1
|
Lu J, Tang Y, Li H, Tian S, Chen X, Song X, Qin P, Xu J, Zhu H, Ni L, Du H, Zhang W, Li W, Chen L. Exploring anti-SARS-CoV-2 natural products: dual-viral target inhibition by delphinidin and the anti-coronaviral efficacy of deapio platycodin D. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:39. [PMID: 40512442 DOI: 10.1007/s13659-025-00523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025]
Abstract
Qingfei Paidu decoction (QFPDD) has been extensively used in clinical treatments during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. SARS-CoV-2 primarily invades host cells via its spike (S) protein binding to the angiotensin-converting enzyme 2 (ACE2) on the cell membrane, mediating viral-host membrane fusion. Blocking viral entry is a crucial step in preventing infection, with the interaction between the S receptor binding domain (S-RBD) and ACE2 being a key antiviral target. Given that SARS-CoV-2 predominantly affects the respiratory system and approximately 25% of patients suffering from corona virus disease 2019 (COVID-19) with gastrointestinal symptoms, we are committed to identifying more active ingredients in QFPDD that target the respiratory and gastrointestinal tracts of COVID-19 patients. Among medicinal plants, ephedra and liquorice derived from QFPDD, along with two other Chinese herbs, Platycodon grandiflorum and Radix Rhei Et Rhizome (rhubarb), have garnered our interest. These herbs have historically been used in traditional Chinese medicine (TCM) for treating infectious diseases with respiratory and digestive symptoms. Here, we established a library containing all components of the four individual herbs gathered from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and performed structure-based virtual screening to identify potential ACE2/S-RBD inhibitors. Subsequently, we selected 10 ingredients from the top 30 candidates and evaluated their activities using a pseudovirus neutralization assay. Delphinidin and deapio platycodin D (DPD) showed significant antiviral potential with half-maximal inhibitory concentration (IC50) values of 45.35 µM and 1.38 µM, respectively. Furthermore, delphinidin also inhibited the 3-chymotrypsin-like protease (3CLpro), indicating its dual-viral target inhibitory potential. Notably, DPD effectively suppressed HCoV-229E replication in BEL-7402 cells. This study not only provides a strategy for rapid identifying antiviral agents from TCM in anticipation of future pandemics but also offers theoretical and experimental evidence to support for the clinical use of QFPDD.
Collapse
Affiliation(s)
- Jiani Lu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongtao Li
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Saisai Tian
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xixiang Chen
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueyue Song
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Pengcheng Qin
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Jianrong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Liqiang Ni
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huarong Du
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
- School of Pharmacy, Henan University, Kaifeng, 475001, China.
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lili Chen
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Zheng Z, Wang R, Zhao Y, Zhang P, Xie D, Peng S, Li R, Zhang J. Salidroside Derivative SHPL-49 Exerts Anti-Neuroinflammatory Effects by Modulating Excessive Autophagy in Microglia. Cells 2025; 14:425. [PMID: 40136674 PMCID: PMC11941147 DOI: 10.3390/cells14060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The neuroinflammation triggered by cellular demise plays a pivotal role in ameliorating the injury associated with ischemic stroke, which represents a significant global burden of mortality and disability. The compound SHPL-49, a derivative of rhodioloside, was discovered by our research team and has previously demonstrated neuroprotective effects in rats with ischemic stroke. This study aimed to elucidate the underlying mechanisms of SHPL-49's protective effects. Preliminary investigations revealed that SHPL-49 effectively alleviates PMCAO-induced neuroinflammation. Further studies indicated that SHPL-49 downregulates the expression of the lysosomal protein LAMP-2 and reduces lysosomal activity, impeding the fusion of lysosomes and autophagosomes, thus inhibiting excessive autophagy and increasing the expression levels of the autophagy proteins LC3-II and P62. Furthermore, SHPL-49 effectively reverses the NF-κB nuclear translocation induced by the autophagy inducer rapamycin, significantly lowering the expression levels of the inflammatory factors IL-6, IL-1β, and iNOS. In a co-culture system of BV2 and PC12 cells, SHPL-49 enhanced PC12 cell viability by inhibiting excessive autophagy in BV2 cells and reducing the ratio of apoptotic proteins Bax and BCL-2. The overall findings suggest that SHPL-49 exerts its neuroprotective effects through the inhibition of excessive autophagy and the suppression of the NF-κB signaling pathway in microglia, thereby attenuating neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| |
Collapse
|
3
|
Bai Y, Liu T, Zhang S, Shi Y, Yang Y, Ding M, Yang X, Guo S, Xu X, Liu Q. Traditional Chinese Medicine for Viral Pneumonia Therapy: Pharmacological Basis and Mechanistic Insights. Int J Biol Sci 2025; 21:989-1013. [PMID: 39897040 PMCID: PMC11781171 DOI: 10.7150/ijbs.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Different respiratory viruses might cause similar symptoms, ranging from mild upper respiratory tract involvement to severe respiratory distress, which can rapidly progress to septic shock, coagulation disorders, and multiorgan failure, ultimately leading to death. The COVID-19 pandemic has shown that predicting clinical outcomes can be challenging because of the complex interactions between the virus and the host. Traditional Chinese medicine (TCM) has distinct benefits in the treatment of respiratory viral illnesses due to its adherence to the principles of "different treatments for the same disease" and "same treatment for different diseases". This paper examines the effectiveness and underlying mechanisms of key TCM treatments for viral pneumonia in recent years. The aim of this study was to discover and confirm the active substances of TCM with potential therapeutic effects on viral pneumonia and their integrative effects and synergistic mechanisms and to provide a scientific basis for elucidating the effectiveness of TCM treatment and drug discovery. Furthermore, a thorough analysis of previous research is necessary to evaluate the effectiveness of TCM in treating viral pneumonia.
