1
|
Xiang M, Wang P, Han K, Liu J, Huang Z, Wang C, Jing X, Du J, Sun B, Li H, Zhang C, Li P. Betulinic Acid Delays Turnip Mosaic Virus Infection by Activating the Phytosulfokine Signalling Pathway in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2025; 26:e70092. [PMID: 40350930 PMCID: PMC12066822 DOI: 10.1111/mpp.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Plant viral diseases pose a significant threat to agricultural production, and the availability of effective drugs against viral diseases remains limited. In this study, we discovered that betulinic acid (BA), a pentacyclic triterpenoid derived from plants, delays infection by turnip mosaic virus (TuMV) in Nicotiana benthamiana. Transcriptomic analysis revealed that BA treatment specifically induced the expression of N. benthamiana phytosulfokine 3 (NbPSK3), a plant pentapeptide hormone with diverse functions, while TuMV infection suppressed its expression. Further study demonstrated that NbPSK3 positively regulates antiviral defence against TuMV infection. Disruption of PSK signalling by targeting the membrane-bound PSK receptors (PSKRs) promoted viral infection. Additionally, exogenous sulphonated PSK (active form) treatment significantly delayed infection by TuMV in N. benthamiana compared to unmodified PSK peptides (dPSK, inactive form) or control treatments, while silencing the receptor NbPSKR1 abolished the ability of PSK to inhibit TuMV infection. Moreover, the inhibition of TuMV infection by BA is dependent on the PSK-PSKR signalling pathway. Overall, these findings not only underscore the potential of BA as a promising and environmentally friendly agent for modulating plant viral diseases but also emphasise the role of the PSK signalling pathway in promoting at least partial resistance to TuMV, which might have interest for crop breeding.
Collapse
Affiliation(s)
- Meirong Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
- Fujian Province Key Laboratory of Plant Virology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Keda Han
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Jianjian Liu
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co‐Construction by Ministry and Province)Yangtze UniversityJingzhouChina
| | - Ziting Huang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Jiao Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant ProtectionHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
2
|
Carpio AR, Talubo ND, Tsai PW, Chen BY, Tayo LL. Berries as Nature's Therapeutics: Exploring the Potential of Vaccinium Metabolites in Gastric Cancer Treatment Through Computational Insights. Life (Basel) 2025; 15:406. [PMID: 40141751 PMCID: PMC11944152 DOI: 10.3390/life15030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention and treatment. Gastric cancer (GC), a leading cause of cancer-related deaths worldwide, remains challenging to treat, especially in its advanced stages. This study investigates the therapeutic potential of Vaccinium species in GC treatment using computational methods. RNA sequencing revealed upregulated genes associated with GC, while network pharmacology and molecular docking approaches identified strong interactions between cyanidin 3-O-glucoside (C3G), a key bioactive metabolite. Furthermore, molecular dynamics simulations of the HSP90AA1-C3G complex demonstrated stable binding and structural integrity, suggesting that C3G may inhibit HSP90AA1, a protein involved in cancer progression. These findings highlight the therapeutic potential of Vaccinium metabolites, offering a novel approach to GC treatment by targeting key molecular pathways. This research provides valuable insights into the role of berries as natural therapeutics, supporting their integration into future gastric cancer treatment strategies.
Collapse
Affiliation(s)
- Angelica Rachel Carpio
- School of Chemical, Biological, and Materials Engineering and Sciences, School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.C.); (N.D.T.)
| | - Nicholas Dale Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.C.); (N.D.T.)
