1
|
Han D, Wang F, Jiang Q, Qiao Z, Zhuang Y, An Q, Li Y, Tang Y, Li C, Shen D. Enhancing Cardioprotection Through Neutrophil-Mediated Delivery of 18β-Glycyrrhetinic Acid in Myocardial Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406124. [PMID: 39264272 PMCID: PMC11558124 DOI: 10.1002/advs.202406124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) generates reactive oxygen species (ROS) and initiates inflammatory responses. Traditional therapies targeting specific cytokines or ROS often prove inadequate. An innovative drug delivery system (DDS) is developed using neutrophil decoys (NDs) that encapsulate 18β-glycyrrhetinic acid (GA) within a hydrolyzable oxalate polymer (HOP) and neutrophil membrane vesicles (NMVs). These NDs are responsive to hydrogen peroxide (H2O2), enabling controlled GA release. Additionally, NDs adsorb inflammatory factors, thereby reducing inflammation. They exhibit enhanced adhesion to inflamed endothelial cells (ECs) and improved penetration. Once internalized by cardiomyocytes through clathrin-mediated endocytosis, NDs protect against ROS-induced damage and inhibit HMGB1 translocation. In vivo studies show that NDs preferentially accumulate in injured myocardium, reducing infarct size, mitigating adverse remodeling, and enhancing cardiac function, all while maintaining favorable biosafety profiles. This neutrophil-based system offers a promising targeted therapy for MI/RI by addressing both inflammation and ROS, holding potential for future clinical applications.
Collapse
Affiliation(s)
- Dongjian Han
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Fuhang Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Qingjiao Jiang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Zhentao Qiao
- Department of Vascular and Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Yuansong Zhuang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Quanxu An
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yuhang Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Yazhe Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Chenyao Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| | - Deliang Shen
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Key Laboratory of Cardiac Injury and Repair of Henan ProvinceZhengzhou450018China
| |
Collapse
|
2
|
Bai Y, Gao L, Han T, Liang C, Zhou J, Liu Y, Guo J, Wu J, Hu D. 18β-glycyrrhetinic acid ameliorates bleomycin-induced idiopathic pulmonary fibrosis via inhibiting TGF-β1/JAK2/STAT3 signaling axis. J Steroid Biochem Mol Biol 2024; 243:106560. [PMID: 38917955 DOI: 10.1016/j.jsbmb.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease with an unknown cause that has few treatment options. 18β-Glycyrrhetinic acid (18β-GA) is the main bioactive component in licorice, exhibiting anti-inflammatory and antioxidant effects, while also holding certain application value in the metabolism and regulation of steroids. In this study, we demonstrated that 18β-GA effectively alleviates bleomycin (BLM)-induced IPF by inhibiting the TGF-β1/JAK2/STAT3 signaling axis. In vivo experiments demonstrate that 18β-GA significantly attenuates pulmonary fibrosis progression by reducing lung inflammation, improving lung function, and decreasing collagen deposition. In vitro experiments reveal that 18β-GA inhibits the activation and migration of TGF-β1-induced fibroblasts. Furthermore, it regulates the expression of vimentin, N-cadherin and E-cadherin proteins, thereby inhibiting TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung alveolar epithelial cells. Mechanistically, 18β-GA ameliorates pulmonary fibrosis by modulating the TGF-β1/JAK2/STAT3 signaling pathway in activated fibroblasts. Taken together, our findings demonstrate the potential and underlying mechanisms of 18β-GA in ameliorating IPF, emphasizing its potential as a novel therapeutic drug for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
3
|
Yang Z, Li X, Liu W, Wang G, Ma J, Jiang L, Yu D, Ding Y, Li Y. One-Step Organic Synthesis of 18β-Glycyrrhetinic Acid-Anthraquinone Ester Products: Exploration of Antibacterial Activity and Structure-Activity Relationship, Toxicity Evaluation in Zebrafish. Chem Biol Drug Des 2024; 104:e14631. [PMID: 39317695 DOI: 10.1111/cbdd.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
To combine the activity characteristics of 18β-glycyrrhetinic acid (18β-GA) and anthraquinone compounds (rhein and emodin), reduce toxicity, and explore the structure-activity relationship (SAR) of anthraquinones, 18β-GA-anthraquinone ester compounds were synthesized by one-step organic synthesis. The products were separated and purified by HPLC and characterized by NMR and EI-MS. It was finally determined as di-18β-GA-3-rhein ester (1, New), GA dimer (2, known), 18β-GA-3-emodin ester (3, known), and di-18β-GA-1-emodin ester (4, new). The MIC of three reactants and four products against Escherichia coli and Staphylococcus aureus were detected in vitro. Its developmental toxicity and cardiotoxicity were assessed using zebrafish embryos. The experimental results showed that rhein had the best antibacterial activity against Staphylococcus aureus with MIC50 of 2.4 mM, and it was speculated that -COOH, -OH, and intramolecular hydrogen bonds in anthraquinone compounds would enhance the antibacterial effect, while the presence of-CH3 might weaken the antibacterial activity. Product 1 increased the hatching rate and survival rate of zebrafish embryos and reduced the malformation rate and cardiomyocyte apoptosis. This experiment lays the foundation for further studying the SAR of anthraquinones and providing new drug candidates.
