1
|
Liu M, Zou G, Lu M, Fu J, Chen H, Pan C, Liu HM, Fu L. Mechanism of Rabdosia rubescens extract against gastric cancer microenvironment by SIRT1/NF-κB/p53 pathway and promoting tumor-associated macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119935. [PMID: 40345273 DOI: 10.1016/j.jep.2025.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional action of Rabdosia rubescens (Hemsl.) H. Hara is heat-clearing and detoxifying, relieve sore throat, dissipate binds and disperse swelling. DLC, as an extract prepared from Rabdosiae Rubescentis Herba, could regulate the polarization of tumor associated macrophages (TAMs). For TAMs play an important role in the tumor microenvironment. It is worthy to further explore the mechanism of DLC on the polarized function of macrophages. AIM OF THE STUDY The aim of this study is to investigate the activity and molecular mechanisms of DLC on dissipating binds and dispersing swelling by modulating the gastric cancer microenvironment and macrophage polarization. MATERIALS AND METHODS We conducted comprehensive qualitative and quantitative chromatographic analyses to characterize the main components of DLC. To evaluate its anti-tumor effects, immunofluorescence, MTT assay, plate cloning, transcriptomics analysis, western blotting, and siRNA knockdown experiments were performed to assess DLC's action on gastric cancer cell proliferation. Additionally, we utilized Trypan blue staining, a THP-1 and MGC-803 co-culture model, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and a mouse xenograft model with five distinct dosage groups to systematically investigate DLC's effects on macrophage polarization. RESULTS Key compounds in DLC were identified. The vivo tests demonstrated the tumor inhibition rate of the 5 g/kg DLC group reached 66.99 %, surpassing that of the 5-fluorouracil group (59.94 %). Mechanistically, DLC upregulated SIRT1 expression and suppressed NF-κB pathway, thereby preventing p65 from translocating into nuclear and modulating downstream p53/MDM2/USP7 signaling. Moreover, DLC enhanced M1 macrophage factors such as TNF-α, IL-6 while inhibiting M2 marker TGF-β, effectively repolarizing M2 TAMs toward an M1 phenotype. This effect was associated with suppressed protein expression of HIF-1α, p-p65, and p-PI3K. CONCLUSION This study provides insights into DLC's mechanisms in regulating tumor microenvironment remodeling and promoting macrophage polarization toward an anti-tumor phenotype. These results provide a solid basis for DLC's potential clinical treament in gastric cancer, highlighting its promise as a natural therapeutic agent.
Collapse
Affiliation(s)
- Mengran Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Guona Zou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyao Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiayue Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Han Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Lee H, Kim JH, Lee HJ, Park JB. Impact of Dexamethasone on Three-Dimensional Stem Cell Spheroids: Morphology, Viability, Osteogenic Differentiation. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:871. [PMID: 40428829 PMCID: PMC12113056 DOI: 10.3390/medicina61050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: Dexamethasone has been widely researched for its ability to promote osteogenic differentiation in mesenchymal stem cells in basic research. This study focused on examining the effects of dexamethasone on both cell viability and osteogenic differentiation in three-dimensional stem cell spheroids. Materials and Methods: These spheroids were created using concave microwells and exposed to dexamethasone at concentrations ranging from 0 μM to 100 μM, including intermediate levels of 0.1 μM, 1 μM, and 10 μM. Microscopic analysis was used to qualitatively assess cellular viability, while a water-soluble tetrazolium salt-based assay provided quantitative viability data. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition using Alizarin Red staining. Additionally, the expression levels of genes associated with osteogenesis were measured through quantitative polymerase chain reaction. Results: The spheroids successfully self-assembled within the first 24 h and maintained their structural integrity over a seven-day period. Analysis of cell viability showed no statistically significant differences across the various dexamethasone concentrations tested. Although there was an observed increase in alkaline phosphatase activity and calcium deposition following dexamethasone treatment, these differences were not statistically significant. RUNX2 gene expression was upregulated in the 1 μM, 10 μM, and 100 μM groups, while COL1A1 expression significantly increased at 0.1 μM and 1 μM. Conclusions: These results indicate that dexamethasone supports cell viability and enhances RUNX2 and COL1A1 expression in stem cell spheroids.
