1
|
La X, He X, Liang J, Zhang Z, Li Z. Investigating the separation and purification of flavonoids extracted from foxtail millet, with an in-depth study on its functions in alleviating metabolic syndrome through suppressing lipid absorption. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40285665 DOI: 10.1002/jsfa.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Rising living standards alongside high-fat diets (HFDs) have fueled the prevalence of metabolic syndrome (MetS), posing a significant health challenge with limited effective therapies. Foxtail millet is recognized as a health food with rich flavonoids. The objective of this work is to isolate and purify flavonoids from foxtail millet, which have the potential to alleviate MetS and to clarify their mechanism. RESULTS Our research combined single-factor experiments and a Box-Behnken design to optimize the extraction processes for millet whole-grain flavonoids (MWGFs) followed by the purification using D101 resin. Components were eluted using varied alcohol concentrations. Additionally, the investigation revealed that MWGF30 notably decreased triglyceride (TG) levels, mitigated lipid uptake in Caco-2 cells induced by free fatty acids, and suppressed lipid absorption in HFD mice while modulating TG, high‑ and low-density lipoprotein cholesterol and total cholesterol levels. Further investigation uncovered that MWGF30 achieved this lipid uptake reduction ability by downregulating the CD36 protein level. CONCLUSION Collectively, MWGF30 demonstrated a potent ability to regulate blood lipids and curb lipid absorption, enhancing our comprehension of millet's benefits and furnishing a scientifically grounded dietary approach for MetS. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Xiaoting He
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jingyi Liang
- Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhaoyan Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Chen ZQ, He WY, Yang SY, Ma HH, Zhou J, Li H, Zhu YD, Qian XK, Zou LW. Discovery of natural anthraquinones as potent inhibitors against pancreatic lipase: structure-activity relationships and inhibitory mechanism. J Enzyme Inhib Med Chem 2024; 39:2398561. [PMID: 39223707 PMCID: PMC11373360 DOI: 10.1080/14756366.2024.2398561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is acknowledged as a significant risk factor for various metabolic diseases, and the inhibition of human pancreatic lipase (hPL) can impede lipid digestion and absorption, thereby offering potential benefits for obesity treatment. Anthraquinones is a kind of natural and synthetic compounds with wide application. In this study, the inhibitory effects of 31 anthraquinones on hPL were evaluated. The data shows that AQ7, AQ26, and AQ27 demonstrated significant inhibitory activity against hPL, and exhibited selectivity towards other known serine hydrolases. Then the structure-activity relationship between anthraquinones and hPL was further analysed. AQ7 was found to be a mixed inhibition of hPL through inhibition kinetics, while AQ26 and AQ27 were effective non-competitive inhibition of hPL. Molecular docking data revealed that AQ7, AQ26, and AQ27 all could associate with the site of hPL. Developing hPL inhibitors for obesity prevention and treatment could be simplified with this novel and promising lead compound.
Collapse
Affiliation(s)
- Zi-Qiang Chen
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Yao He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Yuan Yang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hong-Hong Ma
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Zhou
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Di Zhu
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing-Kai Qian
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhu D, Zheng N, Deng K, Li L. Aurantio-obtusin Alleviates Dry Eye Disease by Targeting NF-κB/NLRP3 Signaling in Rodent Models. Biochem Genet 2024; 62:1-14. [PMID: 37633872 DOI: 10.1007/s10528-023-10471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Dry eye disease (DED) is a common inflammatory ocular surface disorder, seriously affecting the quality of life of patients. Aurantio-obtusin (AO) is a bioactive anthraquinone compound isolated from Semen Cassiae which has multiple pharmacological activities. Nonetheless, the specific function of AO in DED is unclarified. In this study, a rodent DED model was established by benzalkonium chloride (BAC) induction, followed by topical administration of AO. The results showed that topical application of AO increased tear production, mitigated ocular surface disruption and maintained the number of goblet cells in BAC-induced DED rats (p˂0.05). ELISA revealed that AO treatment significantly (p˂0.001) reduced the production of proinflammatory cytokines and chemokines in the conjunctiva and cornea of BAC-induced DED rats. Immunohistochemical staining and western blotting showed that AO treatment suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3) inflammasome-related proteins, and inhibited activation of nuclear factor kappa B (NF-κB) signaling pathway in rat conjunctiva and cornea (p˂0.001). In conclusion, AO treatment alleviates BAC-induced DED in rats by inhibiting NF-κB/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, 430061, Wuhan, Hubei, China
| | - Na Zheng
- Department of Otolaryngology, Hubei Provincial Hospital of Traditional Chinese Medicine, 430061, Wuhan, Hubei, China
| | - Kebin Deng
- Department of Otolaryngology, Hubei Provincial Hospital of Traditional Chinese Medicine, 430061, Wuhan, Hubei, China
| | - Liangchang Li
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, 430061, Wuhan, Hubei, China.