Collapse
Affiliation(s)
- Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyan Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Health and Welfare, Changchun Humanities and Sciences College, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Denghui Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Wang Z, Chen R, Chen J, Su L. 18β-glycyrrhetinic acid alleviates radiation-induced skin injury by activating the Nrf2/HO-1 signaling pathway. Biol Chem 2024; 405:407-415. [PMID: 38598859 DOI: 10.1515/hsz-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Radiation-induced skin injury is a common side effect of radiotherapy, but there are few therapeutic drugs available for prevention or treatment. In this study, we demonstrate that 18β-Glycyrrhetinic acid (18β-GA), a bioactive component derived from Glycyrrhiza glabra, substantially reduces the accumulation of reactive oxygen species (ROS) and inhibits apoptosis in HaCaT cells after ionizing radiation (IR), thereby mitigating radiation-induced skin injury. Mechanistically, 18β-GA promotes the nuclear import of Nrf2, leading to activation of the Nrf2/HO-1 signaling pathway in response to IR. Importantly, Nrf2 silencing increases cell apoptosis and reverse the protective effect of 18β-GA on radiation-induced skin injury. Furthermore, 18β-GA preserves skin tissue structure after irradiation, inhibits inflammatory cell infiltration, and alleviates radiation dermatitis. In conclusion, our results suggest that 18β-GA reduces intracellular ROS production and apoptosis by activating the Nrf2/HO-1 signaling pathway, leading to amelioration of radiation dermatitis.
Collapse
Affiliation(s)
- Zeng Wang
- Central Laboratory, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
| | - Ruiqing Chen
- Central Laboratory, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
| | - Junying Chen
- Central Laboratory, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
| | - Li Su
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, 117888 The First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
- Department of Radiotherapy, Cancer Center, 117888 First Affiliated Hospital of Fujian Medical University , No.20 Chazhong Road, Taijiang District, Fuzhou 350005, China
- Department of Radiotherapy, National Regional Medical Center, 117888 Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou 350005, China
| |
Collapse
|
5
|
Ma X, Sun Z, Chen H, Cao L, Zhao S, Fan L, Zhao C, Yin S, Hu H. 18β-glycyrrhetinic acid suppresses Lewis lung cancer growth through protecting immune cells from ferroptosis. Cancer Chemother Pharmacol 2024; 93:575-585. [PMID: 38383823 DOI: 10.1007/s00280-024-04639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE 18β-glycyrrhetinic acid (GA), the main metabolite of glycyrrhizic acid extracted from the root of licorice, has been reported to possess anti-cancer and immunomodulatory activity, but the mechanisms are not well understood. Recent studies have shown that ferroptosis of immune cells is involved in tumor-associated immune suppression. The purpose of this study was to investigate whether the enhanced immune response via inhibiting immune cell ferroptosis contributed to the anticancer effect of 18β-GA. METHODS Lewis Lung carcinoma mouse model and Murine CD8 + T cell culture model were used to examine the changes of immune response and ferroptosis of immune cells. RESULTS We found that 18β-GA was effective against lung cancer accompanied by enhanced activation of tumor-infiltrating CD8+ T cells in Lewis Lung carcinoma mouse model. Furthermore, we demonstrated that the boosted immune response by GA was attributed to its ability to inhibit arachidonic acid (AA)-mediated CD8+ T ferroptosis via suppressing CD36 expression. CONCLUSION The findings of the present study unraveled a novel mechanism underlying the anti-cancer and immunomodulatory activity of 18β-GA and support that 18β-GA holds potential to be used as an immune enhancer for lung cancer prevention or treatment.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Zhenou Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
- College of Food Science and Nutritional Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No.2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
6
|
