
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Emad M Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
25
|
Özsoy S, Becer E, Kabadayı H, Vatansever HS, Yücecan S. Quercetin-Mediated Apoptosis and Cellular Senescence in Human Colon Cancer. Anticancer Agents Med Chem 2021; 20:1387-1396. [PMID: 32268873 DOI: 10.2174/1871520620666200408082026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Quercetin is a flavonol from the flavonoid group of polyphenols, which positively affects human health due to its anti-cancer, anti-inflammatory, anti-microbial and cardioprotective effects. The effects of phenolic compounds, including quercetin, on programmed cell death and cellular senescence, have been the subject of research in recent years. OBJECTIVE In this study, we aimed to investigate the effects of quercetin on cell viability, apoptosis and cellular senescence in primary (Colo-320) and metastatic (Colo-741) colon adenocarcinoma cell lines. METHODS Cytotoxicity was analyzed via MTT assay in Colo-320 and Colo-741 cell lines. After quercetin treatment, cell ularsenescence and apoptosis were evaluated by TUNEL staining, X-Gal staining and indirect peroxidase technique for immunocytochemical analysis of related proteins such as Bax, Bcl-2, caspase-3, Hsp27, Lamin B1, p16, cyclin B1. RESULTS The effective dose for inhibition of cell growth in both cell lines was determined to be 25μg/ml quercetin for 48 hours. Increased Baximmunoreactivityfollowingquercetin treatment was significant in both Colo-320 and Colo-741 cell lines, but decreased Bcl-2 immunoreactivitywas significant only in theColo-320 primary cell line. In addition, after quercetin administration, the number of TUNEL positive cells and, immunoreactivities for p16, Lamin B1 and cyclin B1 in both Colo-320 and Colo-741 cells increased. CONCLUSION Our results suggest that quercetin may only induce apoptosis in primary colon cancer cells. Furthermore, quercetin also triggered senescence in colon cancer cells, but some cells remained alive, suggesting that colon cancer cells might have escaped from senescence.
Collapse
Affiliation(s)
- Serpil Özsoy
- Department of Nutritionand Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| | - Eda Becer
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - Hilal Kabadayı
- Department of Histologyand Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | | | - Sevinç Yücecan
- Department of Nutritionand Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
26
|
Chen RL, Wang Z, Huang P, Sun CH, Yu WY, Zhang HH, Yu CH, He JQ. Isovitexin potentiated the antitumor activity of cisplatin by inhibiting the glucose metabolism of lung cancer cells and reduced cisplatin-induced immunotoxicity in mice. Int Immunopharmacol 2021; 94:107357. [PMID: 33715980 DOI: 10.1016/j.intimp.2020.107357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/12/2022]
Abstract
The increased resistance and toxicity have become the main causes of chemotherapy failure for treating lung cancer. The combination of chemotherapeutic drugs with other agents has been recognized as a promising strategy to overcome these difficulties. Isovitexin (IVT) is a well-known flavone C-glycoside found in many plants and has attracted wide attention due to its obvious antitumor and antioxidant effects. In this study, we investigated the synergistic effects of IVX and cisplatin (DDP) in non-small cell lung cancer (NSCLC) A549 and H1975 cells. The results showed that the combined treatment with IVT and DDP markedly inhibited proliferation and induced apoptosis of the two NSCLC cells. Using a mouse model of A549 xenograft, IVT potentiated the inhibition of DDP on tumor growth, but reduced DDP-induced hepatotoxicity and nephrotoxicity in mice. Remarkedly, IVT promoted lipopolysaccharide (LPS)- and lectin- stimulated splenocyte proliferation, and enhance cytotoxic T lymphocyte (CTL) and natural killer (NK) cell activities as well as the production of IL-2 and TNF-α. Furthermore, IVT significantly reduced glucose uptake, lactate production, and ATP production, and downregulated the protein expressions of pyruvate kinase M2 (PKM2)-mediated pathway in both A549 and H1975 cells. After the over-expression of PKM2 in the NSCLC cells, the synergistic antitumor effect of IVT and DDP was markedly weakened. Therefore, IVT not only inhibited cell proliferation and glucose metabolism via downregulating the expression of PKM2 to enhance the antitumor activity of DDP against lung cancer cells, and improved DDP-induced immunotoxicity in mice. It also presented a novel strategy to enhance the anti-tumor effect of platinum-based chemotherapy against NSCLC.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apigenin/pharmacology
- Apigenin/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carrier Proteins/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Cytokines/immunology
- Down-Regulation/drug effects
- Drug Synergism
- Glucose/metabolism
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lactic Acid/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Membrane Proteins/immunology
- Mice, Nude
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Thyroid Hormones/immunology
- Thyroid Hormone-Binding Proteins
- Mice
Collapse
Affiliation(s)
- Rui-Lin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Ping Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Cai-Hua Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Wen-Ying Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou 310013, China
| | - Huan-Huan Zhang
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou 310013, China
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou 310013, China; Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou 310018, China.