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
3
|
Yan D, He Q, Wang C, Li T, Yi X, Yu H, Wu W, Yang H, Wang W, Ma L. miR-135b: A Potential Biomarker for Pathological Diagnosis and Biological Therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70002. [PMID: 40034060 DOI: 10.1002/wrna.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs found in eukaryotes with post-transcriptional regulatory functions. A variety of miRNAs is differentially expressed in cancer tissues and thus can be used as biomarkers. microRNA-135b-5p (miR-135b) has been shown to be involved in the pathological processes of a variety of neoplastic and non-neoplastic diseases. Under different conditions, miR-135b has different tumor suppressive and carcinogenic effects. miR-135b regulates the development of cancer, including metabolism, proliferation, apoptosis, invasion, fibrosis, angiogenesis, immunomodulation, and drug resistance. miR-135b can be used as a new biomarker for tumor diagnosis and prognosis, which has the potential for clinical guidance. This article reviews the relevant research on miR-135B in the field of tumors, including the biogenesis background of miR-135b, the expression of miR-135b in tumors, and the related targets and signaling pathways of miR-135b mediating tumor progression in order to sort out and explore the clinical transformation value of miR-135b.
Collapse
Affiliation(s)
- Dezhi Yan
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunjian Wang
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xueping Yi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Haisheng Yu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Wu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hanyun Yang
- Faculty of Health Sciences for Occupational Therapy, Curtin University, West Australia, Australia
| | - Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liang Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Rahman AU, Panichayupakaranant P. Exploring the diverse biological activities of Garcinia cowa: Implications for future cancer chemotherapy and beyond. FOOD BIOSCI 2024; 61:104525. [DOI: 10.1016/j.fbio.2024.104525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Wang M, Li Y, Pan T, Jia N. Plant natural compounds in the cancer treatment: A systematic bibliometric analysis. Heliyon 2024; 10:e34462. [PMID: 39104486 PMCID: PMC11298917 DOI: 10.1016/j.heliyon.2024.e34462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Plant-derived natural compounds are significant resources for the discovery of potential anticancer drugs. While research in the plant-based anticancer field has surged in recent years, systematic bibliometric analyses covering a longer period and containing up-to-date publications remain scarce. Here, we conducted a bibliometric analysis of literature on the anticancer properties of plant natural compounds over the past three decades, leveraging the bibliometric framework and open-access platform, KNIME. Our findings showed that the number of plant anticancer-related publications underwent an accelerating growth from 1992 to 2023. The country and institution analyses revealed that countries with traditional medical systems contributed a large portion of publications in the plant anticancer field, such as India, China, and South Korea. This study also highlighted the top ten eminent researchers and publications, assisting researchers in identifying pivotal literature. The primary publications were domains of chemistry and biology-related fields, such as Pharmacology & Pharmacy, Plant Sciences, and Biochemistry & Molecular Biology. Additionally, we noted that flavonoids have been focal plant compounds in anticancer, with strong anticancer potential. Our study provides new insights into the progress and trends in the plant anticancer field and will assist researchers in grasping the future research direction.
Collapse
Affiliation(s)
- Mengting Wang
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Yinshuai Li
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Tiejun Pan
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Nan Jia
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Environmental Science and Policy Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Roy D, Kaur P, Ghosh M, Choudhary D, Rangra NK. The therapeutic potential of typical plant-derived compounds for the management of metabolic disorders. Phytother Res 2024. [PMID: 38864713 DOI: 10.1002/ptr.8238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Obesity and Type 2 diabetes are prevalent metabolic dysfunctions that present significant health challenges worldwide. Available cures for these ailments have constraints with accompanying unwanted effects that persistently exist. Compounds originated from plants have recently been introduced as hopeful remedies to treat metabolic disorders because of their diverse pharmacological activities. This detailed observation gives an introduction into the treatment capacity of plant-derived compounds regarding metabolic syndromes while analyzing various groups alongside their performance in this field despite unique mechanisms designed by nature itself. Interestingly, this study provides some examples including curcumin, resveratrol, quercetin, berberine, epigallocatechin gallate (EGCG), and capsaicin, which highlights potential therapeutic impacts for future testing. However, current clinical trials inspecting human studies investigating efficacies concerning metabolism challenge present limitations. Finally, the review weighs up bad reactions possibly inflicted after administering plant-originated materials though suggestive insights will be provided later. Above all, it outlines the chance to identify novel therapies encapsulated within natural substances based upon recent developments could hold significant promise toward managing misplaced metabolisms globally.