18β-Glycyrrhetinic Acid Ameliorates Neuroinflammation Linked Depressive Behavior Instigated by Chronic Unpredictable Mild Stress via Triggering BDNF/TrkB Signaling Pathway in Rats. Neurochem Res 2023; 48:551-569. [PMID: 36307572 PMCID: PMC9616426 DOI: 10.1007/s11064-022-03779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Evidence shows that inflammatory responses may encompass the onset of severe depressive illness. Traditionally used licorice contains 18β-glycyrrhetinic acid (18βGA), which has been demonstrated to reduce inflammation and oxidative stress. This study investigates the antidepressant effects of 18βGA and the underlying mechanism in rats exposed to chronic unpredictable mild stress (CUMS). Wistar rats were exposed to CUMS for 36 consecutive days to establish depression. 18βGA (10, 20, and 50 mg/kg) or fluoxetine was given once daily (from day 30 to day 36). Thereafter, behavior parameters (sucrose preference test, forced-swimming test, open-field test, body weight), pro-inflammatory cytokines, neurotransmitters, adrenocorticotropic hormone (ACTH), corticosterone (CORT), and liver biomarkers were studied. Immunohistochemistry and western blot analyses were conducted to investigate the protein's expression. 18βGA (20 and 50 mg/kg) treatment increased sucrose intake, locomotion in the open-field test, decreased immobility time in the forced swim test, and improved body weight in CUMS-exposed rats. The therapy of 18βGA dramatically declined cytokines, ACTH and CORT and improved 5HT and norepinephrine in CUMS rats. Furthermore, BDNF and TrkB proteins were down-regulated in CUMS group, which was increased to varying degrees by 18βGA at doses of 20 and 50 mg/kg. Therefore, 18βGA ameliorates depressive-like behavior persuaded by chronic unpredictable mild stress, decreases neuroinflammation, liver biomarkers, stress hormones, and improves body weight, brain neurotransmitter concentration via activating on BDNF/TrkB signaling pathway in both PFC and hippocampus in rats.
Collapse
|
7
|
Xiao R, Wei Y, Zhang Y, Xu F, Ma C, Gong Q, Gao J, Xu Y. Trilobatin, a Naturally Occurring Food Additive, Ameliorates Exhaustive Exercise-Induced Fatigue in Mice: Involvement of Nrf2/ARE/Ferroptosis Signaling Pathway. Front Pharmacol 2022; 13:913367. [PMID: 35814232 PMCID: PMC9263197 DOI: 10.3389/fphar.2022.913367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Nrf2-mediated oxidative stress is a promising target of exhaustive exercise-induced fatigue (EEIF). Trilobatin (TLB) is a naturally occurring food additive with antioxidant effect and Nrf2 activation potency. The present study aimed to investigate the effect of TLB on EEIF and elucidate its underlying mechanism. Our results showed that TLB exerted potent anti-EEIF effect, as reflected by the rope climbing test and exhaustive swimming test. Moreover, TLB also effectively reduced the levels of lactate, creatine kinase, and blood urea nitrogen, and increased liver glycogen and skeletal muscle glycogen in mice after EEIF insult. Additionally, TLB also balanced the redox status as evidenced by decreasing the generation of reactive oxygen species and improving the antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of glutathione both in the tissue of muscle and myocardium. Furthermore, TLB promoted nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, and upregulated its downstream antioxidant response element (ARE) including quinone oxidoreductase-1 and heme oxygenase-1. Intriguingly, TLB also upregulated the GPx4 protein expression and reduced iron overload in mice after EEIF insult. Encouragingly, the beneficial effect of TLB on EEIF-induced oxidative stress and ferroptosis were substantially abolished in Nrf2-deficient mice. In conclusion, our findings demonstrate, for the first time, that TLB alleviates EEIF-induced oxidative stress through mediating Nrf2/ARE/ferroptosis axis.
Collapse
Affiliation(s)
- Ran Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yueping Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yingshu Xu,
| |
Collapse
|
8
|
A Comparative Study on Relieving Exercise-Induced Fatigue by Inhalation of Different Citrus Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103239. [PMID: 35630716 PMCID: PMC9145370 DOI: 10.3390/molecules27103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Citrus essential oils (CEOs) possess physiological functions due to diverse aroma components. However, evidence for the effects of CEOs on exercise performance and exercise-induced fatigue is limited. The CEOs with discrepancies in components may exert different effects on the amelioration of exercise-induced fatigue. In this study, sweet orange (Citrus sinensis L.) essential oil (SEO), lemon (Citrus limon Osbeck) essential oil (LEO), and bergamot (Citrus bergamia Risso and Poit) essential oil (BEO) were chosen to explore the effect on amelioration of exercise-induced fatigue. Our results demonstrated that SEO and LEO increased the swimming time by 276% and 46.5%, while BEO did not. Moreover, the three CEOs exerted varying effects on mitigating exercise-induced fatigue via inhibiting oxidative stress, protecting muscle injury, and promoting glucose-dependent energy supply. Accordingly, BEO showed the best efficiency. Moreover, the GC-MS and Pearson correlation analysis of BEO showed that the contents of the major components, such as (±)-limonene (32.9%), linalyl butyrate (17.8%), and linalool (7.7%), were significantly positively correlated with relieving exercise-induced fatigue.
Collapse
|