Collapse
Affiliation(s)
- Yinglu Bai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Tengwen Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shuwen Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yifan Shi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumei Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Maoyu Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaowei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Chinese Medicine, Beijing 100010, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Institute of Chinese Medicine, Beijing 100010, China
| |
Collapse
|
4
|
Sun Y, Li YY, Leung CK, Hu P. iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models. Bioinformatics 2024; 40:btae135. [PMID: 38449285 PMCID: PMC10957515 DOI: 10.1093/bioinformatics/btae135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/31/2023] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
MOTIVATION Drug-target interaction (DTI) prediction aims to identify interactions between drugs and protein targets. Deep learning can automatically learn discriminative features from drug and protein target representations for DTI prediction, but challenges remain, making it an open question. Existing approaches encode drugs and targets into features using deep learning models, but they often lack explanations for underlying interactions. Moreover, limited labeled DTIs in the chemical space can hinder model generalization. RESULTS We propose an interpretable nested graph neural network for DTI prediction (iNGNN-DTI) using pre-trained molecule and protein models. The analysis is conducted on graph data representing drugs and targets by using a specific type of nested graph neural network, in which the target graphs are created based on 3D structures using Alphafold2. This architecture is highly expressive in capturing substructures of the graph data. We use a cross-attention module to capture interaction information between the substructures of drugs and targets. To improve feature representations, we integrate features learned by models that are pre-trained on large unlabeled small molecule and protein datasets, respectively. We evaluate our model on three benchmark datasets, and it shows a consistent improvement on all baseline models in all datasets. We also run an experiment with previously unseen drugs or targets in the test set, and our model outperforms all of the baselines. Furthermore, the iNGNN-DTI can provide more insights into the interaction by visualizing the weights learned by the cross-attention module. AVAILABILITY AND IMPLEMENTATION The source code of the algorithm is available at https://github.com/syan1992/iNGNN-DTI.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry, Western University, London, ON, N6G 2V4, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Computer Science, Western University, London, ON, N6G 2V4, Canada
| | - Yan Yi Li
- Division of Biostatistics, University of Toronto, Toronto, ON, M5T 3M7, Canada
| | - Carson K Leung
- Department of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Pingzhao Hu
- Department of Biochemistry, Western University, London, ON, N6G 2V4, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Computer Science, Western University, London, ON, N6G 2V4, Canada
- Division of Biostatistics, University of Toronto, Toronto, ON, M5T 3M7, Canada
- Department of Oncology, Western University, London, ON, N6G 2V4, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, N6G 2V4, Canada
- The Children’s Health Research Institute, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| |
Collapse
|
5
|
Liu L, Kapralov M, Ashton M. Plant-derived compounds as potential leads for new drug development targeting COVID-19. Phytother Res 2024; 38:1522-1554. [PMID: 38281731 DOI: 10.1002/ptr.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
COVID-19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some patients infected with COVID-19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID-19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID-19 treatments due to their broad-spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti-SARS-CoV-2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS-CoV-2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS-CoV-2, with a focus on the application of plant-derived compounds in animal models and in human studies.