Collapse
Affiliation(s)
- Heera Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (J.-H.K.); (H.-J.L.)
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (J.-H.K.); (H.-J.L.)
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (J.-H.K.); (H.-J.L.)
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.L.); (J.-H.K.); (H.-J.L.)
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Liu SQ, Xie QL, Deng YS, Liang L, Yuan HW, Li B, Yu HH, Tian X, Qiu YX, Paulin Kemayou Mouthe G, Shehla N, Zhang Y, Cai ZB, Wang W, Yang YP. Targeted isolation of lignans and triterpenoids from kadsura coccinea by molecular networking and anti-RA-FLS activity. PHYTOCHEMISTRY 2025; 231:114341. [PMID: 39613277 DOI: 10.1016/j.phytochem.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In this study, six compounds (four triterpenoids named heilaohutriterpenes A-D and two lignans name heilaohusuins F and G) together with 21 known compounds were isolated from roots of Kadsura coccinea (Lem.) A. C. Smith guided by molecular networking. Their structures were determined using a combination of HR-ESI-MS, 1D, 2D-NMR anatysis, NMR calculation, and electronic circular dichroism (ECD) calculations. Moreover, the ability of the isolated compounds to inhibit the proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells was evaluated in vitro. Heilaohutriterpene B (2), heilaohutriterpene D (4), coccinone B (7), and kadsuralignan H (24) demonstrated significant inhibitory activities against RA-FLS cells, with IC50 values of 9.57 ± 0.84, 16.22 ± 1.71, 3.08 ± 1.59, and 19.09 ± 2.42 μM, respectively. Meanwhile, western blotting analysis revealed that compound 2 down-regulated the level of P-NF-κB p65 and up-regulated that of Bax and IκBα. These results collectively suggest that compound 2 promoted the apoptosis of RA-FLS cells by inhibiting the NF-κB pathway. Taken together, this study contributed to the structural diversity of compounds derived from K. coccinea and lays a basis for further anti-RA-related studies.
Collapse
Affiliation(s)
- Shi-Qi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ya-Si Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ling Liang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Han-Wen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Guy Paulin Kemayou Mouthe
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Nuzhat Shehla
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ye Zhang
- Shenzhen Futian District Maternal and Child Health Hospital, Shenzhen, 518016, China
| | - Ze-Bo Cai
- Shenzhen Futian District Maternal and Child Health Hospital, Shenzhen, 518016, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
4
|
Liu SQ, Shen BB, Li HY, Yao YX, Li B, Yu HH, Tian X, Zhou XD, Sheng WB, Kemayou Mouthe GP, Wang W, Yang YP. Integrating UPLC-Q-Exactive Orbitrap/MS, Network pharmacology and experimental validation to reveal the potential mechanism of Kadsuracoccinea roots in Colon Cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118934. [PMID: 39401665 DOI: 10.1016/j.jep.2024.118934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kadsura coccinea roots are a traditional folk medicine used to treat gastrointestinal diseases. In recent years, research on K. coccinea has predominantly focused on the analysis of chemical composition and screening for activity, but there is a scarcity of studies that employ mass spectrometry to analyze Kadsura coccinea roots. AIM OF THE STUDY This study aimed to characterize the chemical composition of K. coccinea roots and explore the pharmacological mechanisms with network pharmacology. Cell assay and Western blot analysis were used to verify the pharmacological mechanism of the main compounds in K. coccinea roots. MATERIALS AND METHODS UPLC-Q-Exactive Orbitrap/MS was used for chemical analysis of K. coccinea roots, and the compounds were identified by employing diagnostic product ions, fragmentation patterns, ChemSpider, and in-house databases. Network pharmacology was employed to estimate the pathways related to pharmacological mechanisms. In addition, MTT assay was conducted to determine the inhibitory activity of colon cancer cell lines, and their apoptotic abilities were evaluated by flow cytometry and Western blot. RESULTS The UPLC-Q-Exactive Orbitrap/MS identified a total of 54 compounds in K. coccinea roots. The 54 compounds were subjected to network pharmacology analysis, exploring the pharmacological action of the main components of K. coccinea roots. The common targets between the compounds and colon cancer comprised 2009 GO biological process items and 186 KEGG signal pathways. Flow cytometry indicated that treatments with 20 μM of the above-named compounds resulted in an apoptosis rate of 16.6%, 79.7%, and 22.2% in HCT-116 cells, respectively. Meanwhile, Western blot analysis confirmed that the compounds promoted the expression of Bax and Caspase-3 level expression. CONCLUSION The findings demonstrated that K. coccinea roots can treat colon cancer through multiple components, targets, and pathways. This study revealed the effective components and molecular mechanisms of K. coccinea, which were preliminarily verified using in vitro experiments.