Collapse
Affiliation(s)
- Debajyoti Roy
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Maitrayee Ghosh
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Deepika Choudhary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Naresh Kumar Rangra
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
7
|
Chanu WK, Chatterjee A, Singh N, Nagaraj VA, Singh CB. Phytochemical screening, antioxidant analyses, and in vitro and in vivo antimalarial activities of herbal medicinal plant - Rotheca serrata (L.) Steane & Mabb. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117466. [PMID: 37981115 DOI: 10.1016/j.jep.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is a major global health concern that is presently challenged by the emergence of Plasmodium falciparum (Pf) resistance to mainstay artemisinin-based combination therapies (ACTs). Hence, the discovery of novel and effective antimalarial drugs is pivotal to treating and controlling malaria. For many years, traditional plant-based herbal medicines have been employed in the treatment of various illnesses. Rotheca serrata (L.) Steane & Mabb. belongs to the Lamiaceae family that has been traditionally used to treat, cure, and prevent numerous diseases including malaria. AIM The present investigation sought to assess the phytoconstituents, antioxidant, cytotoxicity, antimalarial activities of Rotheca serrata extract and its fractions. The in vitro antiplasmodial activity was assessed in chloroquine-sensitive Pf3D7 and artemisinin-resistant PfCam3.IR539T cultures, and the in vivo antimalarial activity was analyzed in Plasmodium berghei (Pb) ANKA strain-infected BALB/c mouse model. MATERIALS AND METHODS The fresh leaves of Rotheca serrata were extracted in methanol (RsMeOH crude leaf extract). A portion of the extract was used to prepare successive solvent fractions using ethyl acetate (RsEA) and hexane (RsHex). The in vitro antiplasmodial activity was evaluated using [3H]-hypoxanthine incorporation assays against Pf3D7 and PfCam3.IR539T cultures. In vitro cytotoxicity study on HeLa, HEK-293T, and MCF-7 cell lines was carried out using MTT assay. The human red blood cells (RBCs) were used to perform the hemolysis assays. In vitro antioxidant studies and detailed phytochemical analysis were performed using GC-MS and FTIR. The four-day Rane's test was performed to evaluate the in vivo antimalarial activity against Pb ANKA strain-infected mice. RESULTS Phytochemical quantification of Rotheca serrata extract (RsMeOH) and its fractions (RsEA and RsHex) revealed that RsMeOH crude extract and RsEA fraction had higher contents of total phenol and flavonoid than RsHex fraction. The RsEA fraction showed potent in vitro antiplasmodial activity against Pf3D7 and PfCam3.IR539T with IC50 values of 9.24 ± 0.52 μg/mL and 17.41 ± 0.43 μg/mL, respectively. The RsMeOH crude extract exhibited moderate antiplasmodial activity while the RsHex fraction showed the least antiplasmodial activity. The GC-MS and FTIR analysis of RsMeOH and RsEA revealed the presence of triterpenes, phenols, and hydrocarbons as major constituents. The RsMeOH crude extract was non-hemolytic and non-cytotoxic to HeLa, HEK-293T, and MCF-7 cell lines. The in vivo studies showed that a 1200 mg/kg dose of RsMeOH crude extract could significantly suppress parasitemia by ∼63% and prolong the survival of treated mice by ∼10 days. The in vivo antiplasmodial activity of RsMeOH was better than the RsEA fraction. CONCLUSION The findings of this study demonstrated that traditionally used herbal medicinal plants like R. serrata provide a platform for the identification and isolation of potent bioactive phytochemicals that in turn can promote the antimalarial drug research. RsMeOH crude extract and RsEA fraction showed antiplasmodial, antimalarial and antioxidant activities. Chemical fingerprinting analysis suggested the presence of bioactive phytocompounds that are known for their antimalarial effects. Further detailed investigations on RsMeOH crude extract and RsEA fraction would be needed for the identification of the entire repertoire of the active antimalarial components with potent pharmaceutical and therapeutic values.
Collapse
Affiliation(s)
- Wahengbam Kabita Chanu
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
| | - Aditi Chatterjee
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India.