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
27
|
Nguyen HM, Nguyen HT, Seephan S, Do HB, Nguyen HT, Ho DV, Pongrakhananon V. Antitumor activities of Aspiletrein A, a steroidal saponin from Aspidistra letreae, on non-small cell lung cancer cells. BMC Complement Med Ther 2021; 21:87. [PMID: 33750378 PMCID: PMC7941985 DOI: 10.1186/s12906-021-03262-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of death worldwide due to its strong proliferative and metastatic capabilities. The suppression of these aggressive behaviors is of interest in anticancer drug research and discovery. In recent years, many plants have been explored in order to discover new bioactive secondary metabolites to treat cancers or enhance treatment efficiency. Aspiletrein A (AA) is a steroidal saponin isolated from the whole endemic species Aspidistra letreae in Vietnam. Previously, elucidation of the structure of AA and screening of its cytotoxic activity against several cancer cell lines were reported. However, the antitumor activities and mechanisms of action have not yet been elucidated. In this study, we demonstrated the anti-proliferative, anti-migrative and anti-invasive effects of AA on H460, H23 and A549 human lung cancer cells. METHODS MTT, wound healing and Transwell invasion assays were used to evaluate the anti-proliferation, anti-migration and anti-invasion effects of AA, respectively. Moreover, the inhibitory effect of AA on the activity of protein kinase B (Akt), a central mediator of cancer properties, and apoptotic regulators in the Bcl-2 family proteins were investigated by Western blotting. RESULTS AA exhibits antimetastatic effects in human lung cancer cells through the inhibition of the pAkt/Akt signaling pathway, which in turn resulted in a significant inhibitory effect of AA on the migration and invasion of the examined lung cancer cells. CONCLUSIONS Aspiletrein A may be a potent inhibitor of protein kinase B (Akt). Hence, AA could be further explored as a potential antimetastatic lead compound.
Collapse
Affiliation(s)
- Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Suthasinee Seephan
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hang Bich Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam.
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
28
|
Pinzaru I, Sarau C, Coricovac D, Marcovici I, Utescu C, Tofan S, Popovici RA, Manea HC, Pavel IE, Soica C, Dehelean C. Silver Nanocolloids Loaded with Betulinic Acid with Enhanced Antitumor Potential: Physicochemical Characterization and In Vitro Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E152. [PMID: 33435422 PMCID: PMC7828030 DOI: 10.3390/nano11010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Betulinic acid (BA), a natural compound with various health benefits including selective antitumor activity, has a limited applicability in vivo due to its poor water solubility and bioavailability. Thus, this study focused on obtaining a BA nano-sized formulation with improved solubility and enhanced antitumor activity using silver nanocolloids (SilCo and PEG_SilCo) as drug carriers. The synthesis was performed using a chemical method and the physicochemical characterization was achieved applying UV-Vis absorption, transmission electron microscopy (TEM), Raman and photon correlation spectroscopy (PCS). The biological evaluation was conducted on two in vitro experimental models-hepatocellular carcinoma (HepG2) and lung cancer (A549) cell lines. The physicochemical characterization showed the following results: an average hydrodynamic diameter of 32 nm for SilCo_BA and 71 nm for PEG_SilCo_BA, a spherical shape, and a loading capacity of 54.1% for SilCo_BA and 61.9% for PEG_SilCo_BA, respectively. The in vitro assessment revealed a cell type- and time-dependent cytotoxic effect characterized by a decrease in cell viability as follows: (i) SilCo_BA (66.44%) < PEG_SilCo_BA (72.05%) < BA_DMSO (75.30%) in HepG2 cells, and (ii) SilCo_BA (75.28%) < PEG_SilCo_BA (86.80%) < BA_DMSO (87.99%) in A549 cells. The novel silver nanocolloids loaded with BA induced an augmented anticancer effect as compared to BA alone.
Collapse
Affiliation(s)
- Iulia Pinzaru
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristian Sarau
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (C.S.); (C.U.)