Collapse
Affiliation(s)
- Shi-Qi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bing-Bing Shen
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Hui-Ying Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yu-Xuan Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wen-Bing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Guy Paulin Kemayou Mouthe
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
5
|
Chen Z, Yu T, Wang Y, Li J, Zhang B, Zhou L. Mechanistic insights into the role of traditional Chinese medicine in treating gastric cancer. Front Oncol 2025; 14:1443686. [PMID: 39906672 PMCID: PMC11790455 DOI: 10.3389/fonc.2024.1443686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Gastric cancer remains a leading cause of cancer-related mortality worldwide, with advanced stages presenting significant challenges due to metastasis and drug resistance. Traditional Chinese Medicine (TCM) offers a promising complementary approach characterized by holistic treatment principles and minimal side effects. This review comprehensively explores the multifaceted mechanisms by which TCM addresses gastric cancer. Specifically, we detail how TCM inhibits aerobic glycolysis by downregulating key glycolytic enzymes and metabolic pathways, thereby reducing the energy supply essential for cancer cell proliferation. We examine how TCM suppresses angiogenesis by targeting the vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) pathways, effectively starving tumors of nutrients and oxygen required for growth and metastasis. Furthermore, TCM modulates the immune microenvironment by enhancing the activity of effector immune cells such as CD4+ and CD8+ T cells and natural killer (NK) cells while reducing immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These actions collectively contribute to slowing tumor progression, inhibiting metastasis, and enhancing the body's antitumor response. The insights presented underscore the significant potential of TCM as an integral component of comprehensive gastric cancer treatment strategies, highlighting avenues for future research and clinical application to improve patient outcomes.
Collapse
Affiliation(s)
- Ziqiang Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Yu
- Department of Rheumatism, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunhe Wang
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaxin Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bo Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liya Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Yu L, Sun L, Yu Q, Xiong F, Wang D, Pu L, Peng F, Xie X, Peng C. Bioactive compounds and mechanism of Xianglian pill in the treatment of gastric cancer: Network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116573. [PMID: 37142148 DOI: 10.1016/j.jep.2023.116573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/27/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric cancer (GC) affects people's quality of life because of its high incidence rate and mortality. The Xianglian Pill (XLP) is a traditional Chinese medicine (TCM) prescription used to treat gastrointestinal (GI) diseases. Its anti-tumor effect has been found in recent years, but it's bioactive compounds and mechanism of action in treating GC are remain unknown. AIM OF THE STUDY This study reveals the bioactive compounds and mechanisms of XLP in the treatment of GC through network pharmacology analysis and experimental verification. MATERIALS AND METHODS The main compounds in XLP were searched and the active compounds with anti-GC activity were selected. Compounds targets and GC- related targets were predicted, and common targets were obtained. Subsequently, a protein-protein interaction (PPI) network of common targets is constructed, while GO and KEGG enrichment analyses were performed on common targets. Finally, the anti-GC effects of active compounds in XLP were verified in GC cell lines MGC-803 and HGC-27 by wound healing assay, cell cycle assay, cell apoptosis assay and western blotting (WB) assay. RESULTS A total of 33 active compounds of XLP were obtained. MTT assay showed that dehydrocostus lactone (DHL) and berberrubine (BRB) had lower IC50 value in GC cells HGC-27 and MGC-803, and has a less inhibitory effect on normal gastric epithelial cells. Further, 73 common targets were obtained after the total target of DHL and BRB intersected with GC. Among them, CASP3, AKT1, SRC, STAT3,and CASP9 were the most associated genes in the PPI network. GO and KEGG enrichment analyses indicated that apoptosis played a major role in the biological processes and signaling pathways involved. Moreover, the in vitro experiment revealed that DHL and BRB inhibited GC cell viability via inducing cell cycle arrest at G2/M phase, and promoting cell apoptosis by up-regulating the caspase3 expression and down-regulating the expression of Bcl2/Bax. CONCLUSIONS DHL and BRB are the two main anti-GC active compounds in XLP, and their mechanism is mainly to inhibit cell cycle and promote cell apoptosis.