- Hubei Provincial Hospital of Traditional Chinese Medicine, No. 4, Huayuan Hill, Wuchang District, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Xiang H, Zhang Y, Wu Y, Xu Y, Hong Y. Aurantio-obtusin exerts an anti-inflammatory effect on acute kidney injury by inhibiting NF-κB pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:11-19. [PMID: 38154960 PMCID: PMC10762489 DOI: 10.4196/kjpp.2024.28.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 12/30/2023]
Abstract
Acute kidney injury (AKI) is one of the major complications of sepsis. Aurantio-obtusin (AO) is an anthraquinone compound with antioxidant and anti-inflammatory activities. This study was developed to concentrate on the role and mechanism of AO in sepsis-induced AKI. Lipopolysaccharide (LPS)-stimulated human renal proximal tubular epithelial cells (HK-2) and BALB/c mice receiving cecal ligation and puncture (CLP) surgery were used to establish in vitro cell model and in vivo mouse model. HK-2 cell viability was measured using MTT assays. Histological alterations of mouse renal tissues were analyzed via hematoxylin and eosin staining. Renal function of mice was assessed by measuring the levels of serum creatinine (SCr) and blood urea nitrogen (BUN). The concentrations of pro-inflammatory cytokines in HK-2 cells and serum samples of mice were detected using corresponding ELISA kits. Protein levels of factors associated with nuclear factor kappa-B (NF-κB) pathway were measured in HK-2 cells and renal tissues by Western blotting. AO exerted no cytotoxic effect on HK-2 cells and AO dose-dependently rescued LPS-induced decrease in HK-2 cell viability. The concentrations of pro-inflammatory cytokines were increased in response to LPS or CLP treatment, and the alterations were reversed by AO treatment. For in vivo experiments, AO markedly ameliorated renal injury and reduced high levels of SCr and BUN in mice underwent CLP operation. In addition, AO administration inhibited the activation of NF-κB signaling pathway in vitro and in vivo. In conclusion, AO alleviates septic AKI by suppressing inflammatory responses through inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Haiyan Xiang
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yun Zhang
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yan Wu
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yaling Xu
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| | - Yuanhao Hong
- Department of Nephrology, Wuhan Sixth Hospital, Affiliated Hospital of Jianghan University, Wuhan 430014, Hubei, China
| |
Collapse
|
5
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Li YJ, Wu RY, Liu RP, Wu KY, Ding MN, Sun R, Gu YQ, Zhou F, Wu JZ, Zheng Q, Duan SN, Li RR, Zhang YH, Li FH, Li X. Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues. Acta Pharmacol Sin 2023; 44:1826-1840. [PMID: 37095199 PMCID: PMC10462708 DOI: 10.1038/s41401-023-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.
Collapse
Affiliation(s)
- Yi-Jie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui-Yu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Kai-Yi Wu
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Ming-Ning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yi-Qing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shu-Ni Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong-Rong Li
- The Second Hospital of Shandong University, Shandong University, Ji-nan, 250033, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang-Hong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Wu P, Wang X. Natural Drugs: A New Direction for the Prevention and Treatment of Diabetes. Molecules 2023; 28:5525. [PMID: 37513397 PMCID: PMC10385698 DOI: 10.3390/molecules28145525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance, as a common pathological process of many metabolic diseases, including diabetes and obesity, has attracted much attention due to its relevant influencing factors. To date, studies have mainly focused on the shared mechanisms between mitochondrial stress and insulin resistance, and they are now being pursued as a very attractive therapeutic target due to their extensive involvement in many human clinical settings. In view of the complex pathogenesis of diabetes, natural drugs have become new players in diabetes prevention and treatment because of their wide targets and few side effects. In particular, plant phenolics have received attention because of their close relationship with oxidative stress. In this review, we briefly review the mechanisms by which mitochondrial stress leads to insulin resistance. Moreover, we list some cytokines and genes that have recently been found to play roles in mitochondrial stress and insulin resistance. Furthermore, we describe several natural drugs that are currently widely used and give a brief overview of their therapeutic mechanisms. Finally, we suggest possible ideas for future research related to the unique role that natural drugs play in the treatment of insulin resistance through the above targets.