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | | | - Chingakham Brajakishor Singh
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
| |
Collapse
|
8
|
Zhao J, Liang L, Zhang W, Liu X, Huo G, Liu X, Lv X, Zhao J. Sea buckthorn oil regulates primary myoblasts proliferation and differentiation in vitro. In Vitro Cell Dev Biol Anim 2024; 60:139-150. [PMID: 38153639 DOI: 10.1007/s11626-023-00841-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Skeletal muscle is the main edible part of meat products, and its development directly affects the yield and palatability of meat. Sea buckthorn oil (SBO) contains plenty of bioactive substances and has been recognized as a potential functional food product. The study aimed to explore the effects and possible mechanisms of SBO on sheep primary myoblast proliferation and myogenic differentiation. The results implied that SBO exhibited a pro-proliferative effect on primary myoblasts, along with up-regulated proliferating cell nuclear antigen (PCNA) and Cyclin D1/cyclin-dependent kinase 4 (CDK4) abundances. And, SBO promoted myotube formation by increasing the expression of myogenin. Meanwhile, we found that SBO inhibited the expression of miRNA-292a. Moreover, the regulatory effect of SBO on myogenic differentiation of myoblasts was attenuated by miRNA-292a mimics. Of note, SBO activated protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and augmented glucose uptake and glucose transporter 4 (GLUT4) content, which might be attributed to AMP-activated protein kinase (AMPK) activation. Additionally, the results were shown that SBO increased the abundance of antioxidative enzymes, including glutathione peroxidase 4 (Gpx4) and catalase. In summary, these data suggested that SBO regulated the proliferation and myogenic differentiation of sheep primary myoblasts in vitro, which might potentiate the application of SBO in muscle growth.
Collapse
Affiliation(s)
- Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, China
| | - Lin Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, China
| | - Weipeng Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xuan Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Guoqiang Huo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiangdong Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, 22500, People's Republic of China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, China.
| |
Collapse
|
9
|
Melfi F, Carradori S, Mencarelli N, Campestre C, Gallorini M, Di Giacomo S, Di Sotto A. Natural products as a source of new anticancer chemotypes. Expert Opin Ther Pat 2023; 33:721-744. [PMID: 37775999 DOI: 10.1080/13543776.2023.2265561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Exploring the chemical diversity and molecular mechanisms of natural products continues to be an important research area for identifying novel promising therapeutic approaches for fighting cancer. This is a complex disease and poses important challenges, which require not only targeted interventions to improve chemotherapy efficacy and tolerability, but also adjuvant strategies to counteract chemoresistance development and relapses. AREAS COVERED After a brief description of the recent literature on the anticancer potential of natural compounds, we searched for patents following the PRISMA guidelines, filtering the results published from 2019 onwards. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION This review comprehensively covers and analyzes the most recent advances on the anticancer mechanism of licensed natural compounds and their chemical optimization. Patentability of natural compounds was discussed according to the recent legislation in the U.S.A. and Europe.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Noemi Mencarelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
11
|
Liang L, Sun W, Wei X, Wang L, Ruan H, Zhang J, Li S, Zhao B, Li M, Cai Z, Huang J. Oxymatrine suppresses colorectal cancer progression by inhibiting NLRP3 inflammasome activation through mitophagy induction in vitro and in vivo. Phytother Res 2023; 37:3342-3362. [PMID: 36974424 DOI: 10.1002/ptr.7808] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Chinese herb Radix sophorae tonkinensis extract oxymatrine shows anticancer effects. This study evaluated the role of oxymatrine in colorectal cancer (CRC) and the underlying molecular events in vitro and in vivo. CRC cells were treated with different doses of oxymatrine to assess cell viability, reactive oxygen species production, gene expression, and gene alterations. Meanwhile, mouse xenograft and liver metastasis models were used to assess the effects of oxymatrine using histology examination, transmission electron microscopy, and Western blot, respectively. Our results showed that oxymatrine treatment triggered CRC cell mitophagy to inhibit CRC cell growth, migration, invasion, and metastasis in vitro and in vivo. At the gene level, oxymatrine inhibited LRPPRC to promote Parkin translocation into the mitochondria and reduce the mitophagy-activated NLRP3 inflammasome. Thus, oxymatrine had an anticancer activity through LRPPRC inhibition, mitophagy induction, and NLRP3 inflammasome suppression in the CRC cell xenograft and liver metastasis models. In conclusion, the study demonstrates the oxymatrine anti- CRC activity through its unique role in regulating CRC cell mitophagy and NLRP3 inflammasome levels in vitro and in vivo.