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Crinela Utescu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (C.S.); (C.U.)
| | - Sergiu Tofan
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 9 Revolutiei Bv., 300041 Timisoara, Romania; (S.T.); (R.A.P.)
| | - Ramona Amina Popovici
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 9 Revolutiei Bv., 300041 Timisoara, Romania; (S.T.); (R.A.P.)
| | - Horatiu Cristian Manea
- Faculty of Medicine, “Vasile Goldiș” Western University of Arad, 94 Revolutiei Bv., 310025 Arad, Romania;
- Timisoara Municipal Emergency Clinical Hospital, 5 Take Ionescu Bv., 300062 Timisoara, Romania
| | - Ioana E. Pavel
- Department of Chemistry, Wright State University, Dayton, OH 45435-0001, USA;
| | - Codruta Soica
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristina Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (I.P.); (I.M.); (C.S.); (C.D.)
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| |
Collapse
|
29
|
Sitarek P, Merecz-Sadowska A, Śliwiński T, Zajdel R, Kowalczyk T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers (Basel) 2020; 12:E2957. [PMID: 33066157 PMCID: PMC7601952 DOI: 10.3390/cancers12102957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
It is predicted that 1.8 million new cancer cases will be diagnosed worldwide in 2020; of these, the incidence of lung, colon, breast, and prostate cancers will be 22%, 9%, 7%, and 5%, respectively according to the National Cancer Institute. As the global medical cost of cancer in 2020 will exceed about $150 billion, new approaches and novel alternative chemoprevention molecules are needed. Research indicates that the plants of the Lamiaceae family may offer such potential. The present study reviews selected species from the Lamiaceae and their active compounds that may have the potential to inhibit the growth of lung, breast, prostate, and colon cancer cells; it examines the effects of whole extracts, individual compounds, and essential oils, and it discusses their underlying molecular mechanisms of action. The studied members of the Lamiaceae are sources of crucial phytochemicals that may be important modulators of cancer-related molecular targets and can be used as effective factors to support anti-tumor treatment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
30
|
Wang X, Parvathaneni V, Shukla SK, Kulkarni NS, Muth A, Kunda NK, Gupta V. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol 2020; 164:638-650. [PMID: 32693132 DOI: 10.1016/j.ijbiomac.2020.07.124] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023]
Abstract
Resveratrol (RES), a natural polyphenol in fruits, has shown promising anti-cancer properties. Due to its relative low toxicity which limits the adverse effects observed for conventional chemotherapeutics, RES has been proposed as an alternative. However, the therapeutic applications of RES have been limited due to low water solubility, as well as chemical and physical instability. This study investigated enhancing the anti-cancer activity of RES against non-small-cell-lung-cancer (NSCLC) by complexing with sulfobutylether-β-cyclodextrin (CD-RES) and loading onto polymeric nanoparticles (NPs). The physicochemical properties of the CD-RES NPs were then characterized. The CD-RES inclusion complex increased the water solubility of RES by ~66-fold. CD-RES NPs demonstrated very good aerosolization potential with a mass median aerodynamic diameter of 2.20 μm. Cell-based studies demonstrated improved therapeutic efficacy of CD-RES NPs compared to RES. This included enhanced cellular uptake, cytotoxicity, and apoptosis, while retaining antioxidant activity. The 3D spheroid study indicated an intensified anti-cancer effect of CD-RES NPs. Altogether, these findings marked CD-RES NPs as a potential inhalable delivery system of RES for the treatment NSCLC.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States of America.
| |
Collapse
|
31
|
Wang X, Parvathaneni V, Shukla SK, Kanabar DD, Muth A, Gupta V. Cyclodextrin Complexation for Enhanced Stability and Non-invasive Pulmonary Delivery of Resveratrol-Applications in Non-small Cell Lung Cancer Treatment. AAPS PharmSciTech 2020; 21:183. [PMID: 32632576 DOI: 10.1208/s12249-020-01724-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary drug delivery is a noninvasive therapeutic approach that offers many advantages including localized drug delivery and higher patient compliance. As with all formulations, the low aqueous solubility of a drug often poses a challenge in the formulation development. Thus, strategies such as cyclodextrin (CD) complexation have been utilized to overcome this challenge. Resveratrol (RES), a natural stilbene, has shown abundant anti-cancer properties. Due to many drawbacks of conventional chemotherapeutics, RES has been proposed as an emerging alternative with promising pharmacological effects. However, RES has limited therapeutic applications due to low water solubility, chemical stability, and bioavailability. This study was aimed at developing an inhalable therapy that would increase the aqueous solubility and stability of RES by complexation with sulfobutylether-β-cyclodextrin (SBECD). Phase solubility profiles indicated an optimal stoichiometric inclusion complex at 1:1 (SBECD:RES) ratio for formulation considerations. Physiochemical characterizations were performed to analyze CD-RES. Stability studies at pH 7.4 and in plasma indicated significant improvement in RES stability after complexation, with a much longer half-life. The mass median aerodynamic diameter (MMAD) of CD-RES was 2.6 ± 0.7 μm and fine particle fraction (FPF) of 83.4 ± 3.0% are suitable for pulmonary delivery and efficient deposition. Lung cancer was selected as the respiratory model disease, owing to its high relevance as the major cause of cancer deaths worldwide. Cell viability studies in 5 non-small-cell-lung-cancer (NSCLC) cell lines suggest CD-RES retained significant cytotoxic potential of RES. Taken together, CD-RES proves to be a promising inhalation treatment for NSCLC.