Collapse
Affiliation(s)
- Lei Yu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Luyao Sun
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Qian Yu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Fang Xiong
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Daibo Wang
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Lin Pu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Fu Peng
- School of Pharmacy, West China School of Pharmacy, Sichuan University, Chengdu, 610075, China.
| | - Xiaofang Xie
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China.
| |
Collapse
|
7
|
Wu J, Shang J, An J, Chen W, Hong G, Hou H, Zheng WH, Song F, Peng X. Jointly Depleting Glutathione Based on Self-Assembled Nanomicelles for Enhancing Photodynamic Therapy. Chembiochem 2023; 24:e202300323. [PMID: 37169724 DOI: 10.1002/cbic.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Photodynamic therapy (PDT) is one common ROS-generating therapeutic method with high tumor selectivity and low side effects. But the GSH-upregulation often alleviates its therapeutic efficiency. Here, we proposed a new strategy of jointly depleting GSH to enhance the therapeutic effect of PDT by preparing a nanomicelle by self-assembly method from GSH-activated photosensitizer DMT, curcumin, and amphiphilic polymer TPGS.
Collapse
Affiliation(s)
- Jingxi Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jingjing Shang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jing An
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haoran Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of, Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
El-Borlsy H, Hanafy NAN, El-Kemary MA. Development and application of naturally derived, cost-effective CQDs with cancer targeting potential. Cell Biol Int 2023; 47:808-822. [PMID: 36640423 DOI: 10.1002/cbin.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Carbon quantum dots (CQDs) derived from natural sources have obtained potential interest in biomedical imaging and therapy because of their excellent biocompatibility properties, which include water solubility, simple synthesis and low cytotoxicity. Here the cytotoxicity of ethylene-diamine doped carbon quantum dots (N-CQDs) delivered to breast cancer MCF-7 cells was investigated. Folic acid was used to raise folate recognition and increase FA-NCQD accumulation in the cells, then apoptosis was assayed using nuclear fragmentation, acridine orange labeling, fluorescence imaging, flow cytometry, and caspase 3 expression. The data show that functionalization of these CQDs, derived from a natural source, have potential application in eliminating cancer cells, as shown here for the invasive breast cancer cells, MCF-7. This nano-delivery system provides a novel target therapy possibility therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Hanaa El-Borlsy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
9
|
Antitumoral Activity of Leptocarpha rivularis Flower Extracts against Gastric Cancer Cells. Int J Mol Sci 2023; 24:ijms24021439. [PMID: 36674960 PMCID: PMC9862749 DOI: 10.3390/ijms24021439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Leptocarpha rivularis is a native South American plant used ancestrally by Mapuche people to treat gastrointestinal ailments. L. rivularis flower extracts are rich in molecules with therapeutic potential, including the sesquiterpene lactone leptocarpin, which displays cytotoxic effects against various cancer types in vitro. However, the combination of active molecules in these extracts could offer a hitherto unexplored potential for targeting cancer. In this study, we investigated the effect of L. rivularis flower extracts on the proliferation, survival, and spread parameters of gastric cancer cells in vitro. Gastric cancer (AGS and MKN-45) and normal immortalized (GES-1) cell lines were treated with different concentrations of L. rivularis flower extracts (DCM, Hex, EtOAc, and EtOH) and we determined the changes in proliferation (MTS assay, cell cycle analysis), cell viability/cytotoxicity (trypan blue exclusion assay, DEVDase activity, mitochondrial membrane potential MMP, and clonogenic ability), senescence (β-galactosidase activity) and spread potential (invasion and migration assays using the Boyden chamber approach) in all these cells. The results showed that the DCM, EtOAc, and Hex extracts display a selective antitumoral effect in gastric cancer cells by affecting all the cancer parameters tested. These findings reveal an attractive antitumoral potential of L. rivularis flower extracts by targeting several acquired capabilities of cancer cells.