Collapse
Affiliation(s)
- Li Liang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiliang Sun
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoxuan Wei
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Wang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huaqiang Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junchuan Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Suyan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bi Zhao
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengshi Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengwen Cai
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie'an Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Huang R, Li R, Chen J, Lv M, Xu X. Network pharmacology analysis of the pharmacological mechanism of Artemisia lavandulaefolia DC. in rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154905. [PMID: 37348247 DOI: 10.1016/j.phymed.2023.154905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE The traditional She medicine is a notable type of traditional Chinese medicine, which has been applied for a long history despite the lack of sufficient mechanistic understanding. Our study revealed the possible molecular mechanism of sesquiterpene 5α-Hydroxycostic acid, active ingredient of traditional She medicine Artemisia lavandulaefolia DC., in the treatment of rheumatoid arthritis (RA). METHODS RA-fibroblast like synoviocytes (RA-FLSs) were treated with 5α-Hydroxycostic acid, Anthemidin, and methotrexate (MTX). CCK-8 and ELISA were used to measure the resultant viability of RA-FLSs and to quantify pro-inflammatory cytokines. Target genes of 5α-Hydroxycostic acid and Anthemidin, RA-related differentially expressed genes, and RA-related genes were retrieved by bioinformatics analyses, results of which were further intersected to identify candidate genes. The protein-protein interaction network was constructed to develop the pharmacophore model. The molecular docking was simulated to determine the core target androgen receptor (AR) for subsequent molecular mechanism investigation in vitro. RESULTS The 5ɑ-Hydroxycostic acid, Anthemidin, or MTX of different concentrations inhibited the viability of RA-FLSs, and downregulated the levels of proinflammatory cytokines. The pharmacophore model and molecular docking of 10 candidate targets with 5α-Hydroxycostic acid were successfully established. In vitro experiments provided evidence confirming that 5α-Hydroxycostic acid elevated AR expression to inhibit inflammatory responses of RA-FLSs and degradation of extracellular matrix. CONCLUSION Therefore, this study reveals the active ingredient sesquiterpene 5α-Hydroxycostic acid of traditional She medicine Artemisia lavandulaefolia DC., and illustrates potential molecular mechanism in RA treatment by upregulating AR expression. This study is the first to report the effect of the active ingredient sesquiterpenes in traditional She medicine A.lavandulaefolia DC on RA and elucidate the underlying molecular mechanism associated with up-regulated AR expression. This study provides new insights into the mechanistic understanding of traditional She medicine in the treatment of RA.
Collapse
Affiliation(s)
- Ruofei Huang
- Department of General Endocrinology, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China
| | - Ruya Li
- Department of Pharmacy, The People's Hospital of Jinyun, Jinyun 321400, PR China
| | - Jun Chen
- Department of Pharmacy, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China
| | - Meiyan Lv
- Department of Laboratory Medicine, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China
| | - Xiangwei Xu
- Department of Pharmacy, The First People's Hospital of Yongkang, affiliated to Hangzhou Medical College, Jinhua 321300, PR China.
