1
|
He X, Chen Y, Li Z, Fang L, Chen H, Liang Z, Abozeid A, Yang Z, Yang D. Germplasm resources and secondary metabolism regulation in Reishi mushroom ( Ganoderma lucidum). CHINESE HERBAL MEDICINES 2023; 15:376-382. [PMID: 37538858 PMCID: PMC10394326 DOI: 10.1016/j.chmed.2023.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 08/05/2023] Open
Abstract
Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites, in which triterpenoids are the major constituents. This paper introduced the germplasm resources of genus Ganoderma from textual research, its distribution and identification at the molecular level. Also we overviewed G. lucidum in the components, the biological activities and biosynthetic pathways of ganoderic acid, aiming to provide scientific evidence for the development and utilization of G. lucidum germplasm resources and the biosynthesis of ganoderic acid.
Collapse
Affiliation(s)
- Xinyu He
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yiwen Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd., Hangzhou 310018, China
| | - Ling Fang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd., Hangzhou 310018, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Shaoxing Academy of Biomedicine Co., Ltd. of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for Development Technology of Medicinal and Edible Health Food, Shaoxing 312000, China
| | - Ann Abozeid
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom 32511, Egypt
| | - Zongqi Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Shaoxing Academy of Biomedicine Co., Ltd. of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for Development Technology of Medicinal and Edible Health Food, Shaoxing 312000, China
| |
Collapse
|
2
|
Kolniak-Ostek J, Oszmiański J, Szyjka A, Moreira H, Barg E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. Int J Mol Sci 2022; 23:ijms23169359. [PMID: 36012645 PMCID: PMC9408863 DOI: 10.3390/ijms23169359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to the assess anti-cancer and antioxidant properties of the Ganoderma lucidum fruiting body, and to identify bioactive compounds found in their extracts. Significant antiproliferative activity was observed against MCF-7, MCF-7/DX, LOVO, LOVO/DX, MDA-MB 231, SW 620, and NHDF cell lines. With IC50 values of 25.38 µg/mL and 47.90 µg/mL, respectively, the extract was most effective against MDA-MB 231 and SW 620 cell lines. The bioactive compounds were identified using an ACQUITY UPLC-PDA-MS system. The extracts contained 13 triterpenoids and 28 polyphenols from the flavonols, phenolic acids, flavones, flavan-3-ols, and stilbenes families. Ganoderic acid derivative was found to be the most abundant triterpenoid (162.4 mg/g DW), followed by ganoderic acid B (145.6 mg/g DW). Resveratrol was the most abundant phenolic in the extract (5155.7 mg/100 g DM). The findings could explain why G. lucidum extracts are used in folk medicine.
Collapse
Affiliation(s)
- Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wroclaw, Poland
- Correspondence:
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wroclaw, Poland
| | - Anna Szyjka
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
| | - Helena Moreira
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
| |
Collapse
|
3
|
Yang W, Liu R, Zhou L, Chen X, Hu Y. Effects of Ganoderic Acid A on Gastrointestinal Motility and Brain-Gut Peptide in Rats with Functional Dyspepsia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2298665. [PMID: 35685728 PMCID: PMC9173975 DOI: 10.1155/2022/2298665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Objective The therapeutic effect of drugs for functional dyspepsia (FD) is still limited. Ganoderic acid A (GAA) has anti-inflammatory and cellular protective activities. The aim of this study is to explore the therapeutic effect of GAA on FD. Methods The FD rat model was established via tail damping and forced exercise fatigue. The gastric emptying rate and intestinal propulsion rate of the rats in each group were then detected, and the pathological damage of gastric antrum and duodenum tissues was observed by hematoxylin-eosin (HE) staining. An enzyme-linked immunosorbent assay (ELISA) was conducted to determine the levels of motilin (MTL), vasoactive intestinal peptide (VIP), leptin, gastrin (GAS), calcitonin gene-related peptide (CGRP), and somatostatin (SS) in plasma, and Western blot was used to detect the protein expression levels of occludin, zonula occluden-1 (ZO-1), and junctional adhesion molecule-1 (JAM-1) in the duodenal tissue. Results Treatment with GAA significantly raised the gastric emptying rate and intestinal propulsion rate of FD rats and histologically alleviated the gastric and duodenal damage. Meanwhile, GAA positively regulated the secretion of brain-gut proteins, such as upregulation of MTL, GAS, and SS and downregulation of VIP, leptin, and CGRP. In addition, GAA treatment increased the protein expression levels of occludin, ZO-1, and JAM-1 in the duodenal tissue of the FD rats. Conclusion GAA may exhibit protective effects on FD by regulating the secretion of brain-gut peptide, protecting the intestinal barrier and improving gastrointestinal motility.