Collapse
|
10
|
Bai LQ, Wang BZ, Liu QW, Li WQ, Zhou H, Yang XY. Effects of penehyclidine hydrochloride on myocardial ischaemia-reperfusion injury in rats by inhibiting TLR4/MyD88/NF-κB pathway via miR-199a-3p. Growth Factors 2022; 40:186-199. [PMID: 35984706 DOI: 10.1080/08977194.2022.2109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study was to probe the role of penehyclidine hydrochloride (PHC) mediating the impact of toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signalling pathway on myocardial ischaemia-reperfusion injury (MI/RI) in rats through miR-199a-3p. The rat MI/RI model was established through ligating left anterior descending (LAD) coronary artery. PHC was injected preoperatively into the model rats, and injected with miR-199a-3p lentiviral vector or TLR4 antagonist (TAK-242). Next, cardiac function of rats was examined by echocardiography, and rat serum indicators, oxidative stress levels and inflammatory factors were detected. HE staining was applied to detect pathological tissue structure, TUNEL staining to detect apoptosis rate, qRCR and western blot to detect miR-199a-3p and TLR4/MyD88/NF-κB expressions in rat myocardial tissues. Dual luciferase reporter experiment was conducted to confirm the relationship between miR-199a-3p and TLR4. In conclusion, PHC suppresses TLR4/MyD88/NF-κB signalling pathway through miR-199a-3p, thereby improving MI/RI in rats.
Collapse
Affiliation(s)
- Ling Qiang Bai
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Bin Zhe Wang
- Department of The First Outpatients, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou City, China
| | - Qi Wei Liu
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Wen Qiang Li
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Hang Zhou
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Xiao Yan Yang
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| |
Collapse
|
11
|
El-brolsy HMEM, Hanafy NAN, El-Kemary MA. Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int J Mol Sci 2022; 23:13283. [PMID: 36362075 PMCID: PMC9658332 DOI: 10.3390/ijms232113283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 μg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.
Collapse
|
12
|
Yang YP, Jian YQ, Liu YB, Xie QL, Yu HH, Wang B, Li B, Peng CY, Wang W. Heilaohuacid G, a new triterpenoid from Kadsura coccinea inhibits proliferation, induces apoptosis, and ameliorates inflammation in RA-FLS and RAW 264.7 cells via suppressing NF-𝜅B pathway. Phytother Res 2022; 36:3900-3910. [PMID: 36104304 DOI: 10.1002/ptr.7527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Heilaohu, the roots of Kadsura coccinea, has been used in Tujia ethnomedicine to treat rheumatic arthritis (RA). Heilaohuacid G (1), a new 3,4-seco-lanostane type triterpenoid isolated from the ethanol extract of Heilaohu, whose structure was determined using HR-ESI-MS data, NMR spectroscopic analyses, and ECD calculations. In this study, our purpose is to elucidate the mechanisms of Heilaohuacid G in the treatment of RA by inhibited proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells and inhibited the inflammatory reactions in LPS-induced RA-FLS and RAW 264.7 cell lines via inhibiting NF-κB pathway. The biological activity screening experiments indicated that Heilaohuacid G significantly inhibited proliferation of RA-FLS cells with IC50 value of 8.16 ± 0.47 μM. CCK-8 assay, ELISA, flow cytometry assay, and Western blot were used to measure the changes of cell viability, apoptosis, and the release of inflammatory cytokines. Heilaohuacid G was found not only induced RA-FLS cell apoptosis, but also inhibited the inflammatory reactions in LPS-induced RA-FLS and RAW 264.7 cell lines via inhibiting NF-κB pathway. Furthermore, Heilaohuacid G (p.o.) at doses of 3.0, 6.0, and 12.0 mg/kg and the ethanol extracts of Heilaohu (p.o.) at doses of 200, 400, and 800 mg/kg both were confirmed antiinflammatory effects on xylene-induced ear mice edema model.