| |
Collapse
|
13
|
Kornel A, Nadile M, Retsidou MI, Sakellakis M, Gioti K, Beloukas A, Sze NSK, Klentrou P, Tsiani E. Ursolic Acid against Prostate and Urogenital Cancers: A Review of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:ijms24087414. [PMID: 37108576 PMCID: PMC10138876 DOI: 10.3390/ijms24087414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer is the second most diagnosed form of cancer in men worldwide and accounted for roughly 1.3 million cases and 359,000 deaths globally in 2018, despite all the available treatment strategies including surgery, radiotherapy, and chemotherapy. Finding novel approaches to prevent and treat prostate and other urogenital cancers effectively is of major importance. Chemicals derived from plants, such as docetaxel and paclitaxel, have been used in cancer treatment, and in recent years, research interest has focused on finding other plant-derived chemicals that can be used in the fight against cancer. Ursolic acid, found in high concentrations in cranberries, is a pentacyclic triterpenoid compound demonstrated to have anti-inflammatory, antioxidant, and anticancer properties. In the present review, we summarize the research studies examining the effects of ursolic acid and its derivatives against prostate and other urogenital cancers. Collectively, the existing data indicate that ursolic acid inhibits human prostate, renal, bladder, and testicular cancer cell proliferation and induces apoptosis. A limited number of studies have shown significant reduction in tumor volume in animals xenografted with human prostate cancer cells and treated with ursolic acid. More animal studies and human clinical studies are required to examine the potential of ursolic acid to inhibit prostate and other urogenital cancers in vivo.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matteo Nadile
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Maria Ilektra Retsidou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minas Sakellakis
- Department of Medical Oncology, Metropolitan Hospital, 18547 Athens, Greece
| | - Katerina Gioti
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Newman Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
14
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
15
|
Bi C, Xu H, Yu J, Ding Z, Liu Z. Botanical characteristics, chemical components, biological activity, and potential applications of mangosteen. PeerJ 2023; 11:e15329. [PMID: 37187523 PMCID: PMC10178281 DOI: 10.7717/peerj.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Garcinia mangostana L. (Mangosteen), a functional food, belongs to the Garcinaceae family and has various pharmacological effects, including anti-oxidative, anti-inflammatory, anticancer, antidiabetic, and neuroprotective effects. Mangosteen has abundant chemical constituents with powerful pharmacological effects. After searching scientific literature databases, including PubMed, Science Direct, Research Gate, Web of Science, VIP, Wanfang, and CNKI, we summarized the traditional applications, botanical features, chemical composition, and pharmacological effects of mangosteen. Further, we revealed the mechanism by which it improves health and treats disease. These findings provide a theoretical basis for mangosteen's future clinical use and will aid doctors and researchers who investigate the biological activity and functions of food.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Jingru Yu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Zhinan Ding
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| |
Collapse
|
16
|
Dong X, Nao J. Relationship between the therapeutic potential of various plant-derived bioactive compounds and their related microRNAs in neurological disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154501. [PMID: 36368284 DOI: 10.1016/j.phymed.2022.154501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurological disorders, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, and glioblastoma often lead to long-term disability and death. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs of approximately 22 nucleotides, known to participate in both normal and pathological development, making them ideal therapeutic targets for clinical intervention. Several recent studies have suggested that plant-derived bioactive compounds (PDBCs) can have anti-atherosclerosis, antioxidant, and anti-inflammatory effects by regulating miRNAs. Thus, miRNAs are novel targets for the action of PDBCs. PURPOSE The aim of this review was to evaluate the current status of PDBCs targeted miRNAs by dissecting their development status through a literature review. METHODS A manual and electronic search was performed for English articles available from inception up to June 2022 reporting PDBCs and their regulating relationship with miRNAs for the therapeutic potential of neurological disorders. Information was retrieved from scientific databases including PubMed, ScienceDirect, Web of Science, Google Scholar and Chemical Abstracts Services. Keywords used for the search engines were "miRNAs" AND "Plant-derived bioactive compounds" in conjunction with "(native weeds OR alien invasive)" AND "traditional herbal medicine". RESULTS A total of 37 articles were retrieved on PDBCs and their related miRNAs in neurological disorders. These PDBCs from traditional herbal medicine may play a therapeutic role in neurological disorders in a variety of mechanisms by regulating the corresponding miRNAs. These mechanisms mainly include inhibiting oxidative stress, anti-neuroinflammation, anti-autophagy, and anti-apoptosis. PDBC are a group of chemically distinct compounds derived from medicinal plants, some of which have therapeutic effects on neurological disorders. CONCLUSION The emergence of miRNAs as pathological regulatory factors provides a new direction for the study of bioactive compounds in Traditional Chinese medicine and the elucidating of their epigenetic effects. Elucidating the regulatory relationship between bioactive compounds and miRNAs may help to identify new therapeutic targets and promoting the application of these compounds in precision medicine through their targeted molecular activity.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
17
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
18
|
The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4330681. [PMID: 35656022 PMCID: PMC9155922 DOI: 10.1155/2022/4330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.