Collapse
Affiliation(s)
- Wei Yang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province 441021, China
| | - Rui Liu
- Medical School of Xiangyang Vocational and Technical College, Xiangyang, Hubei Province 441022, China
| | - LinHua Zhou
- School of Cosmetology, Yichun University, Yichun, Jiangxi Province 336000, China
| | - Xiao Chen
- School of Nursing, Yichun Vocational Technical College, Yichun, Jiangxi Province 336028, China
| | - YanYan Hu
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province 441021, China
| |
Collapse
|
4
|
Kang LH, Zhang GW, Zhang JF, Qin B, Guan HJ. Ganoderic acid A protects lens epithelial cells from UVB irradiation and delays lens opacity. Chin J Nat Med 2020; 18:934-940. [PMID: 33357724 DOI: 10.1016/s1875-5364(20)60037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 10/22/2022]
Abstract
A contributory role of oxidative stress and protection by antioxidant nutrients have been suspected in cataract formation. Ganoderic acid A (GAA), an effective lanostane triterpene, is widely reported as an antioxidant. The aim of this study is to investigate the potential effects of GAA on cataract formation. After lens epithelial cells (LECs) were exposed to UVB radiation for different periods, cell viability, apoptosis-related protein levels, malondialdehyde (MDA) and superoxide dismutase (SOD) activities were monitored. We found that cell viability, the Bcl-2/Bax ratio and SOD activity were increased, while Cleaved caspase-3 levels and MDA activity were decreased compared with those in UVB-impaired LECs after GAA treated. Furthermore, GAA activated PI3K/AKT in UVB-impaired LECs and effectively delayed the occurrence of lens opacity in vitro. In conclusion, these findings demonstrated that GAA exhibited protective functions in SRA01/04 cells and rat lenses against UVB-evoked impairment through elevating cell viability and antioxidant activity, inhibiting cell apoptosis, activating the PI3K/AKT pathway and delaying lens opacity.
Collapse
Affiliation(s)
- Li-Hua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Guo-Wei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jun-Fang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Huai-Jin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226000, China.
| |
Collapse
|
5
|
Retraction statement: Ganoderic Acid A exerts the cytoprotection against hypoxia-triggered impairment in PC12 cells via elevating microRNA-153. Phytother Res 2020; 34:3434. [PMID: 33301239 DOI: 10.1002/ptr.6851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Ganoderma lucidum Ethanol Extracts Enhance Re-Epithelialization and Prevent Keratinocytes from Free-Radical Injury. Pharmaceuticals (Basel) 2020; 13:ph13090224. [PMID: 32872510 PMCID: PMC7557611 DOI: 10.3390/ph13090224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Ganoderma lucidum or Reishi is recognized as the most potent adaptogen present in nature, and its anti-inflammatory, antioxidant, immunomodulatory and anticancer activities are well known. Moreover, lately, there has been an increasing interest from pharmaceutical companies in antiaging G. lucidum-extract-based formulations. Nevertheless, the pharmacological mechanisms of such adaptogenic and regenerative actions remain unclear. The present investigation aimed to explore its molecular and cellular effects in vitro in epidermal keratinocyte cultures by applying liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS-IT-TOF) for analysis of ethanol extracts using ganoderic acid-A as a reference compound. The G. lucidum extract showed a keratinocyte proliferation induction accompanied by an increase of cyclic kinase protein expressions, such as CDK2 and CDK6. Furthermore, a noteworthy migration rate increase and activation of tissue remodelling factors, such as matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9), were observed. Finally, the extract showed an antioxidant effect, protecting from H2O2-induced cytotoxicity; preventing activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53 and p21; and reducing the number of apoptotic cells. Our study paves the path for elucidating pharmacological properties of G. lucidum and its potential development as cosmeceutical skin products, providing the first evidence of its capability to accelerate the healing processes enhancing re-epithelialization and to protect cells from free-radical action.