Collapse
Affiliation(s)
- Lingxiu Liu
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Maxim Kapralov
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mark Ashton
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
6
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
7
|
Xiang Y, Zhai G, Li Y, Wang M, Chen X, Wang R, Xie H, Zhang W, Ge G, Zhang Q, Xu Y, Caflisch A, Xu J, Chen H, Chen L. Ginkgolic acids inhibit SARS-CoV-2 and its variants by blocking the spike protein/ACE2 interplay. Int J Biol Macromol 2023; 226:780-792. [PMID: 36521705 PMCID: PMC9743696 DOI: 10.1016/j.ijbiomac.2022.12.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Targeting the interaction between the spike protein receptor binding domain (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2) is a potential therapeutic strategy for treating coronavirus disease 2019 (COVID-19). However, we still lack small-molecule drug candidates for this target due to the missing knowledge in the hot spots for the protein-protein interaction. Here, we used NanoBiT technology to identify three Ginkgolic acids from an in-house traditional Chinese medicine (TCM) library, and they interfere with the S-RBD/ACE2 interplay. Our pseudovirus assay showed that one of the compounds, Ginkgolic acid C17:1 (GA171), significantly inhibits the entry of original SARS-CoV-2 and its variants into the ACE2-overexpressed HEK293T cells. We investigated and proposed the binding sites of GA171 on S-RBD by combining molecular docking and molecular dynamics simulations. Site-directed mutagenesis and surface plasmon resonance revealed that GA171 specifically binds to the pocket near R403 and Y505, critical residues of S-RBD for S-RBD interacting with ACE2. Thus, we provide structural insights into developing new small-molecule inhibitors and vaccines against the proposed S-RBD binding site.
Collapse
Affiliation(s)
- Yusen Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guanglei Zhai
- Shanghai HighsLab Therapeutics. Inc., Shanghai 201203, China
| | - Yaozong Li
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Mengge Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xixiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Wang J, Liu J, Luo M, Cui H, Zhang W, Zhao K, Dai H, Song F, Chen K, Yu Y, Zhou D, Li MJ, Yang H. Rational drug repositioning for coronavirus-associated diseases using directional mapping and side-effect inference. iScience 2022; 25:105348. [PMID: 36267550 PMCID: PMC9556799 DOI: 10.1016/j.isci.2022.105348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of coronavirus disease 2019 (COVID-19), has infected hundreds of millions of people and caused millions of deaths. Looking for valid druggable targets with minimal side effects for the treatment of COVID-19 remains critical. After discovering host genes from multiscale omics data, we developed an end-to-end network method to investigate drug-host gene(s)-coronavirus (CoV) paths and the mechanism of action between the drug and the host factor in a directional network. We also inspected the potential side effect of the candidate drug on several common comorbidities. We established a catalog of host genes associated with three CoVs. Rule-based prioritization yielded 29 Food and Drug Administration (FDA)-approved drugs via accounting for the effects of drugs on CoVs, comorbidities, and drug-target confidence information. Seven drugs are currently undergoing clinical trials as COVID-19 treatment. This catalog of druggable host genes associated with CoVs and the prioritized repurposed drugs will provide a new sight in therapeutics discovery for severe COVID-19 patients.
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Menghan Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Cui
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenwen Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ke Zhao
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Corresponding author
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Corresponding author
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Corresponding author
| |
Collapse
|
9
|
Sun X, Ai L, Ran Y, Zhang Y, Zhang Q, Li Q, Cui Y, Sun L. Combined exploration of the mechanism of Sang Xing Decoction in the treatment of smoke-induced acute bronchitis from protein and metabolic levels. Biomed Pharmacother 2022; 152:113254. [PMID: 35691159 DOI: 10.1016/j.biopha.2022.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022] Open
Abstract
Sang Xing decoction (SXD) is a typical prescription for treating "warm dryness" in traditional Chinese medicine (TCM), which is equivalent to respiratory diseases such as acute bronchitis in modern medicine. However, its mechanism of action remains unclear. In this study, the representative components of SXD were characterized using liquid chromatography-tandem mass spectrometry (LC-MS). The key targets, signaling pathways, and metabolic pathways associated with SXD in the treatment of acute bronchitis were identified via network prediction and metabolomics. A rat model of acute bronchitis was also established using mixed smoke, systematic in vivo experiments such as histopathological analyses, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, immunohistochemistry and western blotting were conducted to evaluate the network prediction results. An in-depth analysis of the targeted quantitative results was performed using the SIMCA software and MetaboAnalyst website. The results revealed that 50 active compounds and 45 key targets were screened and clustered with 20 approved drugs. The NF-κB signaling pathway, oxidative stress, and glutamine metabolism were associated with the therapeutic mechanism of SXD in acute bronchitis. In vivo experiments showed that SXD may maintain the production of inflammatory factors by regulating the PI3K/Akt/NF-κB signaling pathway, improving the metabolism of glutamine and glutamate to reduce oxidative stress, and inhibiting apoptosis. Simultaneously, the possibility of using SXD as an adjuvant drug for COVID-19 treatment was also revealed. This research will lay the foundation for the modern clinical application of SXD and promote the promotion and innovation of TCM.
Collapse
Affiliation(s)
- Xiaomeng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Lun Ai
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Yinfei Ran
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, China.
| |
Collapse
|
10
|
Pagano E. Phytocompounds and COVID-19: Two years of knowledge. Phytother Res 2022; 36:2267-2271. [PMID: 35170093 PMCID: PMC9111037 DOI: 10.1002/ptr.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|