Collapse
|
19
|
Ma Y, Zou H. Identification of the circRNA-miRNA-mRNA Prognostic Regulatory Network in Lung Adenocarcinoma. Genes (Basel) 2022; 13:genes13050885. [PMID: 35627270 PMCID: PMC9141977 DOI: 10.3390/genes13050885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Numerous studies have identified that circular RNAs (circRNAs) can serve as competing endogenous RNAs (ceRNAs) to regulate tumor progression. However, there are still a large number of circRNAs to be deciphered. Objective: The purpose of this study was to reveal novel circRNAs and their potential role in lung adenocarcinoma (LUAD). Methods: To unveil LUAD-related circRNAs, microRNA (miRNAs), and messenger RNA (mRNA) and elucidate their possible molecular mechanisms, we employed a strategy combining extensive data mining and bioinformatics methods. According to the results of bioinformatics workflow analysis, a novel circRNA-miRNA-mRNA network was constructed. Results: Ten circRNAs with different expressions were acquired from four Gene Expression Omnibus (GEO) microarray datasets. Seven Prognostic-related differential miRNAs of LUAD were gained from The Cancer Genome Atlas (TCGA). Simultaneously, the miRNA reaction components corresponding to the ten circRNAs were predicted. Two circRNA–miRNA interactions including two circRNAs (hsa_circ_0008234 and hsa_circ_0002360) and two miRNAs (hsa-miR-490-3p and hsa-miR-1293) were identified above. Then, target genes of the two miRNAs and differently expressed genes (DEGs) from TCGA on LUAD were collected. Three hub-genes (ADCY9, NMUR1, SYT1) were determined according to prognosis in patients with LUAD ulteriorly. Conclusions: hsa_circ_0008234/hsa-miR-490-3p/SYT1 and hsa_circ_0002360/hsa-miR-1293/ (ADCY9, NMUR1) networks were established, and identified molecules may be involved in pathogenesis and prognosis in patients with LUAD.
Collapse
|
20
|
Gui JY, Rao S, Gou Y, Xu F, Cheng S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1707-1718. [PMID: 34460116 DOI: 10.1002/jsfa.11511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Approximately 0.5-1 billion people worldwide face the risk of selenium (Se) deficiency because of the low Se concentration in their diets. Broccoli can accumulate Se and comprises a source of daily Se supplement for humans. Se biofortification is an effective strategy for enhancing Se content in crops. In the present study, the effects of Se yeast and selenite application on the Se content and nutrient quality of broccoli were investigated. RESULTS Broccoli growth was promoted by Se yeast but inhibited by selenite. The total Se content of broccoli florets remarkably increased with increasing exogenous Se fertilizer concentrations. The main Se species in broccoli florets were methyl-selenocysteine and selenomethionine, and their contents were significantly higher under Se yeast treatments than under selenite treatments. Se(VI) was detected only under selenite treatments. Se yeast and selenite had different influences on soluble sugar, soluble protein, vitamin C and free amino acid contents in broccoli florets. The total phenolic acid and glucosinolate contents were substantially increased by Se yeast and selenite, although the total flavonoid content was reduced by Se yeast. Tests on antioxidant enzyme activities revealed that several antioxidant enzymes (catalase, peroxidase, superoxide dismutase and glutathione peroxidase) responded to Se yeast and selenite treatments. CONCLUSION Se yeast is preferred over selenite for maximizing Se uptake and nutrient accumulation in Se-rich broccoli cultivation. However, an extremely high Se content in broccoli florets cannot be directly consumed by humans, although they can be processed into Se supplements. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
21
|
Tabnak P, Masrouri S, Mafakheri A. Natural products in suppressing glioma progression: A focus on the role of microRNAs. Phytother Res 2022; 36:1576-1599. [PMID: 35174549 DOI: 10.1002/ptr.7414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/07/2021] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Abstract