Collapse
Affiliation(s)
- Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| |
Collapse
|
8
|
Wolosowicz M, Prokopiuk S, Kaminski TW. Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:472. [PMID: 35454311 PMCID: PMC9029454 DOI: 10.3390/medicina58040472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
Abstract
Diabetes Mellitus (DM) is amongst the most notable causes of years of life lost worldwide and its prevalence increases perpetually. The disease is characterized as multisystemic dysfunctions attributed to hyperglycemia resulting directly from insulin resistance (IR), inadequate insulin secretion, or enormous glucagon secretion. Insulin is a highly anabolic peptide hormone that regulates blood glucose levels by hastening cellular glucose uptake as well as controlling carbohydrate, protein, and lipid metabolism. In the course of Type 2 Diabetes Mellitus (T2DM), which accounts for nearly 90% of all cases of diabetes, the insulin response is inadequate, and this condition is defined as Insulin Resistance. IR sequela include, but are not limited to, hyperglycemia, cardiovascular system impairment, chronic inflammation, disbalance in oxidative stress status, and metabolic syndrome occurrence. Despite the substantial progress in understanding the molecular and metabolic pathways accounting for injurious effects of IR towards multiple body organs, IR still is recognized as a ferocious enigma. The number of widely available therapeutic approaches is growing, however, the demand for precise, safe, and effective therapy is also increasing. A literature search was carried out using the MEDLINE/PubMed, Google Scholar, SCOPUS and Clinical Trials Registry databases with a combination of keywords and MeSH terms, and papers published from February 2021 to March 2022 were selected as recently published papers. This review paper aims to provide critical, concise, but comprehensive insights into the advances in the treatment of IR that were achieved in the last months.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Tomasz W. Kaminski
- Department of Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Zhou F, Ding M, Gu Y, Fan G, Liu C, Li Y, Sun R, Wu J, Li J, Xue X, Li H, Li X. Aurantio-Obtusin Attenuates Non-Alcoholic Fatty Liver Disease Through AMPK-Mediated Autophagy and Fatty Acid Oxidation Pathways. Front Pharmacol 2022; 12:826628. [PMID: 35087411 PMCID: PMC8787202 DOI: 10.3389/fphar.2021.826628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), manifested as the aberrant accumulation of lipids in hepatocytes and inflammation, has become an important cause of advanced liver diseases and hepatic malignancies worldwide. However, no effective therapy has been approved yet. Aurantio-obtusin (AO) is a main bioactive compound isolated from Cassia semen that has been identified with multiple pharmacological activities, including improving adiposity and insulin resistance. However, the ameliorating effects of AO on diet-induced NAFLD and underlying mechanisms remained poorly elucidated. Our results demonstrated that AO significantly alleviated high-fat diet and glucose-fructose water (HFSW)-induced hepatic steatosis in mice and oleic acid and palmitic acid (OAPA)-induced lipid accumulation in hepatocytes. Remarkably, AO was found to distinctly promote autophagy flux and influence the degradation of lipid droplets by inducing AMPK phosphorylation. Additionally, the induction of AMPK triggered TFEB activation and promoted fatty acid oxidation (FAO) by activating PPARα and ACOX1 and decreasing the expression of genes involved in lipid biosynthesis. Meanwhile, the lipid-lowing effect of AO was significantly prevented by the pretreatment with inhibitors of autophagy, PPARα or ACOX1, respectively. Collectively, our study suggests that AO ameliorates hepatic steatosis via AMPK/autophagy- and AMPK/TFEB-mediated suppression of lipid accumulation, which opens new opportunities for pharmacological treatment of NAFLD and associated complications.
Collapse
Affiliation(s)
- Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yiqing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanyang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijie Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Sun
- The Second Hospital of University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianchao Li
- The Second Hospital of University, Jinan, China.,Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|