Collapse
Affiliation(s)
- Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yu-Qing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yong-Bei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Cai-Yun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
13
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
Kadsura coccinea Lignan Metabolism Based on Metabolome and Transcriptome Analysis. JOURNAL OF ONCOLOGY 2022; 2022:3152155. [PMID: 35957804 PMCID: PMC9359851 DOI: 10.1155/2022/3152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Kadsura coccinea is an important resource of traditional Chinese medicine. We find out the gene information of enzymes related to lignan biosynthesis and metabolism of Kadsura coccinea, so as to provide a scientific basis for the breeding of new varieties of Kadsura coccinea. In this paper, 2-year-old Kadsura coccinea from Hunan Kadsura coccinea provincial germplasm resource bank was used as the material and its root, stem, and leaf were analyzed by extensive targeted metabolomics combined with transcriptome sequencing. The results showed the following: (1) 51 lignans were detected by metabolome analysis, and the content of lignans in roots was higher than that in stems and leaves. The high content of lignans in roots, stems, and leaves includes ring-opening isolarch phenol-4-o-glucoside, narrow leaf schisandrin E, and schisandrin B. (2) After transcriptome sequencing, 13 classes of 137 Unigenes related to lignan biosynthesis pathway were retrieved. The analysis of differential genes in different parts showed that the overall expression amount and species of Kadsura coccinea lignan synthase gene in stems and leaves were closer than those in roots. CCoAOMT, C3H, and SIDR gene families are mainly expressed in roots and stems. (3) Metabolome combined with transcriptome analysis further screened these genes and obtained 11 genes of enzyme gene families such as HCT, DIR, COMT, CAD, SIDR, and PLR, which are highly correlated in lignan synthesis. Therefore, there are many lignans and their synthase-related genes in Kadsura coccinea roots, stems, and leaves, but the content and expression of different lignans and their synthase-related genes are quite different in each part. In this study, the gene information of the Kadsura coccinea lignan biosynthesis enzyme was obtained for the first time, which laid a good foundation for the cloning and molecular breeding of the key enzyme gene of lignan biosynthesis.
Collapse
|
15
|
Jia Z, Li W, Bian P, Yang L, Liu H, Pan D, Dou Z. Ursolic acid treats renal tubular epithelial cell damage induced by calcium oxalate monohydrate via inhibiting oxidative stress and inflammation. Bioengineered 2021; 12:5450-5461. [PMID: 34506233 PMCID: PMC8806476 DOI: 10.1080/21655979.2021.1955176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Abstract
Ursolic acid (UA) has been proved to have antioxidant and anti-inflammatory effects. However, it is not clear whether it has a protective impact on kidney damage induced by crystals of calcium oxalate monohydrate (COM). This work aimed to make clear the potential mechanism of UA protecting COM-induced kidney damage. The results manifested that high- and low-dose UA reduced COM crystals in COM rats' kidney, down-regulated urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) levels in rat plasma, declined kidney tissue and HK-2 cell apoptosis, inhibited Bax expression but elevated Bcl-2 expression. Additionally, UA alleviated renal fibrosis in COM rats, repressed α-SMA and collagen I protein expressions in the kidney and COM rats' HK-2 cells, depressed COM-induced oxidative damage in vivo and in vitro via up-regulating Nrf2/HO-1 pathway, up-regulated SOD levels and reduced MDA levels, down-regulated TNF-α, IL-1β, and IL-6 levels in vivo and in vitro via suppressing activation of TLR4/NF-κB pathway. In summary, the results of this study suggest that COM-induced renal injury can be effectively improved via UA, providing powerful data support for the development of effective clinical drugs for renal injury in the future.
Collapse
Affiliation(s)
- Zhaohui Jia
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Wensheng Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Pan Bian
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Liuyang Yang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Hui Liu
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Dong Pan
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Zhongling Dou
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| |
Collapse
|
16
|
Identification of anthocyanins in the fruits of Kadsura coccinea using UPLC-MS/MS-based metabolomics. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|