Collapse
|
7
|
Pan F, Xu X, Zhan Z, Xu Q. 6-Gingerol protects cardiomyocytes against hypoxia-induced injury by regulating the KCNQ1OT1/miR-340-5p/ PI3K/AKT pathway. Panminerva Med 2020; 63:482-490. [PMID: 32720790 DOI: 10.23736/s0031-0808.20.03956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hypoxia could induce cardiomyocytes injury and lead to heart disease. Studies have shown that 6-Gingerol has a protective effect on cardiomyocytes injury, but its molecular mechanism is still unclear. METHODS Cell counting kit 8 (CCK8) and flow cytometry assays were used to measure the viability and apoptosis of cardiomyocytes. Western blot (WB) analysis was performed to assess the levels of proliferation, apoptosis, and phosphatidylinositol 3- kinase/protein kinase B (PI3K/AKT) signaling pathway-related proteins. The reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected by their corresponding Assay Kits. Besides, the expression levels of potassium voltage-gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) and microRNA-340-5p (miR-340-5p) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the interaction between KCNQ1OT1 and miR-340-5p. RESULTS Hypoxia could inhibit the viability and enhance the apoptosis and oxidative stress of cardiomyocytes to induce cardiomyocytes injury, while 6-Gingerol could alleviate this effect. Overexpression of KCNQ1OT1 aggravated hypoxia-induced cardiomyocytes injury and reversed the protective effect of 6-Gingerol on cardiomyocytes injury. Besides, miR-340-5p could be sponged by KCNQ1OT1, and its overexpression could invert the promotion effect of KCNQ1OT1 overexpression on hypoxia-induced cardiomyocytes injury. Moreover, miR-340-5p expression was regulated by 6-Gingerol and KCNQ1OT1. In addition, hypoxia inactivated the PI3K/AKT signaling pathway, whereas 6-Gingerol and miR-340-5p could reverse this effect. CONCLUSIONS 6-Gingerol could hinder the expression of KCNQ1OT1 to protect cardiomyocytes from hypoxia-induced injury through regulation of the miR-340-5p/ PI3K/AKT pathway, providing a new mechanism of 6-Gingerol protecting cardiomyocytes from injury.
Collapse
Affiliation(s)
- Fan Pan
- Department of Internal Medicine-Cardiovascular, Putuo District People's Hospital, Shanghai, China
| | - Xiaopeng Xu
- Department of Internal Medicine-Cardiovascular, Putuo District People's Hospital, Shanghai, China
| | - Zhi Zhan
- Department of Internal Medicine-Cardiovascular, Putuo District People's Hospital, Shanghai, China
| | - Qunfeng Xu
- Department of Internal Medicine-Cardiovascular, Putuo District People's Hospital, Shanghai, China -
| |
Collapse
|
8
|
Ganoderic acid A alleviates myocardial ischemia-reperfusion injury in rats by regulating JAK2/STAT3/NF-κB pathway. Int Immunopharmacol 2020; 84:106543. [PMID: 32353688 DOI: 10.1016/j.intimp.2020.106543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
This study aimed to investigate the protective effect of GanodericacidA (GA) on myocardial ischemia-reperfusion (MIR) injury. The myocardial injury model in rats was established by ligating left anterior descending coronary artery. We measured cardiac hemodynamic, antioxidant enzyme activity, and various biochemical indexes of myocardial tissue, and evaluated myocardial infarction and damage. Further, the expression of JAK2/STAT3/NF-κB signaling pathway-related proteins in myocardial tissue was measured by western blot. The results showed that the myocardial infarction extention was obviously reduced upon GA treatment. Compared with the control group, ischemia-reperfusion rats showed significant increase in lactate dehydrogenase (LDH) and creatine Kinase (CK), which were significantly decreased in GA group. Besides, GA pretreatment effectively decreased the levels of inflammatory cytokines in serum. The phosphorylation of Janus Kinase 2 (JAK2), signal transducer and activator of transcription (STAT3)and Nuclear factor-κB (NF-κB) in reperfusion group were significantly higher than that in control group, which were reversed upon GA treatment. In conclusion, GA may reduce myocardial injury by regulating JAK2/STAT3/NF-κB pathway.
Collapse
|