Glioma is one of the most common malignancies of the central nervous system. Due to inadequate response to the current treatments available, glioma has been at the center of recent cancer studies searching for novel treatment strategies. This has prompted an intensive search using linkage studies and preliminary evidence to gain efficient insight into the mechanisms involved in the alleviation of the pathogenesis of glioma mediated by miRNAs, a group of noncoding RNAs that affect gene expression posttranscriptionally. Dysregulated expression of miRNAs can exacerbate the malignant features of tumor cells in glioma and other cancers. Natural products can exert anticancer effects on glioma cells by stimulating the expression levels of tumor suppressor miRNAs and repressing the expression levels of oncogenic miRNAs. In this review, we aimed to collect and analyze the literature addressing the roles of natural products in the treatment of glioma, with an emphasis on their involvement in the regulation of miRNAs.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Masrouri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asrin Mafakheri
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
22
|
Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen JT, Shin H, Ramesh M. Plant Derived Bioactive Compounds, Their Anti-Cancer Effects and In Silico Approaches as an Alternative Target Treatment Strategy for Breast Cancer: An Updated Overview. Cancers (Basel) 2021; 13:cancers13246222. [PMID: 34944840 PMCID: PMC8699774 DOI: 10.3390/cancers13246222] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most common malignant diseases that occur worldwide, among which breast cancer is the second leading cause of death in women. The subtypes are associated with differences in the outcome and were selected for treatments according to the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor. Triple-negative breast cancer, one of the subtypes of breast cancer, is difficult to treat and can even lead to death. If breast cancer is not treated during the initial stages, it may spread to nearby organs, a process called metastasis, through the blood or lymph system. For in vitro studies, MCF-7, MDA-MB-231, MDA-MB-468, and T47B are the most commonly used breast cancer cell lines. Clinically, chemotherapy and radiotherapy are usually expensive and can also cause side effects. To overcome these issues, medicinal plants could be the best alternative for chemotherapeutic drugs with fewer side effects and cost-effectiveness. Furthermore, the genes involved in breast cancer can be regulated and synergized with signaling molecules to suppress the proliferation of breast cancer cells. In addition, nanoparticles encapsulating (nano-encapsulation) medicinal plant extracts showed a significant reduction in the apoptotic and cytotoxic activities of breast cancer cells. This present review mainly speculates an overview of the native medicinal plant derived anti-cancerous compounds with its efficiency, types and pathways involved in breast cancer along with its genes, the mechanism of breast cancer brain metastasis, chemoresistivity and its mechanism, bioinformatics approaches which could be an effective alternative for drug discovery.
Collapse
Affiliation(s)
- Vijayakumar Shrihastini
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
- Correspondence: (P.M.); (J.-T.C.)
| | - Sivakumar Adarshan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (M.R.)
| | - Mariappan Sujitha
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India; (V.S.); (M.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: (P.M.); (J.-T.C.)
| | - Hyunsuk Shin
- Department of Horticultural Sciences, Gyeongsang National University, Jinju 52725, Korea;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (M.R.)
| |
Collapse
|
23
|
Scoditti E, Naccarati A, Carpi S, Polini B, Ebada SS, Nieri P. Editorial: Non-Coding RNAs as Mediators of the Activity of Natural Compounds. Front Pharmacol 2021; 12:751956. [PMID: 34489715 PMCID: PMC8416989 DOI: 10.3389/fphar.2021.751956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), Lecce, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Torino, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Sherif S Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K, Koklesova L, Kuruc T, Adamkov M, Smejkal K, Svajdlenka E, Solar P, Pec M, Büsselberg D, Sadlonova V, Mojzis J. Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma. Int J Mol Sci 2020; 22:ijms22010183. [PMID: 33375383 PMCID: PMC7795985 DOI: 10.3390/ijms22010183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia;
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Karin Jasek
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, P. J. Šafárik University, 040 11 Kosice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, 24144 Doha, Qatar;
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
- Correspondence: (P.K.); (V.S.); (J.M.)
| |
Collapse
|