Collapse
|
32
|
An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders. Biomed Pharmacother 2020; 125:109983. [PMID: 32092816 DOI: 10.1016/j.biopha.2020.109983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase (Nedd4-1 and Nedd4-2) is a member of the HECT E3 ubiquitin ligase family. It has been shown to mediate numerous pathophysiological processes, including the regulation of synaptic plasticity and Wnt-associated signaling, via promoting the ubiquitination of its substrates, such as cyclic adenosine monophosphate (cAMP)-response element binding protein regulated transcription coactivator 3 (CRTC3), alpha-amino-3-hydroxy-5-methyl-4-isoxazo-lepropionic acid receptor (AMPAR), and Dishevelled2 (Dvl2). In the respiratory system, both Nedd4-1 and Nedd4-2 are expressed in epithelial cells and functionally associated with lung cancer development and alveolar fluid regulation. Nedd4-1 mediates lung cancer migration, metastasis, or drug resistance mainly through inducing phosphate and tension homology deleted on chromsome ten (PTEN) degradation or promoting cathepsin B secretion. Unlike Nedd4-1, Nedd4-2 displays more complex effects in lung cancers. On one hand it suppresses lung cancer cell migration and metastasis, and on the other hand it has been shown to promote lung cancer survival via inducing general control nonrepressed 2 (GCN2) degradation. Another important function of Nedd4-2 is to regulate the activity of epithelial sodium channel (ENaC), a membrane channel which mediates the clearance of fluid from the alveolar space at birth or during pulmonary edema. Here, we make an outlined review for the expression and function of Nedd4-1 and Nedd4-2 in the respiratory system in hope of getting an in-depth insight into their roles in lung disorders.
Collapse
|
33
|
Izzo AA. An updated PTR virtual issue on the pharmacology of the nutraceutical curcumin. Phytother Res 2020; 34:671-673. [PMID: 32077178 DOI: 10.1002/ptr.6635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
34
|
Han J, Lv W, Sheng H, Wang Y, Cao L, Huang S, Zhu L, Hu J. Ecliptasaponin A induces apoptosis through the activation of ASK1/JNK pathway and autophagy in human lung cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:539. [PMID: 31807521 DOI: 10.21037/atm.2019.10.07] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the causes of carcinomas mortality worldwide. Ecliptasaponin A (ES), a natural product extracted from the plant known as Eclipta prostrata, has been reported as an anti-cancer drug against various cancer cell lines. However, the exact mechanisms of ES have not yet been fully characterized. Methods Numerous studies have been done to support that ES has a powerful inhibiting effect on the growth of cancers via the activation of apoptosis and autophagy. To explore the underlying mechanisms of anti-cancer and investigate the relationships of the apoptosis and autophagy, we used apoptosis signal-regulating kinase 1 (ASK1) inhibitor (GS-4997), c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and autophagy inhibitor [chloroquine (CQ) and 3-methyladenine (3-MA)]. Results ES could potently suppress cell viability and induces apoptotic cell death of human lung cancer cells H460 and H1975. ES activated apoptosis via ASK1/JNK pathway, GS-4997 and SP600125 can attenuated these effects. Furthermore, ES could triggered autophagy in lung cancer cell lines, and the autophagy inhibitor 3-MA and CQ reversed ES-induced apoptosis in H460 and H1975 cells. Furthermore, SP600125 can inhibit autophagy. Conclusions This study showed that ES induces apoptosis in human lung cancer cells by triggering enhanced autophagy and ASK1/JNK pathway, which may thus be a promising agent against lung cancer.
Collapse
Affiliation(s)
- Jia Han
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longxiang Cao
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Sha Huang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|